首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Central administration of AT1 receptor blockers prevents salt-sensitive hypertension and inhibits progression of CHF. We investigated in Wistar rats the effectiveness of peripheral administration of two AT1 receptor blockers, losartan and embusartan, in exerting central AT1 receptor blockade. Losartan or embusartan at doses of 30 and 100 mg/kg were administered subcutaneously (s.c.) as a single dose, or one dose daily for 6 days. The BP responses to intracerebroventricular (i.c.v.) injection of Ang II, i.c.v. infusion of Na+-rich aCSF (0.3 M NaCl), and intravenous (i.v.) injection of Ang II were then measured. Losartan or embusartan at 30 and 100 mg/kg both inhibited the BP increases induced by i.c.v. Ang II and, to a lesser extent, by Na+-rich aCSF. After a single dose, this inhibition was more pronounced for losartan. However, after 6 days of treatment, there were no significant differences between the effects of losartan and embusartan. Losartan and embusartan blocked responses to Ang II i.v. to a similar extent. These results indicate that results from single-dose studies may not reflect the chronic steady-state, and that during chronic treatment both AT1 receptor blockers are similarly effective in inhibiting AT1 receptors in the central nervous system, when assessed by pressor responses to acute increases in CSF Na+ or CSF Ang II.  相似文献   

2.
An enhanced responsiveness to increases in cerebrospinal fluid (CSF) Na+ by high salt intake may contribute to salt-sensitive hypertension in Dahl salt-sensitive (S) rats. To test this hypothesis, sympathetic and pressor responses to acute and chronic increases in CSF Na+ were evaluated. In conscious young (5-6 wk old) and adult (10-11 wk old) Dahl S and salt-resistant (R) rats as well as weight-matched Wistar rats, hemodynamic [blood pressure (BP) and heart rate (HR)] and sympathetic [renal sympathetic nerve activity (RSNA)] responses to 10-min intracerebroventricular infusions of artificial CSF (aCSF) and Na+-rich aCSF (containing 0.2-0.45 M Na+) were evaluated. Intracerebroventricular Na+-rich aCSF increased BP, RSNA, and HR in a dose-related manner. The extent of these increases was significantly larger in Dahl S versus Dahl R or Wistar rats and young versus adult Dahl S rats. In a second set of experiments, young Dahl S and R rats received a chronic intracerebroventricular infusion of aCSF or Na+-rich (0.8 M) aCSF (5 microl/h) for 14 days, with the use of osmotic minipumps. On day 14 in conscious rats, CSF was sampled and BP, HR, and RSNA were recorded at rest and in response to air stress, intracerebroventricular alpha2-adrenoceptor agonist guanabenz, intracerebroventricular ouabain, and intravenous phenylephrine and nitroprusside to estimate baroreflex function. The infusion of Na+-rich aCSF versus aCSF increased CSF Na+ concentration to the same extent but caused severe versus mild hypertension in Dahl S and Dahl R rats, respectively. After central Na+ loading, hypothalamus "ouabain" significantly increased in Dahl S and only tended to increase in Dahl R rats. Moreover, sympathoexcitatory and pressor responses to intracerebroventricular exogenous ouabain were attenuated by Na+-rich aCSF to a greater extent in Dahl S versus Dahl R rats. Responses to air-jet stress or intracerebroventricular guanabenz were enhanced by Na+-rich aCSF in both strains, but the extent of enhancement was significantly larger in Dahl S versus Dahl R. Na+-rich aCSF impaired arterial baroreflex control of RSNA more markedly in Dahl S versus R rats. These findings indicate that genetic control of mechanisms linking CSF Na+ with brain "ouabain" is altered in Dahl S rats toward sympathetic hyperactivity and hypertension.  相似文献   

3.
Pressor responses to increases in cerebrospinal fluid (CSF) sodium in Wistar rats and to high salt intake in spontaneously hypertensive rats (SHR) involve both brain ouabainlike activity ("ouabain") and the brain renin-angiotensin system (RAS). Because some of the effects of "ouabain" are mediated by the median preoptic nucleus (MnPO) and this nucleus contains all elements of the RAS, the present study assessed possible interactions of "ouabain" and ANG II in this nucleus. In conscious Wistar rats, injection of ANG II into the MnPO significantly increased mean arterial pressure (MAP) and heart rate (HR). This response was not affected by pretreatment with a subpressor dose of ouabain. MAP and HR increases by ouabain in the MnPO were significantly attenuated by MnPO pretreatment with losartan. In Wistar rats, losartan in the MnPO also abolished pressor and HR responses to intracerebroventricular 0.3 M NaCl and attenuated MAP and HR responses to intracerebroventricular ouabain. Five weeks of a high-salt diet in SHRs resulted in exacerbation of hypertension and increased responses to air-jet stress and intracerebroventricular guanabenz. Losartan injected into the MnPO reversed the salt-sensitive component of the hypertension and normalized the depressor response to guanabenz but did not change responses to air-jet stress. We conclude that in the MnPO, ANG II via AT(1) receptors mediates cardiovascular responses to an acute increase in CSF sodium as well as the chronic pressor responses to high sodium intake in SHR.  相似文献   

4.
Six-week-old Dahl salt-sensitive (S) and -resistant (R) rats received for 2 wk an intracerebroventricular infusion of aldosterone (Aldo) (22.5 ng/h) or vehicle containing artificial cerebrospinal fluid (aCSF) with 0.15 M Na+. At 8 wk, mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were recorded in conscious rats at rest, in response to air stress, and to an intracerebroventricular injection of the alpha2-adrenoceptor agonists guanabenz or ouabain. Baroreflex control of RSNA and HR was estimated by using intravenous phenylephrine and nitroprusside. In Dahl S but not Dahl R rats, Aldo raised resting MAP by 20-25 mmHg, doubled sympathoexcitatory and pressor responses to air stress and sympathoinhibitory and depressor responses to guanabenz, and impaired baroreflex function. In Dahl S but not Dahl R rats, Aldo significantly increased content of ouabain-like compounds (OLC) in the hypothalamus and attenuated excitatory responses to ouabain. Aldo did not affect water intake, plasma electrolytes, or OLC in plasma and adrenal glands. In another set of three groups of Dahl S rats, Aldo dissolved in aCSF containing 0.16, 0.15, or 0.14 M Na+ was infused intracerebroventricularly for 2 wk. CSF Na+ concentration ([Na+]) showed only a nonsignificant increase, but resting MAP increased from 111 +/- 3 mmHg in rats with Aldo in 0.14 M Na+ to 131 +/- 3 and 147 +/- 3 mmHg with Aldo in 0.15 and 0.16 M Na+, respectively (P < 0.05 for both). These findings indicate that in Dahl S rats, intracerebroventricular infusion of Aldo causes similar central responses as high salt intake, i.e., increases in brain OLC content, sympathetic hyperreactivity, and hypertension. The extent of the increase in blood pressure (BP) by intracerebroventricular Aldo depends on the [Na+] in the vehicle. In Dahl R rats, intracerebroventricular Aldo did not increase brain OLC, sympathetic reactivity, and BP, suggesting that in this rat strain, a decrease in central responsiveness to mineralocorticoids may contribute to its salt-resistant nature.  相似文献   

5.
In Wistar rats, increasing cerebrospinal fluid (CSF) Na+ concentration ([Na+]) by intracerebroventricular (ICV) infusion of hypertonic saline causes sympathetic hyperactivity and hypertension that can be prevented by blockade of brain mineralocorticoid receptors (MR). To assess the role of aldosterone produced locally in the brain in the activation of MR in the central nervous system (CNS), Wistar rats were infused ICV with artificial CSF (aCSF), Na+ -rich (800 mmol/l) aCSF, aCSF plus the aldosterone synthase inhibitor FAD286 (100 microg x kg(-1) x day(-1)), or Na+ -rich aCSF plus FAD286. After 2 wk of infusion, rats treated with Na+ -rich aCSF exhibited significant increases in aldosterone and corticosterone content in the hypothalamus but not in the hippocampus, as well as increases in resting blood pressure (BP) and sympathoexcitatory responses to air stress, and impairment of arterial baroreflex function. Concomitant ICV infusion of FAD286 prevented the Na+ -induced increase in hypothalamic aldosterone but not corticosterone and prevented most of the increases in resting BP and sympathoexcitatory and pressor responses to air stress and the baroreflex impairment. FAD286 had no effects in rats infused with ICV aCSF. In another set of rats, 24-h BP and heart rate were recorded via telemetry before and during a 14-day ICV infusion of Na+ -rich aCSF with or without FAD286. Na+ -rich aCSF without FAD286 caused sustained increases ( approximately 10 mmHg) in resting mean arterial pressure that were absent in the rats treated with FAD286. These data suggest that in Wistar rats, an increase in CSF [Na+] may increase the biosynthesis of corticosterone and aldosterone in the hypothalamus, and mainly aldosterone activates MR in the CNS leading to sympathetic hyperactivity and hypertension.  相似文献   

6.
Intracerebroventricular infusion of Na(+)-rich artificial cerebrospinal fluid (aCSF) causes larger sympathetic and pressor responses in Dahl salt-sensitive (S) than -resistant (R) or Wistar rats. Enhanced activity of the aldosterone-"ouabain" pathway or decreased nitric oxide (NO) release may contribute to this enhanced responsiveness. Where in the brain these mechanisms interact is largely unknown. The present study evaluated whether Na(+) in the paraventricular nucleus (PVN) causes larger pressor responses in Dahl S (SS/Mcw) than R (Dahl SS.BN13) rats and whether mineralocorticoid receptors, benzamil-blockable Na(+) channels, "ouabain," angiotensin type 1 receptors, or NO mediates these enhanced responses. Na(+)-rich aCSF in the PVN caused 30-40% larger increases in blood pressure and heart rate in Dahl S than R or Wistar rats, whereas responses to ouabain, ANG II, or N(ω)-nitro-l-arginine methyl ester hydrochloride (l-NAME) in the PVN were the same. These responses to Na(+) were not affected by eplerenone, benzamil, or Fab fragments, whereas they were fully blocked by losartan, in Dahl S and R rats. l-NAME enhanced them more in Dahl R than S rats, thereby equalizing the responses in the two strains. Pressor responses to l-NAME in the PVN were attenuated by a high-salt diet in Dahl S, but not R, rats. The results indicate that acute and chronic increases in Na(+) concentration in the PVN inhibit NO release in the PVN of Dahl S, but not R, rats, thereby contributing to the enhanced pressor responses to Na(+) in Dahl S rats.  相似文献   

7.
Swallowed volumes in the fetus are greater than adult values (per body weight) and serve to regulate amniotic fluid volume. Central ANG II stimulates swallowing, and nonspecific ANG II receptor antagonists inhibit both spontaneous and ANG II-stimulated swallowing. In the adult rat, AT1 receptors mediate both stimulated drinking and pressor activities, while the role of AT2 receptors is controversial. As fetal brain contains increased ANG II receptors compared with the adult brain, we sought to investigate the role of both AT1 and AT2 receptors in mediating fetal swallowing and pressor activities. Five pregnant ewes with singleton fetuses (130 +/- 1 days) were prepared with fetal vascular and lateral ventricle (LV) catheters and electrocorticogram and esophageal electromyogram electrodes and received three studies over 5 days. On day 1 (ANG II), following a 2-h basal period, 1 ml artificial cerebrospinal fluid (aCSF) was injected in the LV. At time 4 h, ANG II (6.4 microg) was injected in the LV, and the fetus was monitored for a final 2 h. On day 3, AT1 receptor blocker (losartan 0.5 mg) was administered at 2 h, and ANG II plus losartan was administered at 4 h. On day 5, AT2 receptor blocker (PD-123319; 0.8 mg was administered at 2 h and ANG II plus PD-123319 at 4 h. In the ANG II study, LV injection of ANG II significantly increased fetal swallowing (0.9 +/- 0.1 to 1.4 +/- 0.1 swallows/min; P < 0.05). In the losartan study, basal fetal swallowing significantly decreased in response to blockade of AT1 receptors (0.9 +/- 0.1 to 0.4 +/- 0.1 swallows/min; P < 0.05), while central injection of ANG II in the presence of AT1 receptor antagonism did not increase fetal swallowing (0.6 +/- 0.1 swallows/min). In the PD-123319 study, basal fetal swallowing did not change in response to blockade of AT2 receptor (0.9 +/- 0.1 swallows/min), while central injection of ANG II in the presence of AT2 blockade significantly increased fetal swallowing (1.5 +/- 0.1 swallows/min; P < 0.05). ANG II caused significant pressor responses in the control and PD-123319 studies but no pressor response in the presence of AT1 blockade. These data demonstrate that in the near-term ovine fetus, AT1 receptor but not AT2 receptors accessible via CSF contribute to dipsogenic and pressor responses.  相似文献   

8.
The effect of chronic activation or inhibition of central ANG II receptors on cardiac baroreflex function in conscious normotensive rabbits was examined. Animals received a fourth ventricular (4V) infusion of ANG II (30 and 100 ng/h), losartan (3 and 30 microg/h), or Ringer solution (2 microl/h) for 2 wk. After 1 and 2 wk, ANG II (100 ng/h) decreased cardiac baroreflex gain by 20 and 37%, respectively (P = 0.015), whereas losartan (30 microg/h) increased baroreflex gain by 24 and 58%, respectively (P = 0.02). Within 1 wk of the end of the infusions, cardiac baroreflex gain had returned to control. Ringer solution or the lower doses of ANG II or losartan did not modify the cardiac baroreflex function. Blood pressure and heart rate were not altered by any treatment, nor was their variability affected. These data demonstrate a novel long-term modulation of cardiac baroreflexes by endogenous ANG II that is independent of blood pressure level.  相似文献   

9.
The synergy between ANG II and aldosterone (Aldo) in the induction of salt appetite, extensively studied in rats, has been tested in baboons. ANG II was infused intracerebroventricularly at 0.5 or 1.0 microg/h; Aldo was infused subcutaneously at 20 microg/h. Separate infusions over 7 days had no significant effect on the daily intake of 300 mM NaCl. Concurrent infusions, however, increased daily NaCl intake approximately 10-fold and daily water intake approximately 2.5-fold. In addition, the combined infusions caused 1) a reduction in daily food intake, 2) changes in blood composition indicative of increased vasopressin release, and 3) changes of urinary excretion rates of cortisol and Aldo indicative of increased ACTH release. Arterial blood pressure, measured in two baboons, rose during concurrent ANG II and Aldo treatment. These results indicate a potent synergy between central ANG II and peripheral Aldo in stimulating salt appetite in baboons. At the same time, other ANG II-specific brain mechanisms concerned with water intake, food intake, vasopressin release, ACTH release, and blood pressure regulation appear to have been activated by the same type of synergy. These central enhancement processes have never been previously demonstrated in primates.  相似文献   

10.
We examined whether ANG II receptors in the central nervous system mediate hemodynamic responses to pharmacological (cocaine) and behavioral (cold water) stressors. After administration of cocaine (5 mg/kg iv), rats were classified as vascular responders (VR) if their pressor response was due entirely to an increase in systemic vascular resistance (SVR) despite a decrease in cardiac output (CO). Cocaine elicited a pressor response in mixed responders (MR) that was dependent on small increases in both SVR and CO. ANG II (30 ng/5 microl icv, 5 min before cocaine) augmented the decrease in CO in VR and prevented the increase in CO in MR. Administration of [Sar(1),Thr(8)]ANG II (20 microg/5 microl icv; sarthran) before cocaine attenuated the decrease in CO and the large increase in SVR in VR so that they were no longer different from MR. Losartan (20 microg icv) or captopril (50 microg icv) preceding cocaine administration also attenuated the decrease in CO and the large increase in SVR seen in VR only. The role of angiotensin was not specific for cocaine, because ANG II (icv) pretreatment before startle with cold water (1 cm deep) enhanced the decrease in CO and the increase in SVR in both MR and VR, whereas losartan (icv) pretreatment before startle attenuated the decrease in CO and the increase in SVR in VR so that they were no longer different from MR. These data suggest that central ANG II receptors mediate the greater vascular and cardiac responsiveness in vascular responders to acute pharmacological and behavioral stressors.  相似文献   

11.
The mechanisms by which chronic infusion of an initially subpressor low dose of angiotensin II (ANG II) causes a progressive and sustained hypertension remain unclear. In conscious sheep (n = 6), intravenous infusion of ANG II (2 microg/h) gradually increased mean arterial pressure (MAP) from 82 +/- 3 to 96 +/- 5 mmHg over 7 days (P < 0.001). This was accompanied by peripheral vasoconstriction; total peripheral conductance decreased from 44.6 +/- 6.4 to 38.2 +/- 6.7 ml.min(-1).mmHg(-1) (P < 0.001). Cardiac output and heart rate were unchanged. In the regional circulation, mesenteric, renal, and iliac conductances decreased but blood flows were unchanged. There was no coronary vasoconstriction, and coronary blood flow increased. Ganglion blockade (125 mg/h hexamethonium for 4 h) reduced MAP by 13 +/- 1 mmHg in the control period and by 7 +/- 2 mmHg on day 8 of ANG II treatment. Inhibition of central AT(1) receptors by intracerebroventricular infusion of losartan (1 mg/h for 3 h) had no effect on MAP in the control period or after 7 days of ANG II infusion. Pressor responsiveness to incremental doses of intravenous ANG II (5, 10, 20 microg/h, each for 15 min) was unchanged after 7 days of ANG II infusion. ANG II caused no sodium or water retention. In summary, hypertension due to infusion of a low dose of ANG II was accompanied by generalized peripheral vasoconstriction. Indirect evidence suggested that the hypertension was not neurogenic, but measurement of sympathetic nerve activity is required to confirm this conclusion. There was no evidence for a role for central angiotensinergic mechanisms, increased pressor responsiveness to ANG II, or sodium and fluid retention.  相似文献   

12.
The present investigation measured the relative pressor potencies of intracerebroventricularly infused ANG II, ANG III, and the metabolically resistant analogs d-Asp(1)ANG II and d-Arg(1)ANG III in alert freely moving rats. The stability of these analogs was further facilitated by pretreatment with the specific aminopeptidase A inhibitor EC33 or the aminopeptidase N inhibitor PC18. The results indicate that the maximum elevations in mean arterial pressure (MAP) were very similar for each of these compounds across the dose range 1, 10, and 100 pmol/min during a 5-min infusion period. However, d-Asp(1)ANG II revealed significantly extended durations of pressor effects before return to base level MAP. Pretreatment intracerebroventricular infusion with EC33 blocked the pressor activity induced by the subsequent infusion of d-Asp(1)ANG II, whereas EC33 had no effect on the pressor response to subsequent infusion of d-Arg(1)ANG III. In contrast, pretreatment infusion with PC18 extended the duration of the d-Asp(1)ANG II pressor effect by about two to three times and the duration of d-Arg(1)ANG III's effect by approximately 10 to 15 times. Pretreatment with the specific AT(1) receptor antagonist losartan blocked the pressor responses induced by the subsequent infusion of both analogs indicating that they act via the AT(1) receptor subtype. These results suggest that the brain AT(1) receptor may be designed to preferentially respond to ANG III, and ANG III's importance as a centrally active ligand has been underestimated.  相似文献   

13.
It has been shown that the female sex hormones have a protective role in the development of angiotensin II (ANG II)-induced hypertension. The present study tested the hypotheses that 1) the estrogen receptor-alpha (ERalpha) is involved in the protective effects of estrogen against ANG II-induced hypertension and 2) central ERs are involved. Blood pressure (BP) was measured in female mice with the use of telemetry implants. ANG II (800 ng.kg(-1).min(-1)) was administered subcutaneously via an osmotic pump. Baseline BP in the intact, ovariectomized (OVX) wild-type (WT) and ERalpha knockout (ERalphaKO) mice was similar; however, the increase in BP induced by ANG II was greater in OVX WT (23.0 +/- 1.0 mmHg) and ERalphaKO mice (23.8 +/- 2.5 mmHg) than in intact WT mice (10.1 +/- 4.5 mmHg). In OVX WT mice, central infusion of 17beta-estradiol (E(2); 30 microg.kg(-1).day(-1)) attenuated the pressor effect of ANG II (7.0 +/- 0.4 mmHg), and this protective effect of E(2) was prevented by coadministration of ICI-182,780 (ICI; 1.5 microg.kg(-1).day(-1), 18.8 +/- 1.5 mmHg), a nonselective ER antagonist. Furthermore, central, but not peripheral, infusions of ICI augmented the pressor effects of ANG II in intact WT mice (17.8 +/- 4.2 mmHg). In contrast, the pressor effect of ANG II was unchanged in either central E(2)-treated OVX ERalphaKO mice (19.0 +/- 1.1 mmHg) or central ICI-treated intact ERalphaKO mice (19.6 +/- 1.6 mmHg). Lastly, ganglionic blockade on day 7 after ANG II infusions resulted in a greater reduction in BP in OVX WT, central ER antagonist-treated intact WT, central E(2) + ICI-treated OVX WT, ERalphaKO, and central E(2)- or ICI-treated ERalphaKO mice compared with that in intact WT mice given just ANG II. Together, these data indicate that ERalpha, especially central expression of the ER, mediates the protective effects of estrogen against ANG II-induced hypertension.  相似文献   

14.
Chronic subcutaneous infusion of ouabain causes hypertension via central pathways involving angiotensin type 1 (AT(1)) receptor stimulation. The present study assessed plasma and tissue ANG I and II levels as well as AT1 receptor and angiotensin-converting enzyme (ACE) mRNA levels and binding densities by real-time PCR and in vitro autoradiography in relevant brain nuclei and peripheral tissues (heart and kidney) in rats at 1 and/or 2 wk after start of ouabain infusion at 50 microg/day. After 2 wk (but not after 1 wk), blood pressures significantly increased (+15 mmHg). At 2 wk, plasma ANG I and II levels were markedly suppressed by ouabain. In contrast, in the heart and kidneys, ANG I levels were not affected, and ANG II levels tended to decrease, whereas in the hypothalamus ANG II content clearly increased. At 1 wk, no changes in ACE and AT1 receptor densities were seen. After 2 wk, there were significant decreases in AT(1) receptor mRNA and densities in the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO), and paraventricular nucleus (PVN). ACE densities decreased only in the OVLT and SFO, but ACE mRNA showed more variable responses (decrease in OVLT vs. increase in PVN). In the kidneys, at 2 wk both AT1 receptor and ACE densities were decreased, but mRNA abundance did not change. The heart showed no significant changes. The increase in hypothalamic ANG II content and associated decreases in central AT1 receptor and ACE densities support the involvement of the brain renin-angiotensin system in the central hypertensive mechanism of action of ouabain.  相似文献   

15.
In rats with congestive heart failure (CHF) post myocardial infarction (MI) acute blockade of brain "ouabain" reverses sympathetic hyperactivity and chronic blockade prevents the desensitization of baroreflex function. This study was conducted to determine: i) if chronic blockade of brain "ouabain" maintains normal sympathetic reactivity; and ii) if acute baroreflex resetting (another parameter of baroreflex function) also becomes impaired, and if so, does brain "ouabain" contribute to impairment in acute baroreflex resetting. CHF post MI was induced by acute coronary artery ligation in Wistar rats. Animals were treated with 200 microg x day(-1) i.c.v. or i.v. Fab fragments (which bind brain "ouabain" with high affinity), or treated with 200 microg x day(-1) i.c.v. gamma-globulins (control group). The length of treatment was 0.5-8 weeks or 4-8 weeks post MI. At 8 weeks mean arterial pressure (MAP), central venous pressure (CVP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were recorded in concious rats at rest and in response to: i) air-jet stress, ii) i.c.v. guanabenz (an alpha2-adrenoceptor agonist), and iii) a 30 min i.v. infusion of nitroprusside (NP). Excitatory responses to air stress and inhibitory responses to guanabenz of MAP, HR, and RSNA were significantly enhanced in rats with CHF versus the sham-operated treated group. This enhancement was prevented in the CHF group treated with i.c.v., but not i.v., Fab. Nitroprusside induced a sustained decrease in MAP (approximately 25 mmHg) and a transient decrease in CVP. Heart rate and RSNA increased significantly within 1 min of beginning the infusion. The peak increases as well as the product of changes in MAP-HR and RSNA-HR were significantly smaller in rats with CHF treated with gamma-globulins versus sham rats and versus CHF rats treated with i.c.v. Fab. In sham-operated rats and CHF rats treated with i.c.v. Fab, RSNA and HR began to decrease within 3-4 min of beginning the NP infusion and had returned to baseline by 20 min. In contrast, RSNA and HR remained increased throughout the infusion in the CHF rats treated with gamma-globulins. These data indicate that in rats with CHF acute resetting of the arterial baroreflex in response to a lower BP becomes impaired, and chronic blockade of brain "ouabain" prevents both this change in baroreflex resetting as well as sympathetic hyperactivity.  相似文献   

16.
A chronic increase in the concentration of sodium chloride in the cerebrospinal fluid (CSF) (↑CSF [NaCl]) appears to be critically important for the development of salt-dependent hypertension. In agreement with this concept, increasing CSF [NaCl] chronically by intracerebroventricular (icv) infusion of NaCl-rich artificial CSF (aCSF-HiNaCl) in rats produces hypertension by the same mechanisms (i.e., aldosterone-ouabain pathway in the brain) as that produced by dietary sodium in salt-sensitive strains. We first demonstrate here that icv aCSF-HiNaCl for 10 days also causes hypertension in wild-type (WT) mice. We then used both WT and gene-targeted mice to explore the mechanisms. In WT mice with a ouabain-sensitive Na,K-ATPase α(2)-isoform (α2(S/S)), mean arterial pressure rose by ~25 mmHg within 2 days of starting aCSF-HiNaCl (0.6 nmol Na/min) and remained elevated throughout the study. Ouabain (171 pmol/day icv) increased blood pressure to a similar extent. aCSF-HiNaCl or ouabain given at the same rates subcutaneously instead of intracerebroventricularly had no effect on blood pressure. The pressor response to icv aCSF-HiNaCl was abolished by an anti-ouabain antibody given intracerebroventricularly but not subcutaneously, indicating that it is mediated by an endogenous ouabain-like substance in the brain. We compared the effects of icv aCSF-HiNaCl or icv ouabain on blood pressure in α2(S/S) versus knockout/knockin mice with a ouabain-resistant endogenous α(2)-subunit (α2(R/R)). In α2(R/R), there was no pressor response to icv aCSF-HiNaCl in contrast to WT mice. The α2(R/R) genotype also lacked a pressor response to icv ouabain. These data demonstrate that chronic ↑CSF [NaCl] causes hypertension in mice and that the blood pressure response is mediated by the ouabain-like substance in the brain, specifically by its binding to the α(2)-isoform of the Na,K-ATPase.  相似文献   

17.
The aims of present study were to determine whether angiotensin II (ANG II) in the paraventricular nucleus (PVN) is involved in the central integration of the cardiac sympathetic afferent reflex and whether this effect is mediated by the ANG type 1 (AT(1)) receptor. While the animals were under alpha-chloralose and urethane anesthesia, mean arterial pressure, heart rate, and renal sympathetic nerve activity (RSNA) were recorded in sinoaortic-denervated and cervical-vagotomized rats. A cannula was inserted into the left PVN for microinjection of ANG II. The cardiac sympathetic afferent reflex was tested by electrical stimulation (5, 10, 20, and 30 Hz in 10 V and 1 ms) of the afferent cardiac sympathetic nerves or epicardial application of bradykinin (BK) (0.04 and 0.4 microg in 2 microl). Microinjection of ANG II (0.03, 0.3, and 3 nmol) into the PVN resulted in dose-related increases in the RSNA responses to electrical stimulation. The percent change of RSNA response to 20- and 30-Hz stimulation increased significantly at the highest dose of ANG II (3 nmol). The effects of ANG II were prevented by pretreatment with losartan (50 nmol) into the PVN. Microinjection of ANG II (0.3 nmol) into the PVN significantly enhanced the RSNA responses to epicardial application of BK, which was abolished by pretreatment with losartan (50 nmol) into the PVN. These results suggest that exogenous ANG II in the PVN augments the cardiac sympathetic afferent reflex evoked by both electrical stimulation of cardiac sympathetic afferent nerves and epicardial application of BK. These central effects of ANG II are mediated by AT(1) receptors.  相似文献   

18.
In the present study in normotensive Wistar Kyoto rats (WKY), we investigated whether any angiotensin II (ANG II) increases in vascular cyclic GMP production were via stimulation of AT(2) receptors. Adult WKY were infused for 4h with ANG II (30 ng/kg per min, i.v.) or vehicle (0.9% NaCl, i.v.) after pretreatment with (1) vehicle, (2) losartan (100 mg/kg p.o.), (3) PD 123319 (30 mg/kg i.v.), (4) losartan+PD 123319, (5) icatibant (500 microg/kg i.v.), (6) L-NAME (1 mg/kg i.v.), (7) minoxidil (3 mg/kg i.v.). Mean arterial blood pressure (MAP) was continuously monitored, and plasma ANG II and aortic cyclic GMP were measured at the end of the study. ANG II infusion over 4h raised MAP by a mean of 13 mmHg. This effect was completely prevented by AT(1) receptor blockade. PD 123319 slightly attenuated the pressor effect induced by ANG II alone (123.4+/-0.8 versus 130.6+/-0.6) but did not alter MAP in rats treated simultaneously with ANG II + losartan (113+/-0.6 versus 114.3+/-0.8). Plasma levels of ANG II were increased 2.2-3.7-fold by ANG II infusion alone or ANG II in combination with the various drugs. The increase in plasma ANG II levels was most pronounced after ANG II+losartan treatment but absent in rats treated with losartan alone. Aortic cyclic GMP levels were not significantly changed by either treatment. Our results demonstrate that the AT(2) receptor did not contribute to the cyclic GMP production in the vascular wall of normotensive WKY.  相似文献   

19.
Acute hypertension inhibits proximal tubule (PT) fluid reabsorption. The resultant increase in end proximal flow rate provides the error signal to mediate tubuloglomerular feedback autoregulation of renal blood flow and glomerular filtration rate and suppresses renal renin secretion. To test whether the suppression of the renin-angiotensin system during acute hypertension affects the magnitude of the inhibition of PT fluid and sodium reabsorption, plasma ANG II levels were clamped by infusion of the angiotensin-converting enzyme (ACE) inhibitor captopril (12 microg/min) and ANG II after pretreatment with the bradykinin B(2) receptor blocker HOE-140 (100 microg/kg bolus). Because ACE also degrades bradykinin, HOE-140 was included to block effect of accumulating vasodilatory bradykinins during captopril infusion. HOE-140 increased the sensitivity of arterial blood pressure to ANG II: after captopril infusion without HOE-140, 20 ng x kg(-1) x min(-1) ANG II had no pressor effect, whereas with HOE-140, 20 ng x kg(-1) x min(-1) ANG II increased blood pressure from 104 +/- 4 to 140 +/- 6 mmHg. ANG II infused at 2 ng x kg(-1) x min(-1) had no pressor effect after captopril and HOE-140 infusion ("ANG II clamp"). When blood pressure was acutely increased 50-60 mmHg by arterial constriction without ANG II clamp, urine output and endogenous lithium clearance increased 4.0- and 6.7-fold, respectively. With ANG II clamp, the effects of acute hypertension were reduced 50%: urine output and endogenous lithium clearance increased two- and threefold, respectively. We conclude that HOE-140, an inhibitor of the B(2) receptor, potentiates the sensitivity of arterial pressure to ANG II and that clamping systemic ANG II levels during acute hypertension blunts the magnitude of the pressure diuretic response.  相似文献   

20.
Central infusion of an angiotensin type 1 (AT(1)) receptor blocker prevents sympathetic hyperactivity and hypertension in Dahl salt-sensitive (S) rats on high salt. In the present study, we examined whether central infusion of a direct renin inhibitor exerts similar effects. Intracerebroventricular infusion of aliskiren at the rate of 0.05 mg/day markedly inhibited the increase in ANG II levels in the cerebrospinal fluid and in blood pressure (BP) caused by intracerebroventricular infusion of rat renin. In Dahl S rats on high salt, intracerebroventricular infusion of aliskiren at 0.05 and 0.25 mg/day for 2 wk similarly decreased resting BP in Dahl S rats on high salt. In other groups of Dahl S rats, high salt intake for 2 wk increased resting BP by ~25 mmHg, enhanced pressor and sympathoexcitatory responses to air-stress, and desensitized arterial baroreflex function. All of these effects were largely prevented by intracerebroventricular infusion of aliskiren at 0.05 mg/day. Aliskiren had no effects in rats on regular salt. Neither high salt nor aliskiren affected hypothalamic ANG II content. These results indicate that intracerebroventricular infusions of aliskiren and an AT(1) receptor blocker are similarly effective in preventing salt-induced sympathetic hyperactivity and hypertension in Dahl S rats, suggesting that renin in the brain plays an essential role in the salt-induced hypertension. The absence of an obvious increase in hypothalamic ANG II by high salt, or decrease in ANG II by aliskiren, suggests that tissue levels do not reflect renin-dependent ANG II production in sympathoexcitatory angiotensinergic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号