首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions between metals of similar coordination chemistry are of relevance to infant nutrition due to the highly variable metal:metal ratios found in formulas. Using ratios similar to those found in infant formulas, our objectives were to determine the effects of metals and of lactose and other saccharides on Zn(+2) transport across intestinal brush border membranes. Brush border membrane vesicles prepared from intestines of 5 preweaned piglets were used to determine whether Ca(+2), Mg(+2), Fe(+2), Cu(+2), Cd(+2), or Mn(+2) would antagonize Zn(+2) uptake. (65)Zn(+2) uptake by brush border membrane vesicles was measured over 20 min with metal concentrations constant, and at 1 min with increasing metal concentrations. Zn(+2) bound to the external surface of vesicles was removed with ethylenediamine-tetraacetic acid. Lactose induced Zn(+2) uptake to a greater extent than glucose polymer, whereas maltose, galactose, or galactose/glucose had no effect. Over 20 min, a 10:1 concentration of Fe(+2), Cd(+2), Cu(+2), and Mn(+2) lowered Zn(+2) uptake significantly (P < 0.05). Higher concentrations of divalent cation significantly lowered Zn(+2) (0.2 or 0.1 mM) uptake for all metals tested (P < 0.05), except for Mn(+2) (0.1 mM Zn(+2)). Inhibition constant determination quantified relative competitive potential with Mg(+2) < Ca(+2) < Mn(+2) < Fe(+2) < Zn(+2) < Cu(+2). Relative amounts of Ca(+2), Mg(+2), and Fe(+2) similar to those found in infant formulas reduced Zn(+2) uptake by at least 40%. Our data demonstrate that dietary minerals compete during brush border membrane transport, and may help explain antagonistic mineral interactions observed in vivo. Divalent metal concentrations and lactose content of milk affect zinc absorption in neonates and must be carefully considered in formula design.  相似文献   

2.
The calcium (Ca2+) uptake by brush border membrane vesicles isolated from fresh human placentas has been characterized. This process was saturable and time- and concentration-dependent. It exhibited a double Michaelis-Menten kinetics, with apparent Km values of 0.17 +/- 0.03 and 2.98 +/- 0.17 mM Ca2+, and Vmax values of 0.9 +/- 0.13 and 2.51 +/- 0.45 pmol.micrograms-1.5 s-1. It was not influenced by the presence of Na+ or Mg2+ in the incubation medium. It was not increased by K+ or anion diffusion potentials, inside negative. At a steady state of 1 mM Ca2+ uptake, a large proportion (approximately 94%) of the Ca2+ was bound to the internal surface of the membranes. Preincubation of these membrane vesicles with voltage-dependent Ca2+ channel blockers (nifedipine and verapamil) had no influence on Ca2+ uptake. However, this uptake was very sensitive to pH. In the absence of a pH gradient, the Ca2+ uptake increased with alkalinity. When the intravesicular pH was kept constant while the pH of the incubation medium was increased, Ca2+ uptake was also stimulated by alkaline pH. In contrast, when the pH of the incubation medium was kept constant and the intravesicular pH was progressively increased, Ca2+ uptake was diminished with alkaline pH. Therefore, H+ gradient (H+ in trans-position greater than H+ in cis-position) favored Ca2+ transport, suggesting a H+/Ca2+ exchange mechanism. Finally, in contrast to the basal plasma membrane, the brush border membrane did not show any ATP-dependent Ca2+ transport activity.  相似文献   

3.
M Takano  K Inui  T Okano  R Hori 《Life sciences》1985,37(17):1579-1585
The transport of cimetidine by rat renal brush border and basolateral membrane vesicles has been studied in relation to the transport system of organic cation. Cimetidine inhibited [3H]tetraethylammonium uptake by basolateral membrane vesicles in a dose dependent manner, and the degree of the inhibition was almost the same as that by unlabeled tetraethylammonium. In contrast, cimetidine inhibited the active transport of [3H]tetraethylammonium by brush border membrane vesicles more strongly than unlabeled tetraethylammonium did. In agreement with the transport mechanism of tetraethylammonium in brush border membranes, the presence of an H+ gradient ([H+]i greater than [H+]o) induced a marked stimulation of cimetidine uptake against its concentration gradient (overshoot phenomenon), and this concentrative uptake was inhibited by unlabeled tetraethylammonium. These results suggest that cimetidine can share common carrier transport systems with tetraethylammonium in renal brush border and basolateral membranes, and that cimetidine transport across brush border membranes is driven by an H+ gradient via an H+-organic cation antiport system.  相似文献   

4.
Mg2+ transport across the brush border of proximal intestinal epithelium of the teleost fish Oreochromis mossambicus was investigated, using 27Mg2+ to trace movement of Mg2+. Mg2+ uptake in brush border membrane vesicles was stimulated by a K+ diffusion potential (inside negative). Electrodiffusive Mg2+ transport obeyed simple Michaelis-Menten kinetics and was strongly temperature dependent, indicative of a carrier mechanism. The metal ion specificity of this electrodiffusive pathway (inhibition potency order: Co > Mn = Ni > La > Ca > Gd > Ba), predicts a specific role in Mg2+ transport. Competitive inhibition by Co(III) hexammine [Co(NH3)(6)(3+)] suggests that this transport system interacts with the solvated Mg ion. We propose that this novel transport system allows the uptake of Mg2+ across the apical brush border membrane, and is involved in transcellular Mg2+ transport. Consequently, the prevailing potential difference across the apical membrane represents a major driving force for intestinal Mg2+ absorption.  相似文献   

5.
L-Glutamine transport into porcine jejunal enterocyte brush border membrane vesicles was studied. Uptake was mediated by a Na(+)-dependent and a Na(+)-independent pathway as well as by diffusion. The initial rates of glutamine uptake over a range of concentrations is both Na(+)-gradient and Na(+)-free conditions were analyzed and kinetic parameters were obtained. Na(+)-dependent glutamine transport had a K(m) of 0.77 +/- 0.16 mM and a Jmax of 70.7 +/- 5.8 pmol mg protein-1 s-1; Na(+)-independent glutamine transport had a K(m) of 3.55 +/- 0.78 mM and a Jmax of 55.1 +/- 6.6 pmol mg protein-1 s-1. The non-saturable component measured with HgCl2-poisoned brush border membrane vesicles in the Na(+)-free condition contained passive diffusion and non-specific membrane binding and was defined to be apparent glutamine diffusion and the glutamine permeability coefficient (Kdiff) was estimated to be Kdiff = 3.78 +/- 0.06 pmol 1 mg protein-1 mmol-1 s-1. Results of inhibition experiments showed that Na(+)-dependent glutamine uptake occurred primarily through the brush border system-B degree transporters, whereas Na(+)-independent glutamine uptake occurred via the system-L transporters. Furthermore, the kinetics of L-leucine and L-cysteine inhibition of L-glutamine uptake demonstrated that neutral amino acids sharing the same brush border transporters can effectively inhibit each other in their transport.  相似文献   

6.
The possibility of the involvement of intracellular calcium in the action of parathyroid hormone on phosphate transport in renal brush border membrane was examined. Preincubation of rabbit renal proximal tubules with parathyroid hormone or 8-bromo-cAMP induced a significant inhibition on phosphate uptake by the brush border membrane vesicles isolated therefrom. The addition of intracellular Ca antagonists, trifluoperazine or W-7, to the preincubation medium, alone was without effect on phosphate uptake by the brush border membrane vesicles, but abolished the inhibitory effects of parathyroid hormone and 8-bromo-cAMP.  相似文献   

7.
Concentrative uptake of 32Pi induced by the dissipation of a Na+ gradient (overshoot) was demonstrated in brush border membrane vesicles obtained from isolated perfused canine kidneys. Na+-dependent 32Pi transport was decreased in brush border vesicles from isolated kidneys perfused with parathyroid hormone (PTH) for 2 h compared to uptake measured in vesicles from kidneys perfused without PTH. Cyclic AMP-dependent 32P phosphorylation of a 62,000 Mr protein band was demonstrable on autoradiograms of sodium dodecyl sulfate-polyacrylamide gels of membrane suspensions from kidneys perfused +/- PTH. Evidence that perfusion with PTH resulted in cAMP-dependent phosphorylation in isolated kidneys from parathyroidectomized dogs (decreased cAMP-dependent 32P phosphorylation of the 62,000-Mr band in brush border vesicles) was obtained after 2-h perfusion with PTH. Decreased 32P phosphorylation was not observed if membranes were allowed to dephosphorylate prior to 32P phosphorylation in vitro. We conclude that brush border vesicles from isolated perfused canine kidneys can be used to study the action of PTH on Na+-Pi cotransport in brush border membranes and on cAMP-dependent phosphorylation of the membrane. It is strongly suggested that PTH effects changes in Na+-dependent 32Pi transport in isolated brush border vesicles and changes in 32P phosphorylation of vesicles via a direct action on the renal cortical cell rather than as a consequence of extrarenal actions of the hormone.  相似文献   

8.
The properties of hypoxanthine transport were investigated in purified brush border membrane vesicles isolated from calf proximal and distal jejunum. Hypoxanthine uptake in the vesicles was stimulated by a transmembrane Na(+) gradient and an inside negative potential resulting in a transient accumulation of intravesicular hypoxanthine, especially in the proximal jejunum. Na(+)-dependent hypoxanthine uptake at this site seemed to occur by two saturable transport systems, a high affinity (K(m)=0.33 micromol/l) and a low affinity (K(m)=165 micromol/l) transporter. Guanine, hypoxanthine, thymine and uracil inhibited intravesicular hypoxanthine uptake, whereas adenine and the nucleosides inosine and thymidine were without effect. These findings represent the first demonstration of active Na(+) gradient-dependent nucleobase transport in intestinal brush border membrane vesicles.  相似文献   

9.
Distinction of three types of D-glucose transport systems in animal cells   总被引:6,自引:0,他引:6  
Immunoblotting of plasma membrane fractions from rat kidney cortex with antibody to human erythrocyte glucose transporter showed a single major cross-reacting material of 48K in basolateral membrane fractions possessing a facilitated diffusion system for D-glucose, but not in brush border membrane fractions which have a Na-dependent active transport system. Cytochalasin B inhibited D-glucose uptake in basolateral membrane vesicles but not in brush border vesicles. Cross-reacting materials of 44-55K were detected in several animal cells exhibiting facilitated diffusion systems, including a hormone dependent system. These results indicate molecular difference between glucose transporters of facilitated diffusion systems and active transport systems.  相似文献   

10.
There is an overlap of carrier-mediated L-amino acid transport and apparent simple diffusion when measured in intestinal brush border membrane vesicles. Using L-threonine and L-glutamine as representative amino acids, this study was undertaken to estimate apparent simple diffusion of L-amino acids and to establish the effective dosage of HgCl2 for completely blocking carrier-mediated L-amino acid transport in porcine jejunal enterocyte brush border membrane vesicles. Jejunal mucosa was scraped from three pigs weighing 26 kg. Enterocyte brush border membrane vesicles, with an average enrichment of 24-fold in sucrase specific activity, were prepared by Mg2+-precipitation and differential centrifugation. In vitro uptake was measured by the fast filtration manual procedure. HgCl2 blocked the carrier-mediated initial transport of L-threonine and L-glutamine under Na+-gradient condition in a dose-dependent manner. At the minimal concentration of 0.165 micromol HgCl2 mg(-1) protein, carrier-mediated L-threonine and L-glutamine transport was completely inhibited. The apparent L-threonine and L-glutamine diffusion was estimated to be 8.6+/-0.7 and 12.4+/-1.0% of the total uptake at the substrate concentrations of 5 microM (L-threonine) and 50 microM (L-glutamine). Therefore, the treatment of porcine brush border membrane vesicles with a minimum of 0.165 micromol HgCl2 mg(-1) protein completely blocks carrier-mediated L-amino acid transport and enables the direct estimation of apparent L-amino acid diffusion in enterocyte brush border membrane vesicles.  相似文献   

11.
Na+-independent l-arginine uptake was studied in rabbit renal brush border membrane vesicles. The finding that steady-state uptake of l-arginine decreased with increasing extravesicular osmolality and the demonstration of accelerative exchange diffusion after preincubation of vesicles with l-arginine, but not d-arginine, indicated that the uptake of l-arginine in brush border vesicles was reflective of carrier-mediated transport into an intravesicular space. Accelerative exchange diffusion of l-arginine was demonstrated in vesicles preincubated with l-lysine and l-ornithine, but not l-alanine or l-proline, suggesting the presence of a dibasic amino acid transporter in the renal brush border membrane. Partial saturation of initial rates of l-arginine transport was found with extravesicular [arginine] varied from 0.005 to 1.0 mM. l-Arginine uptake was inhibited by extravesicular dibasic amino acids unlike the Na+-independent uptake of l-alanine, l-glutamate, glycine or l-proline in the presence of extravesicular amino acids of similar structure. l-Arginine uptake was increased by the imposition of an H+ gradient (intravesicular pH<extravesicular pH) and H+ gradient stimulated uptake was further increased by FCCP. These findings demonstrate membrane-potential-sensitive, Na+-independent transport of l-arginine in brush border membrane vesicles which differs from Na+-independent uptake of neutral and acidic amino acids. Na+-independent dibasic amino acid transport in membrane vesicles is likely reflective of Na+-independent transport of dibasic amino acids across the renal brush border membrane.  相似文献   

12.
In order to study the effect of the antibiotic neomycin on the intestinal epithelium, D-glucose was used as a probe molecule and its transport into rabbit brush border membrane vesicles was measured by a rapid filtration method. Treatment of the epithelium with neomycin sulfate prior to the preparation of the brush border membrane enhanced the D-glucose uptake, whereas neutral N-acetylated neomycin did not. This action of neomycin was related to its polycationic character and not to its bactericidal action. No significant difference could be demonstrated between the protein content or disaccharidase-specific activities of the brush border fractions from treated or non-treated intestines. Electrophoretic protein patterns of SDS-solubilized membrane were not significantly different after neomycin treatment. To gain more information on the mechanism involved in the stimulation of D-glucose transport, experiments were conducted on phosphatidyl glycerol artificial membranes and the results compared with those obtained with brush border membrane. At a concentration of 10(-7) M, neomycin decreased the nonactin-induced K+ conductance by a factor of approx. 100. The membrane conductance was linearly dependent on the neomycin concentration and the conductance in 10(-2) M KCl was 10 times that in 10(-3) M KCl. The valence of neomycin was estimated, from the slope of these curves, to be between 6 and 4. In contrast, acetylated neomycin had no effect on the nonactin-induced K+ membrane conductance. Therefore, the effect of neomycin on artificial membrane is related to its 4 to 6 positive charges. It is proposed that the stimulation of sugar transport in brush border membrane is related to screening of the membrane negative charges by the positively-charged neomycin. Accumulation of anions at the membrane surface then occurs and their diffusion into the intravesicular space would increase the transmembrane potential which, in turn, stimulates the entry of D-glucose.  相似文献   

13.
Exchangeable serum apolipoproteins and amphipathic alpha-helical peptides are effective inhibitors of sterol (free and esterified cholesterol) uptake at the small-intestinal brush border membrane. The minimal structural requirement of an inhibitor is an amphipathic alpha-helix of 18 amino acids. The inhibition is competitive, indicating that the inhibitor binds to scavenger receptor class B type I (SR-BI) present in the brush border membrane and responsible for sterol uptake. Binding of apolipoprotein A-I to SR-BI of rabbit brush border membrane is cooperative, characterized by a dissociation constant K(d) = 0.45 microM and a Hill coefficient of n = 2.8. The cooperativity of the interaction is due to binding of the inhibitor molecule to a dimeric or oligomeric form of SR-BI held together by disulfide bridges. Consistent with the competitive nature of the inhibition, the K(d) value agrees within experimental error with the IC(50) value of inhibition and with the inhibition constant K(I). After proteinase K treatment of brush border membrane vesicles, the affinity of the interaction of apolipoprotein A-I expressed as K(d) is reduced by a factor of 20, and the cooperativity is lost. The interaction of proteinase K-treated brush border membrane vesicles with apolipoprotein A-I is nonspecific partitioning of the apolipoprotein into the lipid bilayer of brush border membrane vesicles.  相似文献   

14.
Prolactin has recently been shown to directly stimulate 2 components of the active duodenal calcium transport in female rats, i.e., solvent drag-induced and transcellular-active calcium transport. Since the basolateral Na(+)/K(+)- and Ca(2+)-ATPases, respectively, play important roles in these 2 transport mechanisms, the present study aimed to examine the direct actions of prolactin on the activities of both transporters in sexually mature female Wistar rats. The results showed that 200, 400, and 800 ng/mL prolactin produced a significant increase in the total ATPase activity of duodenal crude homogenate in a dose-dependent manner within 60 min (i.e., from a control value of 1.53 +/- 0.13 to 2.29 +/- 0.21 (p < 0.05), 2.68 +/- 0.19 (p < 0.01), and 3.92 +/- 0.33 (p < 0.001) micromol Pi x (mg protein)(-1) x min(-1), respectively). Activity of Na+/K+-ATPase was increased by 800 ng/mL prolactin from 0.17 +/- 0.03 to 1.18 +/- 0.29 micromol Pi x (mg protein)(-1) x min(-1) (p < 0.01). Prolactin at doses of 400 and 600 ng/mL also significantly increased the activities of Ca(2+)-ATPase in crude homogenate from a control value of 0.84 +/- 0.03 to 1.75 +/- 0.29 (p < 0.05), and 2.30 +/- 0.37 (p < 0.001) micromol Pi x (mg protein)(-1) x min(-1). When the crude homogenate was purified for the basolateral membrane, the Na(+)/K(+)-ATPase activities were elevated 10-fold. In the purified homogenate, 800 ng/mL prolactin increased Na(+)/K(+)-ATPase activity from 1.79 +/- 0.38 to 2.63 +/- 0.44 micromol Pi x (mg protein)(-1) x min(-1) (p < 0.05), and Ca(2+)-ATPase activity from 0.08 +/- 0.14 to 2.03 +/- 0.23 micromol Pi x (mg protein)(-1) x min-1 (p < 0.001). Because the apical calcium entry was the first important step for the transcellular active calcium transport, the brush border calcium uptake was also investigated in this study. We found that, 8 min after being directly exposed to 800 ng/mL prolactin, the brush border calcium uptake into the duodenal epithelial cells was increased from 0.31 +/- 0.02 to 0.80 +/- 0.28 nmol x (mg protein)(-1) (p < 0.05). It was concluded that prolactin directly and rapidly enhanced the brush border calcium uptake as well as the activities of the basolateral Na(+)/K(+)- and Ca(2+)-ATPases in the duodenal epithelium of female rats. These findings explained the mechanisms by which prolactin stimulated duodenal active calcium absorption.  相似文献   

15.
The interaction of two renin inhibitors, S 86,2033 and S 86,3390, with the uptake system for beta-lactam antibiotics and small peptides in the brush border membrane of enterocytes from rabbit small intestine was investigated using brush border membrane vesicles. Both renin inhibitors inhibited the uptake of the orally active cephalosporin cephalexin into brush border membrane vesicles from rabbit small intestine in a concentration-dependent manner. 1.1 mM of S 86,3390 and 2.5 mM of S 86,2033 led to a half-maximal inhibition of the H(+)-dependent uptake of cephalexin. Both renin inhibitors were stable against peptidases of the brush border membrane. The uptake of cephalexin into brush border membrane vesicles (1 min of incubation) was competitively inhibited by S 86,2033 and S 86,3390 suggesting a direct interaction of these compounds with the intestinal peptide uptake system. The renin inhibitors are transported across the brush border membrane into the intravesicular space as was shown by equilibrium uptake studies dependent upon the medium osmolarity. The uptake of S 86,3390 was stimulated by an inwardly directed H(+)-gradient and occurred with a transient accumulation against a concentration gradient (overshoot phenomenon). The renin inhibitors S 86,2033 and 86,3390 also caused a concentration-dependent inhibition in the extent of photoaffinity labeling of the putative peptide transport protein of apparent Mr 127,000 in the brush border membrane of small intestinal enterocytes. In conclusion, these studies show that renin inhibitors specifically interact with the intestinal uptake system shared by small peptides and beta-lactam antibiotics.  相似文献   

16.
Cholera toxin is very well characterized in terms of the activation of adenylate cyclase. In some systems, however, this cyclase activation does not seem to account for all of the physiological responses to the toxin. On the premise that cholera toxin may also exert effects through other second messenger compounds we have studied the effect of cholera toxin on the rate of Ca2+ movement across the membrane of intestinal brush border vesicles. Increasing concentrations of cholera toxin progressively accelerated the passive uptake of Ca2+ into, and the efflux of Ca2+ from, an osmotically active space in brush border membrane vesicles. This effect of cholera toxin was saturable by excess Ca2+ and was relatively specific, as the toxin did not affect vesicle permeability to an uncharged polar solute. The toxin had two high affinity Ca2+ binding sites on the A subunit as measured by equilibrium dialysis. Ca2+ transport facilitated by cholera toxin was temperature dependent, required the holotoxin, and could be inhibited by preincubation of the toxin with excess free ganglioside GM1. This increased rate of Ca2+ influx caused by the in vitro addition of cholera toxin to brush border membrane vesicles may have physiological significance as it was comparable to rates observed with the Ca ionophore A23187. Similar effects occurring in vivo could permit cholera toxin to increase cytoplasmic Ca2+ concentrations and to produce accompanying second messenger effects.  相似文献   

17.
Reduction in glucose uptake constitutes a possible means of controlling diabetic hyperglycemia. Using purified intestinal brush border membrane vesicles and everted intestinal sleeves, we have demonstrated that naringenin, a flavonoid present in citrus fruits and juices, significantly inhibited glucose uptake in the intestine. In addition, naringenin also elicited inhibitory actions towards glucose uptake in renal brush border membrane vesicles. Naringin, a glycoside of naringenin, was totally inactive in these aspects. Naringenin exhibited moderate inhibitory action on glucose uptake in rabbit intestinal brush border membrane vesicles, and showed strong inhibitory action in rat everted intestinal sleeves. The IC(50) values were 205.9 and 2.4 micromol/l, respectively. Lineweaver-Burk analysis demonstrated that naringenin inhibited glucose uptake in rat everted intestinal sleeves in a competitive manner with a K(i) value of 1.1 micromol/l. Glucose uptake activities in both the intestinal and renal brush border membrane vesicles of diabetic rats were significantly higher than in normal rats. Naringenin (500 microM) reduced glucose uptake by more than 60% in both the intestinal and renal brush border membrane vesicles of diabetic rats to a level similar to that of the normal rats. The IC(50) values of naringenin in the renal brush border membrane vesicles of normal and diabetic rats were 323.9 and 166.1 micromol/l, respectively. These results suggest that inhibition of intestinal glucose uptake and renal glucose reabsorption explains, in part at least, the in vivo antihyperglycemic action of naringenin and its derivatives. The possible application of these natural compounds in controlling hyperglycemia warrants further investigations.  相似文献   

18.
The uptake of beta-lactam antibiotics into small intestinal enterocytes occurs by the transport system for small peptides. The role of membrane-bound peptidases in the brush border membrane of enterocytes from rabbit and pig small intestine for the uptake of small peptides and beta-lactam antibiotics was investigated using brush border membrane vesicles. The enzymatic activity of aminopeptidase N was inhibited by beta-lactam antibiotics in a non-competitive manner whereas dipeptidylpeptidase IV was not affected. The peptidase inhibitor bestatin led to a strong competitive inhibition of aminopeptidase N whereas the uptake of cephalexin into brush border membrane vesicles was only slightly inhibited at high bestatin concentrations (greater than 1 mM). Modification of brush border membrane vesicles with the histidine-modifying reagent diethyl pyrocarbonate led to a strong irreversible inhibition of cephalexin uptake whereas the activity of aminopeptidase N remained unchanged. A modification of serine residues with diisopropyl fluorophosphate completely inactivated dipeptidylpeptidase IV whereas the transport activity for cephalexin and the enzymatic activity of aminopeptidase N were not influenced. With polyclonal antibodies raised against aminopeptidase N from pig renal microsomes the aminopeptidase N from solubilized brush border membranes from pig small intestine could be completely precipitated; the binding protein for beta-lactam antibiotics and oligopeptides of apparent Mr 127,000 identified by direct photoaffinity labeling with [3H]benzylpenicillin showed no crossreactivity with the aminopeptidase N anti serum and was not precipitated by the anti serum. These results clearly demonstrate that peptidases of the brush border membrane like aminopeptidase N and dipeptidylpeptidase IV are not directly involved in the intestinal uptake process for small peptides and beta-lactam antibiotics and are not a constituent of this transport system. This suggests that a membrane protein of Mr 127,000 is (a part of) the uptake system for beta-lactam antibiotics and small peptides in the brush border membrane of small intestinal enterocytes.  相似文献   

19.
Isolated rat kidney proximal tubule brush border membrane vesicles exhibit an increase in diacylglycerol levels (20- to 30-fold) and a concomitant decrease in phosphatidylinositol when incubated with [3H]arachidonate-labeled lipids, Ca2+, and deoxycholate. Levels of free arachidonate, triglyceride, and noninositol phospholipids are not altered. These results suggest phosphatidylinositol phosphodiesterase activity is associated with rat proximal tubule brush border membrane. Presence of both deoxycholate and certain divalent cations was necessary to demonstrate enzyme activity. Optimum pH ranged from 7.0 to 8.5. Ca2+, Mg2+, and Mn2+ stimulated diglyceride production while Ba2+, Zn2+, Hg2+, and K+ were ineffective. HgCl2 inhibited Ca2+-stimulated phosphatidylinositol phosphodiesterase. Mg2+ and deoxycholate-dependent enzyme activity was shown to be phosphatidylinositol specific. Sodium lauryl sulfate, tetradecyltrimethylammonium bromide, and Triton X-100 did not activate phosphatidylinositol phosphodiesterase in the presence of Ca2+. In combination with deoxycholate, diglyceride formation was not affected by sodium lauryl sulfate, partially inhibited by Triton X-100, and completely abolished by tetradecyltrimethylammonium bromide. Diglyceride kinase activity was not found associated with brush border membrane phosphatidylinositol phosphodiesterase. ATP (1-5 mM) inhibited Ca2+- or Mg2+-stimulated, deoxycholate-dependent phosphatidylinositol hydrolysis by chelating the required divalent cation.  相似文献   

20.
The kinetics of K(+)-leucine cotransport in the midgut of lepidopteran larvae was investigated using brush border membrane vesicles. Initial rate (3 s) of leucine uptake was determined under experimental conditions similar to those occurring in vivo, i.e. in the presence of delta psi much greater than 0 (inside negative) and a delta pH of 1.4 units (7.4in/8.8out). Leucine and K+ bind to the carrier according to a sequential mechanism, and the binding of one substrate changed the dissociation constant for the other substrate by a factor of 0.15. Both trans-K+ and trans-leucine were mixed-type inhibitors of leucine uptake. Moreover, a portion of total leucine uptake was K+ independent, and it was competitively inhibited by trans-leucine. We interpret the trans inhibitory effects to mean that the partially loaded K+ only form is virtually unable to translocate across the membrane, whereas the binary complex carrier, leucine, can isomerize from the trans to the cis side of the membrane. However, the K(+)-independent leucine uptake occurs with a Keq greater than 1, i.e. the efflux route through the partially loaded leucine only form is slower than the rate of isomerization of the unloaded carrier from trans to cis side. Taken together, these results suggest a model in which transport occurs by an iso-random Bi Bi system. Since K+ does not act as a pure competitive activator, this model is different from that proposed for most of the Na(+)-linked solutes transport agencies and may be related to the broadening of the cation specificity of the amino acid transporters in lepidopteran larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号