首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Endothelium-derived nitric oxide (NO) is synthesized in response to chemical and physical stimuli. Here, we investigated a possible role of the endothelial cell glycocalyx as a biomechanical sensor that triggers endothelial NO production by transmitting flow-related shear forces to the endothelial membrane. Isolated canine femoral arteries were perfused with a Krebs-Henseleit solution at a wide range of perfusion rates with and without pretreatment with hyaluronidase to degrade hyaluronic acid glycosaminoglycans within the glycocalyx layer. NO production rate was evaluated as the product of nitrite concentration in the perfusate and steady-state perfusion rate. The slope that correlates the linear relation between perfusion rate and NO production rate was taken as a measure for flow-induced NO production. Hyaluronidase treatment significantly decreased flow-induced NO production to 19 +/- 9% of control (mean +/- SD; P < 0.0001 vs. control; n = 11), whereas it did not affect acetylcholine-induced NO production (88 +/- 17% of pretreatment level, P = not significant; n = 10). We conclude that hyaluronic acid glycosaminoglycans within the glycocalyx play a pivotal role in detecting and amplifying the shear force of flowing blood that triggers endothelium-derived NO production in isolated canine femoral arteries.  相似文献   

2.
The effects of aging on muscle microvascular structure and function may play a key role in performance deficits and impairment of O2 exchange within skeletal muscle of senescent individuals. To determine the effects of aging on capillary geometry, red blood cell (RBC) hemodynamics, and hematocrit in a muscle of mixed fiber type, spinotrapezius muscles from Fischer 344 x Brown Norway hybrid rats aged 6-8 mo [young (Y); body mass 421 +/- 10 g, n = 6] and 26-28 mo [old (O); 561 +/- 12 g, n = 6] were observed by high-resolution transmission light microscopy under resting conditions. The percentage of RBC-perfused capillaries (Y: 78 +/- 3%; O: 75 +/- 2%) and degree of tortuosity and branching (Y: 13 +/- 2%; O: 13 +/- 2%, additional capillary length) were not different in O vs. Y muscles. Lineal density of RBC-perfused capillaries in O was significantly reduced (Y: 30.7 +/- 1.8, O: 22.8 +/- 3.1 capillaries/mm; P < 0.05). However, RBC-perfused capillaries from O rats (n = 78) exhibited increased RBC velocity (VRBC) (Y: 219 +/- 12, O: 310 +/- 14 microm/s; P < 0.05) and RBC flux (FRBC) (Y: 27 +/- 2, O: 41 +/- 2 RBC/s; P < 0.05) vs. Y rats (n = 66). Thus O2 delivery per unit of muscle was not different between groups (Y: 894 +/- 111, O: 887 +/- 118 RBC. s-1. mm muscle-1). Capillary hematocrit was not different in Y vs. O rats (Y: 26 +/- 1%, O: 28 +/- 1%: P > 0.05). These data indicate that in resting spinotrapezius muscle, aging decreases the lineal density of RBC-perfused capillaries while increasing mean VRBC and FRBC within those capillaries. Whereas muscle conductive O2 delivery and capillary hematocrit were unchanged, elevated VRBC reduces capillary RBC transit time and may impair the diffusive transport of O2 from blood to myocyte particularly under exercise conditions.  相似文献   

3.
Microcirculatory red blood cell (RBC) hemodynamics are impaired within skeletal muscle of Type I diabetic rats (Kindig CA, Sexton WL, Fedde MR, and Poole DC. Respir Physiol 111: 163-175, 1998). Whether muscle microcirculatory dysfunction occurs in Type II diabetes, the more prevalent form of the disease, is unknown. We hypothesized that Type II diabetes would reduce the proportion of capillaries supporting continuous RBC flow and RBC hemodynamics within the spinotrapezius muscle of the Goto-Kakizaki Type II diabetic rat (GK). With the use of intravital microscopy, muscle capillary diameter (d(c)), capillary lineal density, capillary tube hematocrit (Hct(cap)), RBC flux (F(RBC)), and velocity (V(RBC)) were measured in healthy male Wistar (control: n = 5, blood glucose, 105 +/- 5 mg/dl) and male GK (n = 7, blood glucose, 263 +/- 34 mg/dl) rats under resting conditions. Mean arterial pressure did not differ between groups (P > 0.05). Sarcomere length was set to a physiological length ( approximately 2.7 mum) to ensure that muscle stretching did not alter capillary hemodynamics; d(c) was not different between control and GK rats (P > 0.05), but the percentage of RBC-perfused capillaries (control: 93 +/- 3; GK: 66 +/- 5 %), Hct(cap), V(RBC), F(RBC), and O(2) delivery per unit of muscle were all decreased in GK rats (P < 0.05). This study indicates that Type II diabetes reduces both convective O(2) delivery and diffusive O(2) transport properties within muscle microcirculation. If these microcirculatory deficits are present during exercise, it may provide a basis for the reduced O(2) exchange characteristic of Type II diabetic patients.  相似文献   

4.
The endothelial glycocalyx has been identified as a barrier to transvascular exchange of fluid, macromolecules, and leukocyte-endothelium [endothelial cell (EC)] adhesion during the inflammatory process. Shedding of glycans and structural changes of the glycocalyx have been shown to occur in response to several agonists. To elucidate the effects of glycan shedding on microvascular hemodynamics and capillary resistance to flow, glycan shedding in microvessels in mesentery (rat) was induced by superfusion with 10(-7) M fMLP. Shedding was quantified by reductions of fluorescently labeled lectin (BS-1) bound to the EC and reductions in thickness of the barrier to infiltration of 70-kDa dextran on the EC surface. Red cell velocities (two-slit technique), pressure drops (dual servo-null method), and capillary hematocrit (direct cell counting) were measured in parallel experiments. The results indicate that fMLP caused shedding of glycans in all microvessels with reductions in thickness of the barrier to 70-kDa dextran of 110, 80, and 123 nm, in arterioles, capillaries, and venules, respectively. Intravascular volumetric flows fell proportionately in all three divisions in response to rapid obstruction of venules by white blood cell (WBC)-EC adhesion, and capillary resistance to flow rose 18% due to diminished deformability of activated WBCs. Capillary resistance fell significantly 26% over a 30-min period, as glycans were shed from the EC surface to increase effective capillary diameter, whereas capillary hematocrit and anatomic diameter remained invariant. This decrease in capillary resistance mitigates the increase in resistance due to diminished WBC deformability, and hence these concurrent rheological events may be of equal importance in affecting capillary flow during the inflammatory process.  相似文献   

5.
The purpose of this study was to determine if finger tip capillary blood hematocrit is a valid estimate of anticubital venous blood hematocrit at rest and after submaximal exercise. Simultaneous samples of finger tip cpaillary and venous blood were drawn from thirty-one subjects (15 males, 16 females) before and after a 15 min submaximal exercise on a bicycle ergometer. Venous and capillary blood hcts. were 42.0% +/- 3.9 and 42.0% +/- 3.5 respectively before exercise and 43.3% +/- 3.5 and 42% +/- 3.8 after exercise (X +/- s). The regression equation for predicting venous hct. from finger tip capillary blood after exercise was: Hctv = 0.87 Hctc + 6.44 with r = 0.95 (P less than 0.05). The results indicate that the finger tip capillary microhematocrit method is a valid indicator of venous blood hct. following exercise.  相似文献   

6.
Muscle contractions evoke an immediate rise in blood flow. Distribution of this hyperemia within the capillary bed may be deterministic for muscle O(2) diffusing capacity and remains unresolved. We developed the exteriorized rat (n = 4) spinotrapezius muscle for evaluation of capillary hemodynamics before (rest), during, and immediately after (post) a bout of twitch contractions to resolve (second-by-second) alterations in red blood cell velocity (V(RBC)) and flux (f(RBC)). Contractions increased (all P < 0.05) capillary V(RBC) (rest: 270 +/- 62 microm/s; post: 428 +/- 47 microm/s), f(RBC) (rest: 22.4 +/- 5.5 cells/s; post: 44.3 +/- 5.5 cells/s), and hematocrit but not the percentage of capillaries supporting continuous RBC flow (rest: 84.0 +/- 0.7%; post: 89.5+/-1.4%; P > 0.05). V(RBC) peaked within the first one or two contractions, whereas f(RBC) increased to an initial short plateau (first 12-20 s) followed by a secondary rise to steady state. Hemodynamic temporal profiles were such that capillary hematocrit tended to decrease rather than increase over the first approximately 15 s of contractions. We conclude that contraction-induced alterations in capillary RBC flux and distribution augment both convective and diffusive mechanisms for blood-myocyte O(2) transfer. However, across the first 10-15 s of contractions, the immediate and precipitous rise in V(RBC) compared with the biphasic and prolonged increase of f(RBC) may act to lower O(2) diffusing capacity by not only reducing capillary transit time but by delaying the increase in the instantaneous RBC-to-capillary surface contact thought crucial for blood-myocyte O(2) flux.  相似文献   

7.
The endothelial glycocalyx is increasingly considered as an intravascular compartment that protects the vessel wall against pathogenic insults. The purpose of this study was to translate an established experimental method of estimating capillary glycocalyx dimension into a clinically useful tool and to assess its reproducibility in humans. We first evaluated by intravital microscopy the relation between the distance between the endothelium and erythrocytes, as a measure of glycocalyx thickness, and the transient widening of the erythrocyte column on glycocalyx compression by passing leukocytes in hamster cremaster muscle capillaries. We subsequently assessed sublingual microvascular glycocalyx thickness in 24 healthy men using orthogonal polarization spectral imaging. In parallel, systemic glycocalyx volume (using a previously published tracer dilution technique) as well as cardiovascular risk profiles were assessed. Estimates of microvascular glycocalyx dimension from the transient erythrocyte widening correlated well with the size of the erythrocyte-endothelium gap (r = 0.63). Measurements in humans were reproducible (0.58 +/- 0.16 and 0.53 +/- 0.15 microm, coefficient of variance 15 +/- 5%). In univariate analysis, microvascular glycocalyx thickness significantly correlated with systemic glycocalyx volume (r = 0.45), fasting plasma glucose (r = 0.43), and high-density lipoprotein-cholesterol (r = 0.40) and correlated negatively with low-density lipoprotein-cholesterol (r = -0.41) as well as body mass index (r = -0.45) (all P < 0.05). In conclusion, the dimension of the endothelial glycocalyx can be measured reproducibly in humans and is related to cardiovascular risk factors. It remains to be tested whether glycocalyx dimension can be used as an early marker of vascular damage and whether therapies aimed at glycocalyx repair can protect the vasculature against pathogenic challenges.  相似文献   

8.
Fluid particle diffusion through blood flow within a capillary tube is an important phenomenon to understand, especially for studies in mass transport in the microcirculation as well as in solving technical issues involved in mixing in biomedical microdevices. In this paper, the spreading of tracer particles through up to 20% hematocrit blood, flowing in a capillary tube, was studied using a confocal micro-PTV system. We tracked hundreds of particles in high-hematocrit blood and measured the radial dispersion coefficient. Results yielded significant enhancement of the particle diffusion, due to a micron-scale flow-field generated by red blood cell motions. By increasing the flow rate, the particle dispersion increased almost linearly under constant hematocrit levels. The particle dispersion also showed near linear dependency on hematocrit up to 20%. A scaling analysis of the results, on the assumption that the tracer trajectories were unbiased random walks, was shown to capture the main features of the results. The dispersion of tracer particles was about 0.7 times that of RBCs. These findings provide good insight into transport phenomena in the microcirculation and in biomedical microdevices.  相似文献   

9.
The endothelial glycocalyx has been shown to serve as a protective barrier between the flowing blood and the vessel wall in experimental models. The aim of this study was to evaluate whether hypercholesterolemia is associated with glycocalyx perturbation in humans, and if so, whether statin treatment can restore this. We measured systemic glycocalyx volume (V(G)) in 13 patients with heterozygous familial hypercholesterolemia (FH) after cessation of lipid-lowering therapy for a minimum of 4 weeks and 8 weeks after initiating rosuvastatin therapy. Normocholesterolemic subjects were used as controls. V(G) was estimated by subtracting the intravascular distribution volume of a glycocalyx permeable tracer (dextran 40) from that of a glycocalyx impermeable tracer (labeled erythrocytes). V(G) in untreated FH patients [LDL 225 +/- 57 mg/dl (mean +/- SD)] was significantly reduced compared with controls (LDL 93 +/- 24 mg/dl) (V(G) 0.8 +/- 0.3 vs. 1.7 +/- 0.6, respectively, P < 0.001). After normalization of LDL levels (95 +/- 33 mg/dl) upon 8 weeks of statin treatment, V(G) recovered only partially (V(G) 1.1 +/- 0.4 L, P = 0.04). The endothelial glycocalyx is profoundly reduced in FH patients, which may contribute to increased atherogenic vulnerability. This perturbation is partially restored upon short-term statin therapy.  相似文献   

10.
Previous analysis showed that selective inhibitors of five different host inflammatory mediators administered for sepsis, although beneficial with severe sepsis and high-control mortality rates, were ineffective or harmful with less severe sepsis. We hypothesized that severity of sepsis would also influence inhibition of superoxide anion, another inflammatory mediator. To test this, 6-h infusions of M40401, a selective SOD mimetic, or placebo were given to antibiotic-treated rats (n=547) starting 3 h after challenge with differing doses of intravenous Escherichia coli designed to produce low- or high-control mortality rates. There was a positive and significant (P=0.0008) relationship between the efficacy of M40401 on survival rate and control mortality rates. M40401 increased or decreased the log (odds ratio of survival) (means +/- SE), dependent on whether control mortality rates were greater or less than the median (66%) (+0.19 +/- 0.12 vs. -0.25 +/- 0.10, P=0.01). In a subset of animals examined (n=152) at 9 h after E. coli challenge, M40401 increased (mean effect +/- SE compared with control) mean arterial blood pressure (8 +/- 5 mmHg) and decreased platelets (-37 +/- 22 cells x 10(3)/ml) with high-control mortality rates but had opposing effects on each parameter (-3 +/- 3 mmHg and 28 +/- 19 cells x 10(3)/ml, respectively) with low rates (P < or = 0.05 for the differing effects of M40401 on each parameter with high- vs. low-control mortality rates). A metaregression analysis of published preclinical sepsis studies testing SOD preparations and SOD mimetics showed that most (16 of 18) had control mortality rates >66%. However, across experiments from published studies, these agents were less beneficial as control mortality rate decreased (P=0.03) in a relationship not altered (P=not significant) by other variables associated with septic challenge or regimen of treatment and which was similar, compared with experiments with M40401 (P=not significant). Thus, in these preclinical sepsis models, possibly related to divergent effects on vascular function, inhibition of superoxide anion improved survival with more severe sepsis and high-control mortality rates but was less effective or harmful with less severe sepsis. Extrapolated clinically, inhibition of superoxide anion may be most efficacious in septic patients with severe sepsis and a high risk of death.  相似文献   

11.
An oxidant/antioxidant imbalance is thought to play an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). We hypothesized that antioxidant capacity reflected by erythrocyte glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) activities, and serum levels of the lipid peroxidation product malondialdehyde (MDA), may be related to the severity of obstructive lung impairment in patients with COPD. Erythrocyte GPx, SOD and CAT activities, and serum levels of MDA were measured in 79 consecutive patients with stable COPD. Pulmonary functional tests were assessed by body plethysmography. Moderate COPD (FEV1 50-80%) was present in 23, and severe COPD (FEV1 < 50%) in 56 patients. Erythrocyte GPx activity was significantly lower, and serum MDA levels were significantly higher in patients with severe COPD compared to patients with moderate COPD (GPx: 43.1+/-1.5 vs. 47.7+/-2.9 U/gHb, p<0.05, MDA: 2.4+/-0.1 vs. 2.1+/-0.1 nmol/ml, p<0.05). Linear regression analysis revealed a significant direct relationship between FEV1 and erythrocyte GPx activity (r = 0.234, p<0.05), and a significant inverse relationship between FEV1 and serum MDA levels (r = -0.239, p<0.05). However, no differences were observed in the erythrocyte SOD and CAT activities between the two groups of patients with different severity of COPD. Findings of the present study suggest that antioxidant capacity reflected by erythrocyte GPx activity and serum levels of the lipid peroxidation product MDA are linked to the severity of COPD.  相似文献   

12.
A single bout of eccentric exercise results in muscle damage, but it is not known whether this is correlated with microcirculatory dysfunction. We tested the following hypotheses in the spinotrapezius muscle of rats either 1 (DH-1; n = 6) or 3 (DH-3; n = 6) days after a downhill run to exhaustion (90-120 min; -14 degrees grade): 1) in resting muscle, capillary hemodynamics would be impaired, and 2) at the onset of subsequent acute concentric contractions, the decrease of microvascular O(2) pressure (Pmv(o(2))), which reflects the dynamic balance between O(2) delivery and O(2) utilization, would be accelerated compared with control (Con, n = 6) rats. In contrast to Con muscles, intravital microscopy observations revealed the presence of sarcomere disruptions in DH-1 and DH-3 and increased capillary diameter in DH-3 (Con: 5.2 +/- 0.1; DH-1: 5.1 +/- 0.1; DH-3: 5.6 +/- 0.1 mum; both P < 0.05 vs. DH-3). At rest, there was a significant reduction in the percentage of capillaries that sustained continuous red blood cell (RBC) flux in both DH running groups (Con: 90.0 +/- 2.1; DH-1: 66.4 +/- 5.2; DH-3: 72.9 +/- 4.1%, both P < 0.05 vs. Con). Capillary tube hematocrit was elevated in DH-1 but reduced in DH-3 (Con: 22 +/- 2; DH-1: 28 +/- 1; DH-3: 16 +/- 1%; all P < 0.05). Although capillary RBC flux did not differ between groups (P > 0.05), RBC velocity was lower in DH-1 compared with Con (Con: 324 +/- 43; DH-1: 212 +/- 30; DH-3: 266 +/- 45 mum/s; P < 0.05 DH-1 vs. Con). Baseline Pmv(O(2)) before contractions was not different between groups (P > 0.05), but the time constant of the exponential fall to contracting Pmv(O(2)) values was accelerated in the DH running groups (Con: 14.7 +/- 1.4; DH-1: 8.9 +/- 1.4; DH-3: 8.7 +/- 1.4 s, both P < 0.05 vs. Con). These findings are consistent with the presence of substantial microvascular dysfunction after downhill eccentric running, which slows the exercise hyperemic response at the onset of contractions and reduces the Pmv(O(2)) available to drive blood-muscle O(2) delivery.  相似文献   

13.
Because adenosine is commonly used for inducing maximal coronary hyperemia in the clinic, it is imperative that adenosine-induced hyperemia (AH) resembles coronary hyperemia that can be attained by endogenous stimuli. In the present study we hypothesized that coronary reactive hyperemia (RH) is limited compared with AH due to the presence of the glycocalyx and that the AH response is therefore unable to detect glycocalyx modifications. In anesthetized open-chest dogs, blood flow and pressure were measured in the left circumflex artery. RH after 15-s occlusion was compared with an intracoronary infusion of adenosine (650 microg; AH) during control conditions and after intracoronary treatment of the glycocalyx with hyaluronidase (20.000 U, 2 x 20 min; n = 6) or heat-inactivated hyaluronidase (n = 5). During control, coronary conductance during RH was 1.49 +/- 0.15 ml.mmHg(-1).min(-1) and 76 +/- 7% of coronary conductance during AH (P < 0.05). After hyaluronidase, RH conductance increased (P < 0.01) by 43 +/- 13% and became 93 +/- 4% of AH conductance (P = NS). Heat-inactivated hyaluronidase had no effect on RH and AH conductance. Our results demonstrate that adenosine-induced coronary hyperemia profoundly exceeds RH and that the difference is virtually abolished on selective removal of the glycocalyx. It is concluded that, compared with RH, adenosine-induced coronary hyperemia is not affected by modification of the glycocalyx. This glycocalyx insensitivity should be taken into account when using adenosine-induced coronary hyperemia as a marker for vasodilating capacity to an ischemic stimulus.  相似文献   

14.
Mathematical simulations of oxygen delivery to tissue from capillaries that take into account the particulate nature of blood flow predict the existence of oxygen tension (Po(2)) gradients between erythrocytes (RBCs). As RBCs and plasma alternately pass an observation point, these gradients are manifested as rapid fluctuations in Po(2), also known as erythrocyte-associated transients (EATs). The impact of hemodilution on EATs and oxygen delivery at the capillary level of the microcirculation has yet to be elucidated. Therefore, in the present study, phosphorescence quenching microscopy was used to measure EATs and Po(2) in capillaries of the rat spinotrapezius muscle at the following systemic hematocrits (Hct(sys)): normal (39%) and after moderate (HES1; 27%) or severe (HES2; 15%) isovolemic hemodilution using a 6% hetastarch solution. A 532-nm laser, generating 10-micros pulses concentrated onto a 0.9-microm spot, was used to obtain plasma Po(2) values 100 times/s at points along surface capillaries of the muscle. Mean capillary Po(2) (Pc(O(2)); means +/- SE) significantly decreased between conditions (normal: 56 +/- 2 mmHg, n = 45; HES1: 47 +/- 2 mmHg, n = 62; HES2: 27 +/- 2 mmHg, n = 52, where n = capillary number). In addition, the magnitude of Po(2) transients (DeltaPo(2)) significantly decreased with hemodilution (normal: 19 +/- 1 mmHg, n = 45; HES1: 11 +/- 1 mmHg, n = 62; HES2: 6 +/- 1 mmHg, n = 52). Results suggest that the decrease in Pc(O(2)) and DeltaPo(2) with hemodilution is primarily dependent on Hct(sys) and subsequent microvascular compensations.  相似文献   

15.
The protease inhibitor (PI) ritonavir (RTV) has been associated with elevated resting lipolytic rate, hyperlipidemia, and insulin resistance/glucose intolerance. The purpose of this study was to examine relationships between lipolysis and fatty acid (FA) oxidation during rest, moderate exercise and recovery, and measures of insulin sensitivity/glucose tolerance and fat redistribution in HIV-positive subjects taking RTV (n=12), HAART but no PI (n=10), and HIV-seronegative controls (n=10). Stable isotope tracers [1-(13)C]palmitate and [1,1,2,3,3-(2)H5]glycerol were continuously infused with blood and breath collection during 1-h rest, 70-min submaximal exercise (50% VO2 peak), and 1-h recovery. Body composition was evaluated using DEXA, MRI, and MRS, and 2-h oral glucose tolerance tests with insulin monitoring were used to evaluate glucose tolerance and insulin resistance. Lipolytic and FA oxidation rates were similar during rest and recovery in all groups; however, they were lower during moderate exercise in both HIV-infected groups [glycerol Ra: HIV+RTV 5.1+/-1.2 vs. HIV+no PI 5.9+/-2.8 vs. Control 7.4+/-2.2 micromol.kg fat-free mass (FFM)-1.min-1; palmitate oxidation: HIV+RTV 1.6+/-0.8 vs. HIV+no PI 1.6+/-0.8 vs. Control 2.5+/-1.7 micromol.kg FFM.min, P<0.01]. Fasting and orally-challenged glucose and insulin values were similar among groups. Lipolytic and FA oxidation rates were blunted during moderate exercise in HIV-positive subjects taking HAART. Lower FA oxidation during exercise was primarily due to impaired plasma FA oxidation, with a minor contribution from lower nonplasma FA oxidation. Regional differences in adipose tissue lipolysis during rest and moderate exercise may be important in HIV and warrant further study.  相似文献   

16.
Role of Toll-like receptor 4 in endotoxin-induced acute renal failure   总被引:18,自引:0,他引:18  
Toll-like receptor 4 (TLR4) is present on monocytes and other cell types, and mediates inflammatory events such as the release of TNF after exposure to LPS. C3H/HeJ mice are resistant to LPS-induced mortality, due to a naturally occurring mutation in TLR4. We therefore hypothesized that LPS-induced acute renal failure (ARF) requires systemic TNF release triggered by LPS acting on extrarenal TLR4. We injected C3H/HeJ mice and C3H/HeOuJ controls with 0.25 mg of LPS, and sacrificed them 6 h later for analysis of blood urea nitrogen (BUN) and kidney tissue (n = 8 per group). In contrast to C3H/HeOuJ controls, C3H/HeJ mice were completely resistant to LPS-induced ARF (6-h BUN of 32.3 +/- 1.1 vs 61.7 +/- 5.6 mg/dl). C3H/HeJ mice released no TNF into the circulation at 2 h (0.00 vs 1.24 +/- 0.16 ng/ml), had less renal neutrophil infiltration (6.4 +/- 1.0 vs 11.4 +/- 1.3 neutrophils per high power field), and less renal apoptosis, as assessed by DNA laddering. Transplant studies showed that C3H/HeJ recipients of wild-type kidneys (n = 9) were protected from LPS-induced ARF, while wild-type recipients of C3H/HeJ kidneys (n = 11) developed severe LPS-induced ARF (24-h BUN 44.0 +/- 4.1 vs 112.1 +/- 20.0 mg/dl). These experiments support our hypothesis that LPS acts on extrarenal TLR4, thereby leading to systemic TNF release and subsequent ARF. Renal neutrophil infiltration and renal cell apoptosis are potential mechanisms by which endotoxemia leads to functional ARF.  相似文献   

17.
Skeletal muscle blood flow is reduced and O(2) extraction is increased at rest in chronic heart failure (CHF). Knowledge of red blood cell (RBC) flow distribution within the capillary network is necessary for modeling O(2) delivery and exchange in this disease. Intravital microscopy techniques were used to study the in vivo spinotrapezius muscle microcirculation in rats with CHF 7 wk after myocardial infarction and in sham-operated controls (sham). A decrease in mean muscle fiber width from 51.3 +/- 1.9 microm in sham to 42.6 +/- 1.4 microm in CHF rats (P < 0.01) resulted in an increased lineal density of capillaries in CHF rats (P < 0.05). CHF reduced (P < 0.05) the percentage of capillaries supporting continuous RBC flow from 87 +/- 5 to 66 +/- 5%, such that the lineal density of capillaries supporting continuous RBC flow remained unchanged. The percentage of capillaries supporting intermittent RBC flow was increased in CHF rats (8 and 27% in sham and CHF, respectively, P < 0.01); however, these capillaries contributed only 2.3 and 3.3% of the total RBC flux in sham and CHF rats, respectively. In continuously RBC-perfused capillaries, RBC velocity (252 +/- 20 and 144 +/- 9 microm/s in sham and CHF, respectively, P < 0.001) and flux (21.4 +/- 2.4 and 9.4 +/- 1.1 cells/s in sham and CHF, respectively, P < 0.01) were markedly reduced in CHF compared with sham rats. Capillary "tube" hematocrit remained unchanged (0.22 +/- 0.02 and 0.19 +/- 0.02 in sham and CHF, respectively, P > 0.05). We conclude that CHF causes spinotrapezius fiber atrophy and reduces the number of capillaries supporting continuous RBC flow per fiber. Within these capillaries supporting continuous RBC flow, RBC velocity and flux are reduced 45-55%. This decreases the potential for O(2) delivery but enhances fractional O(2) extraction by elevating RBC capillary residence time. The unchanged capillary tube hematocrit suggests that any alterations in muscle O(2) diffusing properties in CHF are mediated distal to the RBC.  相似文献   

18.
This study investigated the role of adenosine in the regulation of neonatal cerebral blood flow (CBF) during moderate (arterial PO2 = 47 +/- 9 Torr) and severe (arterial PO2 = 25 +/- 4 Torr) hypoxia. Twenty-eight anesthetized and ventilated newborn piglets were assigned to four groups: 8 were injected intravenously with the vehicle (controls, group 1); 13 received an intravenous injection of 8-phenyltheophylline (8-PT), a potent adenosine receptor blocker, either 4 mg/kg (group 2, n = 6, mean cerebrospinal fluid (CSF) levels less than 1 mg/l) or 8 mg/kg (group 3, n = 7, mean CSF levels less than 3.5 mg/l); and 7 received an intracerebroventricular injection of 10 micrograms 8-PT (group 4). During normoxia, CBF was not altered by vehicle or 8-PT injections. In group 1, 10 min of moderate and severe hypoxia increased total CBF by 112 +/- 36 and 176 +/- 28% (SE), respectively. Compared with controls, the cerebral hyperemia during moderate hypoxia was not altered in group 2, attenuated in group 3 (to 53 +/- 13%, P = NS), and completely blocked in group 4 (P less than 0.01). CBF increase secondary to severe hypoxia was attenuated only in group 4 (74 +/- 29%, P less than 0.05). CSF concentrations of adenosine and adenosine metabolites measured by high-performance liquid chromatography increased during hypoxia. Arterial O2 content was inversely correlated (P less than 0.005) to maximal CSF levels of adenosine (r = 0.73), inosine (r = 0.87), and hypoxanthine (r = 0.80).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In this study, we investigated effects of a novel NAD(P)H oxidase (Nox)-inhibitor 3-benzyl-7-(2-benzoxazolyl)thio-1,2,3-triazolo[4,5-d]pyrimidine (VAS2870) on oxidized low-density lipoprotein (oxLDL)-mediated reactive oxygen species (ROS) formation in human endothelial cells. Primary cultures of human umbilical vein endothelial cells were cultured to confluence and ROS formation was induced with 50microg/ml oxLDL for 2h. ROS formation was detected by chemiluminescence (CL) using the Diogenes reagent. OxLDL induced ROS formation in human endothelial cells (171+/-12%; n=10, P<0.05 vs. control). This augmented ROS formation in response to oxLDL was completely inhibited by the Nox inhibitor VAS2870 (101+/-9%; n=7, P<0.05 vs. oxLDL). Similar results were obtained with superoxide dismutase (91+/-7%; n=7, P<0.05 vs. oxLDL). However, the Nox4 mRNA expression level was neither changed by oxLDL nor VAS2870. We conclude that VAS2870 could provide a novel strategy to inhibit the augmented endothelial superoxide anion formation in response to cardiovascular risk factors.  相似文献   

20.
Hyperglycemia is becoming recognized as an important risk factor for microvascular dysfunction. We hypothesized that short-term hyperglycemia, either on the scale of hours or weeks, alters the barrier function and the volume of the endothelial glycocalyx and decreases functional capillary density and deformability of the red blood cells (RBCs). All experiments were performed in anesthetized, mechanically ventilated, C57BL/6 mice that were either normoglycemic, acutely hyperglycemic (25 mM) for 60 min due to infusion of glucose, or hyperglycemic (25 mM) for 2-4 wk (db/db mice). The glycocalyx was probed using 40-kDa Texas red dextran, which is known to permeate the glycocalyx, and 70-kDa FITC dextran, which has impaired access to the glycocalyx in healthy animals. Clearance of the dye from the blood was measured. An orthogonal polarization spectral imaging technique was used to visualize the number of capillaries with flowing RBCs of the dorsal flexor muscle. The data indicate that short-term hyperglycemia causes a rapid decrease of the ability of the glycocalyx to exclude 70-kDa dextran. No change in the vascular permeation of 40-kDa dextran was observed. Glycocalyx volume was not affected by short-term hyperglycemia. In addition, 1 h of hyperglycemia resulted in a 38% decrease of the lineal density of capillaries with flowing RBCs. This decreased lineal density was not observed in the 2- to 4-wk hyperglycemia model. Short-term hyperglycemia was without any effect on the deformablity of the RBCs. The data indicate that the described increased vascular permeability with hyperglycemia can be ascribed to an increased permeability of the glycocalyx, identifying the glycocalyx as a potential early target of hyperglycemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号