首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ischemia-induced angiogenic response is reduced in spontaneously hypertensive rats (SHR). To study whether exogenous basic fibroblast growth factor (bFGF) infusion is effective in expanding collateral circulation in frankly hypertensive SHR, femoral arteries of male SHR (weighing approximately 250 g) were kept intact (nonoccluded control; n = 9) or occluded for 4h(n = 12) or for 16 days with vehicle (n = 14) or bFGF [0.5 (n = 17), 5.0 (n = 13), and 50.0 (n = 14) microg. kg-1. day-1 for 14 days] intraarterially. Maximal collateral-dependent blood flows (BF) to the hindlimbs were determined with 85Sr- and 141Ce-labeled microspheres during running at 20 and 25 m/min (15% grade). Preexercise heart rates (approximately 530 beats/min) and blood pressures (BP; approximately 200 mmHg) were similar across groups except in the high-dose bFGF group, where BP was reduced by approximately 12% (P < 0.05). Femoral artery occlusion for 4 h resulted in approximately 95% reduction of BF in calf muscles [199 +/- 18.7 (nonoccluded group) to 10 +/- 1.0 ml. min-1. 100 g-1; P < 0.001]. BF to calf muscles of the vehicle and low-dose bFGF (0.5 microg. kg-1. day-1) groups increased to 36 +/- 3.2 and 45 +/- 2.0 ml. min-1. 100 g-1, respectively (P < 0.001). bFGF infusion at 5.0 and 50.0 microg. kg-1. day-1 further increased (P < 0.001) BF to calf muscles (62 +/- 4.6 and 62 +/- 2.2 ml. min-1. 100 g-1, respectively). Our results show that bFGF can effectively increase BF in hypertensive rats. The reduced hypertension with high-dose bFGF suggests that a critical signal in arteriogenesis (nitric oxide bioavailability) may be restored. These findings suggest that the dulled endothelial nitric oxide synthase of SHR does not preempt collateral vessel remodeling.  相似文献   

2.
3.
Distal skin ischemic necrosis is a common complication in skin flap surgery. The pathogenesis of skin flap ischemic necrosis is unclear, and there is no clinical treatment available. Here, we used the 4 x 10 cm rat dorsal skin flap model to test our hypothesis that subcutaneous injection of vascular endothelial growth factor 165 (VEGF165) in skin flaps at the time of surgery is effective in augmentation of skin flap viability, which is associated with an increase in nitric oxide (NO) production, and the mechanism involves 1) an increase in skin flap blood flow in the early stage after surgery and 2) enhanced angiogenesis subsequently to sustain increased skin flap blood flow and viability. We observed that subcutaneous injection of VEGF165 in skin flaps at the time of surgery increased skin flap viability in a dose-dependent manner. Subcutaneous injection of VEGF165 at the dose of 2 microg/flap increased skin flap viability by 28% (P < 0.05; n = 8). Over 80% of this effect was blocked by intramuscular injection of the NO synthase (NOS) inhibitor Nomega-nitro-L-arginine (13 mg/kg) 45 min before surgery (P < 0.05; n = 8). The VEGF165 treatment also increased skin flap blood flow (2.68 +/- 0.63 ml x min(-1) x 100 g(-1)) compared with the control (1.26 +/- 0.10 ml x min(-1) x 100 g(-1); P < 0.05, n = 6) assessed 6 h postoperatively. There was no change in skin flap capillary density at this time point. VEGF165-induced increase in capillary density (32.2 +/- 1.1 capillaries/mm2; P < 0.05, n = 7) compared with control (24.6 +/- 1.4 capillaries/mm2) was seen 7 days postoperatively. There was also evidence to indicate that VEGF165-induced NO production in skin flaps was stimulated by activation of NOS activity followed by upregulation of NOS protein expression. These observations support our hypothesis and for the first time provide an important insight into the mechanism of acute local VEGF165 protein therapy in mitigation of skin flap ischemic necrosis.  相似文献   

4.
We tested the hypothesis that aged animals are as responsive as the young adult animals in expanding collateral vasculature under a similar treatment of basic fibroblast growth factor (bFGF). Two age groups of male Fischer 344 rats (11 mo old; n = 32, 23 mo old; n = 43) weighing approximately 385 g were subdivided into normal, acute ligation [femoral artery (FA) ligated 3 days before blood flow (BF) measurement] or ligated groups for 16 days and received recombinant human bFGF intra-arterial infusion at doses of 0, 0.5, 5, and 50 microg x kg(-1) x day(-1). BF was determined with (85)Sr- and (141)Ce-labeled microspheres during treadmill running at 15 and 20 m/min at 15% grade. Blood pressure (BP) values were approximately 149 and approximately 163 mmHg (p < 0.05); heart rates were approximately 496 and approximately 512 beats/min in the aged and young adult groups during running, respectively. Maximal collateral BF values were confirmed by no additional BF increase in the calf muscle at the higher speed. Ligation of the FA for 3 days reduced the BF reserve to the calf muscle by approximately 90%. Calf muscle BF was modestly greater (10 ml x min(-1) x 100 g(-1)) by 16 days in the carrier group. bFGF infusion expanded collateral BF in a dose-dependent manner with an increase of 33 and 42 ml x min(-1) x 100 g(-1) (P < 0.001) in the 5 and 50 microg x kg(-1) x day(-1) bFGF groups, respectively. Aged animals showed similar BF improvements as observed with the adult groups in response to ligation surgery and bFGF treatment. Our data indicate that the aged rats (approximately 23 mo old) remain responsive to exogenous bFGF induced in developing collateral-dependent BF as the young adult (approximately 11 mo old) controls. This suggests that the influence of bFGF in expanding collateral BF should not be preempted in the aged group, the population most affected by peripheral arterial insufficiency.  相似文献   

5.
The role of nitric oxide (NO) in microvascular permeability remains unclear because both increases and decreases in permeability by NO synthase (NOS) inhibitors have been reported. We sought to determine whether blood-borne constituents modify venular permeability responses to the NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). We assessed hydraulic conductivity (L(p)) of pipette-perfused rat mesenteric venules before and after exposure to 10(-4) M L-NAME. In the absence of blood-borne constituents, L-NAME reduced L(p) by nearly 50% (from a median of 2.4 x 10(-7) cm x s(-1) x cmH(2)O(-1), n = 17, P < 0.001). The reduction in L(p) by L-NAME was inhibited by a 10-fold molar excess of L-arginine but not D-arginine (n = 6). In a separate group of venules, blood flow was allowed to resume during exposure to L-NAME. In vessels perfused by blood during L-NAME exposure, L(p) increased by 78% (from 1.4 x 10(-7) cm x s(-1) x cmH(2)O(-1), n = 10, P < 0.01). N(G)-nitro-D-arginine methyl ester did not affect L(p) in either of the two groups. These data imply that NO has direct vascular effects on permeability that are opposed by secondary changes in permeability mediated by blood-borne constituents.  相似文献   

6.
The aim of this study was to investigate the concentrations of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), leptin, tumor necrosis factor-alpha, interleukin (IL)-1beta and IL-6, in cycles with a premature rise of serum progesterone. 25 intracytoplasmic sperm injection (ICSI) cycles with (Group 1) and 25 ICSI cycles without a premature progesterone elevation (Group 2) were included. The cut-off value of serum progesterone on the day of human chorionic gonadotropin (hCG) administration was 0.9 ng/ml. The indication for ICSI was male factor infertility exclusively. On the day of hCG injection, serum IL-6, VEGF and bFGF were significantly higher in Group 1 (7.7+/-24.5 pg/ml, 290.2+/-161.4 pg/ml and 15.7+/-8.2 ng/ml respectively) than in Group 2 (1.7+/-0.7 pg/ml, 175.2+/-92.1 pg/ml, and 9+/-1.6 ng/ml respectively). On the day of follicular puncture, serum cytokine concentrations were similar in the two groups. IL-6 intrafollicular concentrations were higher in Group 1 (14.7+/-20.7 pg/ml) than in Group 2 (9+/-9.3 pg/ml, p=0.031). There were no differences regarding the ICSI outcome. Patients with serum progesterone above 0.9 ng/ml, have elevated serum concentrations of IL-6, VEGF, and bFGF, as well as elevated intrafollicular concentrations of IL-6. The outcome of ICSI cycles is not associated with premature elevation of progesterone when the cut-off value is set at 0.9 ng/ml.  相似文献   

7.
Recent studies have shown that nitric oxide (NO) biosynthesis increases in pregnancy and that inhibition of nitric oxide synthase (NOS) induces some pathological processes characteristic of preeclampsia. The current project sought to study the effect of the NOS inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME, 10 microg x min(-1), sc for 7 days) on plasma volume, plasma atrial natriuretic factor (ANF), plasma endothelin-1 (ET), and plasma renin activity (PRA) during gestation in conscious rats. NOS inhibition caused mean arterial pressure to increase in both virgin and 21-day pregnant rats. Plasma volume fell in the pregnant rats [L-NAME, 4.5 +/- 0.3 mL x 100 g(-1) body wt. (n = 7) vs. D-NAME, 6.8 +/- 0.2 mL x 100 g(-1) body wt. (n = 10); P < 0.05] but not in the virgin rats [L-NAME, 4.3 +/- 0.1 mL x 100 g(-1) body wt. (n = 6) vs. D-NAME, 4.8 +/- 0.2 mL x 100 g(-1) body wt. (n = 8)]. There was no effect of NOS inhibition on plasma ANF levels or PRA in either the virgin or pregnant rats. However, L-NAME did decrease plasma ET levels in the pregnant rats [L-NAME, 19.6 +/- 1.6 pg x mL(-1) (n = 8) vs. D-NAME, 11.6 +/- 2.5 pg x mL(-1) (n = 9); P < 0.05]. Our results confirm that NO is involved in cardiovascular homeostasis in pregnancy; NOS inhibition selectively reduces plasma volume in pregnant rats, thus mimicking a major pathophysiological perturbation of preeclampsia. However, it does not induce the hormonal changes characteristic of preeclampsia, namely the decrease in PRA and increase in plasma ET and ANF levels.  相似文献   

8.
The nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (l-NAME) increased vascular resistance (VR) 10% above baseline of 3.08+/-0.08 (n=11) mmHg/mL/min at 10 mg/kg and 20% above 3.05+/-0.08 (n=9) at 50 mg/kg in anesthetized toads (Bufo marinus). Blood pressure was unaffected by either dose of L-NAME. Blood flow decreased at the higher dose of L-NAME. L-arginine (300 mg/kg) reversed the effects of L-NAME on VR and blood flow in toads treated with 10 mg/kg but not with 50 mg/kg. Injection of 50 mg/kg L-NAME into empty-bladder toads produced a 10% decrease in water uptake, J(v), resulting in a J(v) of 1,267+/-11 cm(3)/cm(2)/s x 10(-7) (n=9) compared to 1,385+/-12 (n=8) for controls. Injection of 10 microg/kg angiotensin II (ANG II) increased J(v) 15% across the pelvic patch (J(v), cm(3)/cm(2)/s x 10(-7)), resulting in a J(v) of 1,723+/-12 cm(3)/cm(2)/s x 10(-7) (n=8) compared to 1,471+/-12 (n=8) for controls. It is hypothesized that during cutaneous drinking blood flow into the capillary bed of the pelvic patch is regulated by nitric oxide and ANG II.  相似文献   

9.
The role of nitric oxide (NO) produced by NO synthase 1 (NOS1) in the renal vasculature remains undetermined. In the present study, we investigated the influence of systemic inhibition of NOS1 by intravenous administration of N(omega)-propyl-L-arginine (L-NPA; 1 mg. kg(-1). h(-1)) and N(5)-(1-imino-3-butenyl)-L-ornithine (v-NIO; 1 mg. kg(-1). h(-1)), highly selective NOS1 inhibitors, on renal cortical and medullary blood flow and interstitial NO concentration in Sprague-Dawley rats. Arterial blood pressure was significantly decreased by administration of both NOS1-selective inhibitors (-11 +/- 1 mmHg with L-NPA and -7 +/- 1 mmHg with v-NIO; n = 9/group). Laser-Doppler flowmetry experiments demonstrated that blood flow in the renal cortex and medulla was not significantly altered following administration of either NOS1-selective inhibitor. In contrast, the renal interstitial level of NO assessed by an in vivo microdialysis oxyhemoglobin-trapping technique was significantly decreased in both the renal cortex (by 36-42%) and medulla (by 32-40%) following administration of L-NPA (n = 8) or v-NIO (n = 8). Subsequent infusion of the nonspecific NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME; 50 mg. kg(-1). h(-1)) to rats pretreated with either of the NOS1-selective inhibitors significantly increased mean arterial pressure by 38-45 mmHg and significantly decreased cortical (25-29%) and medullary (37-43%) blood flow. In addition, L-NAME further decreased NO in the renal cortex (73-77%) and medulla (62-71%). To determine if a 40% decrease in NO could alter renal blood flow, a lower dose of L-NAME (5 mg. kg(-1). h(-1); n = 8) was administered to a separate group of rats. The low dose of L-NAME reduced interstitial NO (cortex 39%, medulla 38%) and significantly decreased blood flow (cortex 23-24%, medulla 31-33%). These results suggest that NOS1 does not regulate basal blood flow in the renal cortex or medulla, despite the observation that a considerable portion of NO in the renal interstitial space appears to be produced by NOS1.  相似文献   

10.
Komorowski J  Jankewicz J  Stepień H 《Cytobios》2000,101(398):151-159
Vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and soluble interleukin-2 receptor (sIL-2R) are important cytokines. They are secreted by normal pituitary glands and those with all types of adenomas and may be involved in pituitary tissue growth. The peripheral blood concentrations of VEGF, bFGF and sIL-2R in nineteen patients (17-70 years) with pituitary tumours and ten healthy subjects (23-34 years) were studied. Hypersecretion of prolactin (five cases), human growth hormone (four cases), and thyroid stimulating hormone (one case) was recorded in some patients, and the remaining subjects were diagnosed as having nonfunctional pituitary tumours. Increased peripheral blood plasma levels of VEGF (310.82 +/- 59.17 pg/ml) compared with controls (40.32 +/- 11.80 pg/ml; p < 0.01), as well as bFGF (87.27 +/- 7.58 pg/ml) versus controls (11.14 +/- 2.43 pg/ml; p < 0.001) were recorded. The levels of sIL-2R did not differ between the pituitary tumour patients (4,490.58 +/- 581.50 pg/ml) and control subjects (3,617.01 +/- 1,397.18 pg/ml; p > 0.05). The concentrations of VEGF and bFGF in the peripheral blood are useful additional markers of the presence of tumours.  相似文献   

11.
Uterine blood flow (UBF) and uterine artery endothelial nitric oxide synthase (eNOS) expression are greatest during the follicular vs. luteal phase. 17 beta-Estradiol (E(2)beta) increases UBF and elevates eNOS in ovine uterine but not systemic arteries; progesterone (P(4)) effects on E(2)beta changes of eNOS remain unclear. Nonpregnant ovariectomized sheep received either vehicle (n = 10), P(4) (0.9 g Controlled Internal Drug Release vaginal implants; n = 13), E(2)beta (5 microg/kg bolus + 6 microg x kg(-1) x day(-1); n = 10), or P(4) + E(2)beta (n = 12). Reproductive (uterine/mammary) and nonreproductive (omental/renal) artery endothelial proteins were procured on day 10, and eNOS was measured by Western analysis. P(4) and E(2)beta alone and in combination increased (P < 0.05) eNOS expression in uterine artery endothelium (vehicle = 100 +/- 16%, P(4) = 251 +/- 59%, E(2)beta = 566 +/- 147%, P(4) + E(2)beta = 772 +/- 211% of vehicle). Neither omental, renal, nor mammary artery eNOS was altered, demonstrating the local nature of steroid-induced maintenance of uterine arterial eNOS. In the myometrial microvasculature, eNOS was increased slightly (P = 0.06) with E(2)beta and significantly with P(4) + E(2)beta. Systemic NO(x) was increased with P(4) and P(4) + E(2)beta, but not E(2)beta, suggesting differential regulation of eNOS expression and activity, since P(4) increased eNOS in uterine artery endothelium while E(2)beta and the combination further increased eNOS protein.  相似文献   

12.
In this study, the cardioprotective effects of nitric oxide (NO)-aspirin, the nitroderivative of aspirin, were compared with those of aspirin in an anesthetized rat model of myocardial ischemia-reperfusion. Rats were given aspirin or NO-aspirin orally for 7 consecutive days preceding 25 min of myocardial ischemia followed by 48 h of reperfusion (MI/R). Treatment groups included vehicle (Tween 80), aspirin (30 mg.kg(-1).day(-1)), and NO-aspirin (56 mg.kg(-1).day(-1)). NO-aspirin, compared with aspirin, displayed remarkable cardioprotection in rats subjected to MI/R as determined by the mortality rate and infarct size. Mortality rates for vehicle (n = 23), aspirin (n = 22), and NO-aspirin groups (n = 22) were 34.8, 27.3, and 18.2%, respectively. Infarct size of the vehicle group was 44.5 +/- 2.7% of the left ventricle (LV). In contrast, infarct size of the LV decreased in the aspirin- and NO-aspirin-pretreated groups, 36.7 +/- 1.8 and 22.9 +/- 4.3%, respectively (both P < 0.05 compared with vehicle group; P < 0.05, NO-aspirin vs. aspirin ). Moreover, NO-aspirin also improved ischemia-reperfusion-induced myocardial contractile dysfunction on postischemic LV developed pressure. In addition, NO-aspirin downregulated inducible NO synthase (iNOS; 0.37-fold, P < 0.01) and cyclooxygenase-2 (COX-2; 0.61-fold, P < 0.05) gene expression compared with the vehicle group after 48 h of reperfusion. Treatment with N(G)-nitro-L-arginine methyl ester (L-NAME; 20 mg/kg), a nonselective NOS inhibitor, aggravated myocardial damage in terms of mortality and infarct size but attenuated effects when coadministered with NO-aspirin. L-NAME administration did not alter the increase in iNOS and COX-2 expression but did reverse the NO-aspirin-induced inhibition of expression of the two genes. The beneficial effects of NO-aspirin appeared to be derived largely from the NO moiety, which attenuated myocardial injury to limit infarct size and better recovery of LV function following ischemia and reperfusion.  相似文献   

13.
Dependent pooling occurs in postural orthostatic tachycardia syndrome (POTS) related to defective vasoconstriction. Increased venous pressure (Pv) >20 mmHg occurs in some patients (high Pv) but not others (normal Pv). We compared 22 patients, aged 12-18 yr, with 13 normal controls. Continuous blood pressure and strain-gauge plethysmography were used to measure supine forearm and calf blood flow, resistance, venous compliance, and microvascular filtration, and blood flow and swelling during 70 degrees head-up tilt. Supine, high Pv had normal resistance in arms (26 +/- 2 mmHg x ml(-1) x 100 ml x min) and legs (34 +/- 3 mmHg x ml(-1) x 100 ml x min) but low leg blood flow (1.5 +/- 0.4 ml x 100 ml(-1) x min(-1)). Supine leg Pv (30 +/- 2 vs. 13 +/- 1 mmHg in control) exceeded the threshold for edema (isovolumetric pressure = 19 +/- 3 mmHg). Supine, normal Pv had high blood flow in arms (4.1 +/- 0.2 vs. 3.5 +/- 0.2 ml x 100 ml(-1) x min(-1) in control) and legs (3.8 +/- 0.4 vs. 2.7 +/- 0.3 ml x 100 ml(-1) x min(-1) in control) with low resistance. With tilt, calf blood flow increased steadily in POTS with high Pv and transiently increased in normal Pv. Calf volume increased in all POTS patients. Arm blood flow increased in normal Pv only with forearm maintained at heart level. These data suggest that there are (at least) two subgroups of POTS characterized by high Pv and low flow or normal Pv and high flow. These may correspond to abnormalities in local or baroreceptor-mediated vasoconstriction, respectively.  相似文献   

14.
Using a rapidly responding nitric oxide (NO) analyzer, we measured the steady-state NO diffusing capacity (DL(NO)) from end-tidal NO. The diffusing capacity of the alveolar capillary membrane and pulmonary capillary blood volume were calculated from the steady-state diffusing capacity for CO (measured simultaneously) and the specific transfer conductance of blood per milliliter for NO and for CO. Nine men were studied bicycling at an average O(2) consumption of 1.3 +/- 0.2 l/min (mean +/- SD). DL(NO) was 202.7 +/- 71.2 ml. min(-1). Torr(-1) and steady-state diffusing capacity for CO, calculated from end-tidal (assumed alveolar) CO(2), mixed expired CO(2), and mixed expired CO, was 46.9 +/- 12.8 ml. min(-1). Torr(-1). NO dead space = (VT x FE(NO) - VT x FA(NO))/(FI(NO) - FA(NO)) = 209 +/- 88 ml, where VT is tidal volume and FE(NO), FI(NO), and FA(NO) are mixed exhaled, inhaled, and alveolar NO concentrations, respectively. We used the Bohr equation to estimate CO(2) dead space from mixed exhaled and end-tidal (assumed alveolar) CO(2) = 430 +/- 136 ml. Predicted anatomic dead space = 199 +/- 22 ml. Membrane diffusing capacity was 333 and 166 ml. min(-1). Torr(-1) for NO and CO, respectively, and pulmonary capillary blood volume was 140 ml. Inhalation of repeated breaths of NO over 80 s did not alter DL(NO) at the concentrations used.  相似文献   

15.
Preeclampsia (PE) is associated with increased total peripheral resistance (TPR), reduced cardiac output (CO), and diminished uterine and placental blood flow. We have developed an animal model that employs chronic reductions in uterine perfusion pressure (RUPP) in pregnant rats to generate a "preeclamptic-like" state during late gestation that is characterized by hypertension, proteinuria, and endothelial dysfunction. Although this animal model has many characteristics of human PE, the systemic hemodynamic and regional changes in blood flow that occur in response to chronic RUPP remains unknown. Therefore, we hypothesized that RUPP would decrease uteroplacental blood flow and CO, and increase TPR. Mean arterial pressure (MAP), CO, cardiac index (CI), TPR, and regional blood flow to various tissues were measured using radiolabeled microspheres in the following two groups of conscious rats: normal pregnant rats (NP; n = 8) and RUPP rats (n = 8). MAP was increased (132 +/- 4 vs. 99 +/- 3 mmHg) in the RUPP rats compared with the NP dams. The hypertension in RUPP rats was associated with increased TPR (2.15 +/- 0.02 vs. 0.98 +/- 0.08 mmHg x ml(-1) x min(-1)) and decreased CI (246 +/- 20 vs. 348 +/- 19 ml x min(-1) x kg(-1), P < 0.002) when contrasted with NP dams. Furthermore, uterine (0.16 +/- 0.03 vs. 0.38 +/- 0.09 ml x min(-1) x g tissue(-1)) and placental blood flow (0.30 +/- 0.08 vs. 0.70 +/- 0.10 ml x min(-1) x g tissue(-1)) were decreased in RUPP compared with the NP dams. These data demonstrate that the RUPP model of pregnancy-induced hypertension has systemic hemodynamic and regional blood flow alterations that are strikingly similar to those observed in women with PE.  相似文献   

16.
We hypothesized that nitric oxide (NO) opposes ANG II-induced increases in arterial pressure and reductions in renal, splanchnic, and skeletal muscle vascular conductance during dynamic exercise in normal and heart failure rats. Regional blood flow and vascular conductance were measured during treadmill running before (unblocked exercise) and after 1) ANG II AT(1)-receptor blockade (losartan, 20 mg/kg ia), 2) NO synthase (NOS) inhibition [N(G)-nitro-L-arginine methyl ester (L-NAME); 10 mg/kg ia], or 3) ANG II AT(1)-receptor blockade + NOS inhibition (combined blockade). Renal conductance during unblocked exercise (4.79 +/- 0.31 ml x 100 g(-1) x min(-1) x mmHg(-1)) was increased after ANG II AT(1)-receptor blockade (6.53 +/- 0.51 ml x 100 g(-1) x min(-1) x mmHg(-1)) and decreased by NOS inhibition (2.12 +/- 0.20 ml x 100 g(-1) x min(-1) x mmHg(-1)) and combined inhibition (3.96 +/- 0.57 ml x 100 g(-1) x min(-1) x mmHg(-1); all P < 0.05 vs. unblocked). In heart failure rats, renal conductance during unblocked exercise (5.50 +/- 0.66 ml x 100 g(-1) x min(-1) x mmHg(-1)) was increased by ANG II AT(1)-receptor blockade (8.48 +/- 0.83 ml x 100 g(-1) x min(-1) x mmHg(-1)) and decreased by NOS inhibition (2.68 +/- 0.22 ml x 100 g(-1) x min(-1) x mmHg(-1); both P < 0.05 vs. unblocked), but it was unaltered during combined inhibition (4.65 +/- 0.51 ml x 100 g(-1) x min(-1) x mmHg(-1)). Because our findings during combined blockade could be predicted from the independent actions of NO and ANG II, no interaction was apparent between these two substances in control or heart failure animals. In skeletal muscle, L-NAME-induced reductions in conductance, compared with unblocked exercise (P < 0.05), were abolished during combined inhibition in heart failure but not in control rats. These observations suggest that ANG II causes vasoconstriction in skeletal muscle that is masked by NO-evoked dilation in animals with heart failure. Because reductions in vascular conductance between unblocked exercise and combined inhibition were less than would be predicted from the independent actions of NO and ANG II, an interaction exists between these two substances in heart failure rats. L-NAME-induced increases in arterial pressure during treadmill running were attenuated (P < 0.05) similarly in both groups by combined inhibition. These findings indicate that NO opposes ANG II-induced increases in arterial pressure and in renal and skeletal muscle resistance during dynamic exercise.  相似文献   

17.
We tested the hypothesis that nitric oxide (NO) and prostaglandins (PGs) contribute to the rapid vasodilation that accompanies a transition from mild to moderate exercise. Nine healthy volunteers (2 women and 7 men) lay supine with forearm at heart level. Subjects were instrumented for continuous brachial artery infusion of saline (control condition) or combined infusion of N(G)-nitro-L-arginine methyl ester (L-NAME) and ketorolac (drug condition) to inhibit NO synthase and cyclooxygenase, respectively. A step increase from 5 min of steady-state mild (5.4 kg) rhythmic, dynamic forearm handgrip exercise (1 s of contraction followed by 2 s of relaxation) to moderate (10.9 kg) exercise for 30 s was performed. Steady-state forearm blood flow (FBF; Doppler ultrasound) and forearm vascular conductance (FVC) were attenuated in drug compared with saline (control) treatment: FBF = 196.8 +/- 30.8 vs. 281.4 +/- 34.3 ml/min and FVC = 179.3 +/- 29.4 vs. 277.8 +/- 34.8 ml.min(-1).100 mmHg(-1) (both P < 0.01). FBF and FVC increased from steady state after release of the initial contraction at the higher workload in saline and drug conditions: DeltaFBF = 72.4 +/- 8.7 and 52.9 +/- 7.8 ml/min, respectively, and DeltaFVC = 66.3 +/- 7.3 and 44.1 +/- 7.0 ml.min(-1).100 mmHg(-1), respectively (all P < 0.05). The percent DeltaFBF and DeltaFVC were not different during saline infusion or combined inhibition of NO and PGs: DeltaFBF = 27.2 +/- 3.1 and 28.1 +/- 3.8%, respectively (P = 0.78) and DeltaFVC = 25.7 +/- 3.2 and 26.0 +/- 4.0%, respectively (P = 0.94). The data suggest that NO and vasodilatory PGs are not obligatory for rapid vasodilation at the onset of a step increase from mild- to moderate-intensity forearm exercise. Additional vasodilatory mechanisms not dependent on NO and PG release contribute to the immediate and early increase in blood flow in an exercise-to-exercise transition.  相似文献   

18.
The roles of nitric oxide (NO) and plasma renin activity (PRA) in the depressor response to chronic administration of Tempol in spontaneously hypertensive rats (SHR) are not clear. The present study was done to determine the effect of 2 wk of Tempol treatment on blood pressure [mean arterial pressure (MAP)], oxidative stress, and PRA in the presence or absence of chronic NO synthase inhibition. SHR were divided into four groups: control, Tempol (1 mmol/l) alone, nitro-L-arginine methyl ester (L-NAME, 4.5 mg x g(-1).day(-1)) alone, and Tempol + L-NAME or 2 wk. With Tempol, MAP decreased by 22%: 191 +/- 3 and 162 +/- 21 mmHg for control and Tempol, respectively (P < 0.05). L-NAME increased MAP by 16% (222 +/- 2 mmHg, P < 0.01), and L-NAME + Tempol abolished the depressor response to Tempol (215 +/- 3 mmHg, P < 0.01). PRA was not affected by Tempol but was increased slightly with L-NAME alone and 4.4-fold with L-NAME + Tempol. Urinary nitrate/nitrite increased with Tempol and decreased with L-NAME and L-NAME + Tempol. Tempol significantly reduced oxidative stress in the presence and absence of L-NAME. In conclusion, in SHR, Tempol administration for 2 wk reduces oxidative stress in the presence or absence of NO, but in the absence of NO, Tempol is unable to reduce MAP. Therefore, NO, but not changes in PRA, plays a major role in the blood pressure-lowering effects of Tempol. These data suggest that, in hypertensive individuals with endothelial damage and chronic NO deficiency, antioxidants may be able to reduce oxidative stress but not blood pressure.  相似文献   

19.
We determined the contributions of various endothelium-derived relaxing factors to control of basal vascular tone and endothelium-dependent vasodilation in the mouse hindlimb in vivo. Under anesthesia, catheters were placed in a carotid artery, jugular vein, and femoral artery (for local hindlimb circulation injections). Hindlimb blood flow (HBF) was measured by transit-time ultrasound flowmetry. N(omega)-nitro-L-arginine methyl ester (L-NAME, 50 mg/kg plus 10 mg x kg(-1) x h(-1)), to block nitric oxide (NO) production, altered basal hemodynamics, increasing mean arterial pressure (30 +/- 3%) and reducing HBF (-30 +/- 12%). Basal hemodynamics were not significantly altered by indomethacin (10 mg x kg(-1) x h(-1)), charybdotoxin (ChTx, 3 x 10(-8) mol/l), apamin (2.5 x 10(-7) mol/l), or ChTx plus apamin (to block endothelium-derived hyperpolarizing factor; EDHF). Hyperemic responses to local injection of acetylcholine (2.4 microg/kg) were reproducible in vehicle-treated mice and were not significantly attenuated by L-NAME alone, indomethacin alone, L-NAME plus indomethacin with or without co-infusion of diethlyamine NONOate to restore resting NO levels, ChTx alone, or apamin alone. Hyperemic responses evoked by acetylcholine were reduced by 29 +/- 11% after combined treatment with apamin plus charybdotoxin, and the remainder was virtually abolished by additional treatment with L-NAME but not indomethacin. None of the treatments altered the hyperemic response to sodium nitroprusside (5 microg/kg). We conclude that endothelium-dependent vasodilation in the mouse hindlimb in vivo is mediated by both NO and EDHF. EDHF can fully compensate for the loss of NO, but this cannot be explained by tonic inhibition of EDHF by NO. Control of basal vasodilator tone in the mouse hindlimb is dominated by NO.  相似文献   

20.
Hepatic portal venous infusion of nitric oxide synthase (NOS) inhibitors causes muscle insulin resistance, but the effects on hepatic glucose disposition are unknown. Conscious dogs underwent a hyperinsulinemic (4-fold basal) hyperglycemic (hepatic glucose load 2-fold basal) clamp, with assessment of liver metabolism by arteriovenous difference methods. After 90 min (P1), dogs were divided into two groups: control (receiving intraportal saline infusion; n = 8) and LN [receiving N(G)-nitro-L-arginine methyl ester (L-NAME), a nonspecific NOS inhibitor; n = 11] intraportally at 0.3 mg x kg(-1) x min(-1) for 90 min (P2). During the final 60 min of study (P3), L-NAME was discontinued, and five LN dogs received the NO donor SIN-1 intraportally at 6 mug x kg(-1) x min(-1) while six received saline (LN/SIN-1 and LN/SAL, respectively). Net hepatic fractional glucose extraction (NHFE) in control dogs was 0.034 +/- 0.016, 0.039 +/- 0.015, and 0.056 +/- 0.019 during P1, P2, and P3, respectively. NHFE in LN was 0.045 +/- 0.009 and 0.111 +/- 0.007 during P1 and P2, respectively (P < 0.05 vs. control during P2), and 0.087 +/- 0.009 and 0.122 +/- 0.016 (P < 0.05) during P3 in LN/SIN-1 and LN/SAL, respectively. During P2, arterial glucose was 204 +/- 5 vs. 138 +/- 11 mg/dl (P < 0.05) in LN vs. control to compensate for L-NAME's effect on blood flow. Therefore, another group (LNlow; n = 4) was studied in the same manner as LN/SAL, except that arterial glucose was clamped at the same concentrations as in control. NHFE in LNlow was 0.052 +/- 0.008, 0.093 +/- 0.023, and 0.122 +/- 0.021 during P1, P2, and P3, respectively (P < 0.05 vs. control during P2 and P3), with no significant difference in glucose infusion rates. Thus, NOS inhibition enhanced NHFE, an effect partially reversed by SIN-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号