首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The abundance and biomass of marine planktonic ciliates in BorgeBay, Signy Island, were determined at monthly intervals betweenApril 1990 and June 1991. At least 24 different ciliate taxawere recorded from samples preserved in Lugol's iodine, includingthe tintinnids Codonellopsis balechi, Cymalocylis convallaria,Laackmaniella naviculaefera and Salpingella sp., and the aloricatetaxa Didinium sp. and Mesodinium rubrum. Ciliate abundance andbiomass exhibited a clear seasonal cycle with high values duringthe austral summer and low values in the austral winter. Abundanceranged from 0.3 103l–1 in September to 2.3 103l–1in January, while biomass ranged from 0.5 µg C l–1in October to 12.6 µg C l–1 in December. Small ciliatesdominated abundance throughout the year, and biomass duringwinter. Larger ciliates contributed most to biomass during summer.Aloricate ciliates were common throughout the year, while tintinnidscontributed substantially to abundance and biomass only duringsummer. Salpingella sp. was the commonest tintinnid, but C.convallariacontributed most to tintinnid biomass. The seasonal patternof ciliate abundance and biomass matched that of chlorophylla concentration and bacterial biomass, suggesting tight trophiccoupling between ciliates and other components of the pelagicmicrobial community. 1Present address: Scott Polar Research Institute, Universityof Cambridge, Lensfield Road, Cambridge CB2 1ER, UK  相似文献   

2.
Seasonal variations in diversity and biomass of tintinnids (Ciliophora:Tintinnida) were investigated at two fixed stations in the innerpart of the Bahía Blanca Estuary (38°42' S, 61°50'W) during an annual cycle. The variations were analysed in relationto surface temperature, salinity, transparency, solar radiationand chlorophyll a (Chl a)concentration. Biomass was calculatedin terms of biovolume and carbon units. Diversity was estimatedas the number of species and the Shannon Index (H', ln based).Density of tintinnids ranged from 100 to 7800 individuals L–1H' ranged from 0 to 1.81. The biomass varied from 0.3 to 127.78x 106 µm3 L–1 (0.02–39.4 µg C L–1).Density was significantly related to temperature, solar radiationand Secchi distance (P < 0.01); diversity was significantlyrelated to temperature (P < 0.01) and solar radiation (P< 0.05). Biomass was significantly related only to temperature(P < 0.01) in one of the stations. According to principalcomponents analysis (PCA) tintinnids exhibited a segregationof three groups: winter, spring–summer and autumn forthe most internal station and winter, spring and summer–autumnfor the most external station. H' values were lower than thoseobserved in other coastal systems found at about the same latitudein the northern hemisphere.  相似文献   

3.
Species composition and abundance of tintinnids and other microzooplanktonwere studied in the Damariscotta River estuary, Maine, USA duringthe period March 1981 to May 1982. Peak tintinnid abundancesoccurred during spring and summer and exceeded 7 x 103 I–1.Spearman rank correlation coefficients indicated that temperature,nanoplankton chlorophyll and phaeopigments passing a 20 µnfilter were important factors correlating with total tintinniddensity. Species composition of tintinnids changed seasonallyand was similar in the spring of both years. Non-loricate ciliateswere also most abundant in the spring, reaching peak densitiesof 4.5 x 104 I–1 in April 1982. Rotifers were most commonupestuary in the spring. Present address: Department of Zoology, University of Georgia,Athens, GA 30602, USA  相似文献   

4.
Time series of phytoplankton biomass and taxonomic compositionhave been obtained for the 3 years 1992, 1993 and 1994 in thenorthern part of the Southern Ocean (station Kerfix, 5040'S,6825;E) Autotrophic biomass was low throughout the year (<0.2mg m–3 except during a short period in summer when a maximumof 1.2 mg chlorophyll (Chl) a m– was reached. During winter,the integrated biomass was low (<10 mg m–2) and associatedwith deeply mixed water, whereas the high summer biomass (>20mg m–2) was associated with increased water column stability.During summer blooms, the >10 µ;m size fraction contributed60% to total integrated biomass. Large autotrophic dinoflagellates,mainly Prorocentrum spp., were associated with the summer phytoplankton maxima and accounted for >80% of the total autotrophcarbon biomass. In November and December, the presence of thelarge heterotrophic dinoflagellates Protoperidinium spp. andGyro dinium spp. contributed a high proportion of total carbonbiomass. During winter, the <10 µm size fraction contributed80% of total Chi a biomass with domination of the picoplanktonsize fraction. The natural assemblage included mainly nakedflagellates such as species of the Prasinophyceae, Cryptophyceaeand Prymnesiophyceae. During spring, picocyanobacteria occurredin sub-surface water with a maximum abundance in September of106 cells 1–1  相似文献   

5.
Seventeen size-fractionation experiments were carried out duringthe summer of 1979 to compare biomass and productivity in the< 10, <8 and <5 µm size fractions with that ofthe total phytoplankton community in surface waters of NarragansettBay. Flagellates and non-motile ultra-plankton passing 8 µmpolycarbonate filters dominated early summer phytoplankton populations,while diatoms and dinoflagellates retained by 10 µm nylonnetting dominated during the late summer. A significant numberof small diatoms and dinoflagellates were found in the 10–8µm size fraction. The > 10 µm size fraction accountedfor 50% of the chlorophyll a standing crop and 38% of surfaceproduction. The <8 µm fraction accounted for 39 and18% of the surface biomass and production. Production by the< 8 µm fraction exceeded half of the total communityproduction only during a mid-summer bloom of microflagellates.Mean assimilation numbers and calculated carbon doubling ratesin the <8 µm (2.8 g C g Chl a–1 h–1; 0.9day–1)and<5 µm(1.7 g C g Chl a–1h–1; 0.5day–1)size fractions were consistently lower than those of the totalpopulation (4.8 g C g Chl a–1 h–1; 1.3 day–1)and the <10 µm size fraction (5.8 g C g Chl a–1h–1; 1.4 day –1). The results indicate that smalldiatoms and dinoflagellates in fractionated phytoplankton populationscan influence productivity out of proportion to their numbersor biomass. 1Present address: Australian Institute of Marine Science, P.M.B.No. 3, Townsville M.S.O., Qld. 4810, Australia.  相似文献   

6.
The phytoplankton and ice algal assemblages in the SiberianLaptev Sea during the autumnal freeze-up period of 1995 aredescribed. The spatial distribution of algal taxa (diatoms,dinoflagellates, chrysophytes, chlorophytes) in the newly formedice and waters at the surface and at 5 m depth differed considerablybetween regions. This was also true for algal biomass measuredby in situ fluorescence, chlorophyll (Chl) a and taxon-specificcarbon content. Highest in situ fluorescence and Chl a concentrations(ranging from 0.1 to 3.2 µg l–1) occurred in surfacewaters with maxima in Buor Khaya Bay east of Lena Delta. Thealgal standing stock on the shelf consisted mainly of diatoms,dinoflagellates, chrysophytes and chlorophytes with a totalabundance (excluding unidentified flagellates <10 µm)in surface waters of 351–33 660 cells l–1. Highestalgal abundance occurred close to the Lena Delta. Phytoplanktonbiomass (phytoplankton carbon; PPC) ranged from 0.1 to 5.3 µgC l–1 in surface waters and from 0.3 to 2.1 µg Cl–1 at 5 m depth, and followed the distribution patternof abundances. However, the distribution of Chl a differed considerablyfrom the distribution pattern shown by PPC. The algal assemblagein the sea ice, which could not be quantified due to high sedimentload, was dominated by diatom species, accompanied by dinoflagellates.Thus, already during the early stage of autumnal freeze-up,incorporation processes, selective enrichment and subsequentgrowth lead to differences between surface water and sea icealgal assemblages.  相似文献   

7.
The microbial dynamics during a spring diatom bloom declinewas monitored in the Northeast Atlantic during a 5-day Lagrangianstudy (8–12 April 2002). Phytoplankton abundance, compositionand health status were related to viral and bacterial abundance,zooplankton abundance and grazing rates, as well as bacterialproduction. Phytoplankton reached maximum concentration on Day3 (Chl a >5 µg L–1) and declined on Day 5 (Chla 2 µg L–1) and was dominated (70% of Chl a) bydiatoms. Bacterial production increased substantially to >20µg C L–1 day–1 on Day 3 and concomitantlylarge viruses decreased in number by half to <10 x 103 mL–1.This was followed by a 5-fold increase in large viruses on Day5, indicating infection and subsequent lysis on Days 3 and 5,respectively. Micro- and mesozooplankton grazing were not theprincipal cause for the decline of the bloom and pheophorbide-ashowing little variation in concentration from Days 1–4(100 ng L–1) although doubled on Day 5. The poor physiologicalstatus of the diatoms, indicated by the high chlorophyllide-aconcentrations (50–480 ng L–1), likely promoteda series of closely interrelated events involving bacteria andviruses leading to the demise of the diatom bloom.  相似文献   

8.
The taxonomic composition, abundance and biomass of microzooplanktonwere studied at eight stations in Lake Shinji–Ohashi River–LakeNakaumi brackish-water system, Japan, monthly from April 1998to March 1999. Over the entire area, naked ciliates numericallydominated the microzooplankton community (annual mean 39.6%)followed, in order, by tintinnids (30.3%), copepod nauplii (24.6%)and rotifers (5.5%). The abundance of each taxonomic group ofmicrozooplankton varied geographically due to large salinityvariations (range 1.5–33.3 p.s.u.). It was notable thatnaked ciliates occurred overwhelmingly in Lake Shinji (54.9%of total microzooplankton) and rotifers were relatively numerousin Lake Shinji (8.8%) and Ohashi River (11.1%), where the salinitywas lower (annual mean 4.1 and 13.6 p.s.u., respectively) thanin Lake Nakaumi and Sakai Strait (26.3 and 29.8 p.s.u., respectively).Owing to large seasonal temperature variation (range 5.4–29.8°C),the abundance of microzooplankton showed marked seasonal variations,being higher in spring and summer than in the remaining seasons.A total of 49 species of tintinnids were identified, and 15of these species reached concentrations >500 individualsl-l. The occurrence of most tintinnid species was confined tocertain months or locations, closely associated with species-specifictemperature and salinity preference and/or tolerance. In thiseutrophic system, food supply for microzooplankton might besufficient due to extremely high chlorophyll a concentration(annual mean 8.8 µg l-lin Sakai Strait to 22.6 µgl-l in Lake Shinji). However, microzooplankton biomass remainedmoderate (range 0.19–18.7 µg C l-l) due probablyto heavy predation by mesozooplankton, which inhabit this brackish-watersystem at extremely high biomass.  相似文献   

9.
During the ANTARES 3 cruise in the Indian sector of the SouthernOcean in October–November 1995, the surface waters ofKerguelen Islands plume, and the surface and deeper waters (30–60m) along a transect on 62°E from 48°36'S to the iceedge (58°50'S), were sampled. The phytoplankton communitywas size-fractionated (2 µm) and cell numbers, chlorophyllbiomass and carbon assimilation, through Rubisco and ß-carboxylaseactivities, were characterized. The highest contribution of<2 µm cells to total biomass and total Rubisco activitywas reported in the waters of the Permanent Open Ocean Zone(POOZ) located between 52°S and 55°S along 62°E.In this zone, the picophytoplankton contributed from 26 to 50%of the total chlorophyll (a + b + c) with an average of 0.09± 0.02 µg Chl l–1 for <2 µm cells.Picophytoplankton also contributed 36 to 64% of the total Rubiscoactivity, with an average of 0.80 ± 0.30 mg C mg Chla–1 h–1 for <2 µm cells. The picophytoplanktoncells had a higher ß-carboxylase activity than largercells >2 µm. The mixotrophic capacity of these smallcells is proposed. From sampling stations of the Kerguelen plume,a relationship was observed between the Rubisco activity perpicophytoplankton cell and apparent cell size, which variedwith the sampled water masses. Moreover, a depth-dependent photoperiodicityof Rubisco activity per cell for <2 µm phytoplanktonwas observed during the day/night cycle in the POOZ. In thenear ice zone, a physiological change in picophytoplankton cellsfavouring phosphoenolpyruvate carboxykinase (PEPCK) activitywas reported. A species succession, or an adaptation to unfavourableenvironmental conditions such as low temperature and/or availableirradiance levels, may have provoked this change. The high contributionof picophytoplankton to the total biomass, and its high CO2fixation capacity via autotrophy and mixotrophy, emphasize thestrong regeneration of organic materials in the euphotic layerin the Southern Ocean.  相似文献   

10.
Microphytoplankton and zooplankton composition and distributionin the vicinity of the Prince Edward Islands and at the Sub-antarcticFront (SAF) were investigated in late austral summer (April/May)1996. Samples were collected for analysis of chlorophyll a concentration(Chi a), microphytoplankton and zooplankton abundance. Generally,the highest Chl a concentrations (up to 2.0 µg l–1)and zooplankton densities (up to 192 ind. m–3) were recordedat stations within the inter-island area while the lowest values(<0.4 µg l–1) were observed at stations upstreamof the islands. High Chl a and zooplankton biomass values werealso associated with the SAF. Microphytoplankton were dominatedby chain-forming species of the genera Chaetoceros (mainly C.neglectus),Fragilariopsis spp. and the large diatom Dactyliosolen antarcticus.The zooplankton assemblages were always dominated by mesozooplanktonwhich at times contributed up to 98% of total zooplankton abundanceand up to 95% of total biomass. Among mesozooplankton, copepods,mainly Clausocalanus brevipes and Metridia lucens numericallydominated. Among the macrozooplankton euphausiids, mainly Euphausiavallentini, E.longirostis and Stylocheiron maximum, and chaetognaths(Sagitta gazellae) accounted for the bulk of abundance and biomass.Cluster and ordination analysis did not identify any distinctbiogeographic regions among either the microphytoplankton orzooplankton.  相似文献   

11.
The abundance and biomass of the large heterotrophic dinoflagellateNoctiluca scintillans, together with the changes in its potentialprey items, were monitored in the Seto Inland Sea, Japan, duringsummer 1997 (17 July-11 August). Growth and grazing rates ofNscintillans fed natural plankton populations were also measuredeight and seven times, respectively, during the survey period.The abundance and biomass of N scintillans averaged over thewater column (19 m) were in the range 1–345 cells 1–1(temporalaverage = 93 cell1–1) and 0.1–49.6 µg C l–1(temporalaverage = 13.8 µg C l–1; three times higher thanthat of calanoid copepods during the same period). Noctilucascintillans populations followed the changes in phytoplankton:N.scintillans biomass was increasing during the period of diatomblooms and was at a plateau or decreasing during periods oflow chlorophyll a. The growth rates of N.scintillans (µ)were also consistent with the wax and wane of the N.scintillanspopulation: N.scintillans showed highest growth rates duringdiatom blooms. A simple relationship between µ and chlorophylla concentration was established, and the production of N.scintillanswas estimated using this relationship and the measured biomass.The estimated production averaged over the water column wasin the range >0.1–5.2 µg C l–1 day–1(temporalaverage = 1.4 µg C l–1 day–1; 64% of the productionof calanoid copepods during the same period). Diatom clearancerates by N.scintillans were in the range 0.10–0.35 mlcell–1 day–1, and the phytoplankton population clearanceby N.scintillans was >12% day–1. Thus, although thefeeding pressure of N.scintillans on phytoplankton standingstock was low, N.scintillans was an important member of themesozooplank-ton in terms of biomass and production in the SetoInland Sea during summer.  相似文献   

12.
The size fractionation of paniculate matter (<200, <35,<3 and <1 µm) has been measured in the EquatorialAtlantic Ocean at different stations. Chlorophyll a, phaeophytin,particulate carbon, nitrogen and phosphorus have been analysed.Primary production by 14CO2 uptake was also measured with prescreeningtechnique. It appears from this study, that the pariculate matter has avery small size: 40–60% of the chlorophyll passed through1 µm Nucleopore filter, and 75–90% of the paniculatecarbon and nitrogen passed through 3 µm Nucleopore filterin offshore waters. From the atomic ratio C/N, C/P and C/chla, and primary productionvalues, the <3 µm fraction would be mainly constitutedby inactive photosynthetic organisms or partides of detritus.The 3–35 µm fraction, in contrast, would be principallyactive phytoplankton.  相似文献   

13.
The pattern of biomass and abundance of microzooplankton andmesozooplankton were studied over an annual cycle in the NuecesEstuary, Texas. Zooplankton samples and associated hydrographicdata were collected at four locations at biweekly intervalsfrom September 1987 through October 1988. This is a broad, shallowbay system with an average depth of 2.4 m. The concentrationof chlorophyll a in the surface waters averaged 7.4 µgl–1with 85% passing through a 20 µ mesh. Microzooplankton(20–200 µ in length) were extremely abundant throughoutthis study. Abundances of ciliates (including both aloricateciliates and tintinnids) ranged from 5000 to 400 000 l,with a mean of 38 000 l–1 of seawater over the entirecourse of the study. Mesozooplankton (200–2000 µmin length) abundance averaged 6100 m–3 for samples collectedduring the day and 10 100 m–3 for samples collected atnight. Mesozooplankton were dominated by Acartia tonsa whichmade up {small tilde}50% of the total. Biomass estimates formicrozooplankton (based on volume estimates) were often higherthan measured biomass of mesozooplankton. Given the shortergeneration times and higher metabolic rate of microzooplanktoncompared to mesozooplankton, microzooplankton should have agreater effect on the trophic dynamics of the Nueces Estuarythan mesozooplankton.  相似文献   

14.
Although both nutrient inputs and zooplankton grazing are importantto phytoplankton and bacteria in lakes, controversy surroundsthe relative importance of grazing pressure for these two groupsof organisms. For phytoplankton, the controversy revolves aroundwhether zooplankton grazers, especially large cladocerans likeDaphnia, can effectively reduce phytoplankton populations regardlessof nutrient conditions. For bacteria, little is known aboutthe balance between possible direct and indirect effects ofboth nutrients and zooplankton grazing. However, there is evidencethat bacteria may affect phytoplankton responses to nutrientsor zooplankton grazing through direct or apparent competition.We performed a mesocosm experiment to evaluate the relativeimportance of the effects of nutrients and zooplankton grazingfor phytoplankton and bacteria, and to determine whether bacteriamediate phytoplankton responses to these factors. The factorialdesign crossed two zooplankton treatments (unsieved and sieved)with four nutrient treatments (0, 0.5, 1.0 and 2.0 µgphosphorus (P) l–1 day–1 together with nitrogen(N) at a N:P ratio of 20:1 by weight). Weekly sieving with 300µm mesh reduced the average size of crustacean zooplanktonin the mesocosms, decreased the numbers and biomass of Daphnia,and increased the biomass of adult copepods. Nutrient enrichmentcaused significant increases in phytoplankton chlorophyll a(4–5x), bacterial abundance and production (1.3x and 1.6x,respectively), Daphnia (3x) and total zooplankton biomass (2x).Although both total phytoplankton chlorophyll a and chlorophylla in the <35 µm size fraction were significantly lowerin unsieved mesocosms than in sieved mesocosms, sieving hadno significant effect on bacterial abundance or production.There was no statistical interaction between nutrient and zooplanktontreatments for total phytoplankton biomass or bacterial abundance,although there were marginally significant interactions forphytoplankton biomass <35 µm and bacterial production.Our results do not support the hypothesis that large cladoceransbecome less effective grazers with enrichment; rather, the differencebetween phytoplankton biomass in sieved versus unsieved zooplanktontreatments increased across the gradient of nutrient additions.Furthermore, there was no evidence that bacteria buffered phytoplanktonresponses to enrichment by either sequestering P or affectingthe growth of zooplankton.  相似文献   

15.
Measurements of hydrography, chlorophyll, moulting rates ofjuvenile copepods and egg production rates of adult female copepodswere made at eight stations along a transect across the Skagerrak.The goals of the study were to determine (i) if there were correlationsbetween spatial variations in hydrography, phytoplankton andcopepod production rates, (ii) if copepod egg production rateswere correlated with juvenile growth rates, and (iii) if therewas evidence of food-niche separation among co-occumng femalecopepods The 200 km wide Skagerrak had a stratified water columnin the center and a mixed water column along the margins. Suchspatial variations should lead to a dominance of small phytoplanktoncells in the center and large cells along the margins; however,during our study blooms of Gyrodinium aureolum and Ceratium(three species) masked any locally driven differences in cellsize: 50% of chla was >11 µm, 5% in the 11–50µm fraction and 45% <50 µm. averaged for allstations. Chlorophyll ranged from 0.2 to 2.5 µg l–1at most depths and stations. Specific growth rates of copepodsaveraged 0.10 day–1 for adult females and 0.27 day–1for juveniles The latter is similar to maximum rates known fromlaboratory studies, thus were probably not food-limited. Eggproduction rates were food-limited with the degree of limitationvarying among species: 75% of maximum for Centropages typicus, 50% for Calanus finmarchicus, 30% for Paracalanus parvus and 15% for Acartia longiremis and Temora longicornis. Thedegree of limitation was unrelated to female body size suggestingfood-niche separation among adults. Copepod production, summedover all species, ranged from 3 to 8 mg carbon m–3day–1and averaged 4.6 mg carbon m–1 day–1. Egg productionaccounted for 25% of the total.  相似文献   

16.
Effect of temperature on growth and ingestion rates of Favella sp   总被引:1,自引:0,他引:1  
This study describes the effect of temperature on the growthand ingestion rates of the tintinnid, Favella sp. cultured withthe dinoflagellate Heterocapsa triquetra. In vivo fluorescencewas used to monitor the change in density of the H. triquetrapopulation over 4- to 5-day periods in control tubes containingonly algae, and in experimental tubes containing algae and tintinnids.A ‘switchover point’ occurred in the temperaturedependency of the growth rate such that below 11.4°C, H.triquetra grew more quickly than Favella sp. and above thistemperature the situation was reversed. Ingestion rates of Favellaon H. triquetra were found to be temperature dependent in anonlinear fashion. The rate doubled (from 2.5 to 5.3 cells animal–1h–1) between 11.4 and 16.4°C whereas there was nochange in ingestion rates between 8.0 and 11.4°C, or between16.4 and 21.1°C.  相似文献   

17.
The tintinnids of Jounieh Bay in Lebanon were identified andtheir numerical abundance determined in horizontal and verticalnet samples from February 1979 to December 1980. Large fluctuationsin abundance and composition of the tintinnid fauna occurredduring the period of investigation. Two distinct peaks werenoted, a major one in May–June and a minor one in November–December.The first followed the main phytoplankton peak, suggesting apositive nutritional relationship between the two populations.The most abundant species were Tintinopsis beroidea and Eutintinnuslusus-undae. A few other species showed great abundance duringshorter periods. In all, 121 species were recorded during thisperiod, and of these 12 belong to the genus Tintinnopsis and11 to Eutintinnus.  相似文献   

18.
Silicoflagellates, large heterotrophic dinoflagellates, radiolarians,tintinnids and micro-crustaceans were counted in 72 screened(15 µm) samples retrieved at 0–150 m from the WeddellSea in January 1989. Tintinnid species were identified and biomassestimates were carried out for all groups on the basis of measurementsof cell dimensions. Dinoflagellates dominated the micro-heterotrophiccommunity at all stations and depths (65% of overall microzooplanktoniccarbon in the 0–150 m interval), followed by the tintinnids(18%), microcrustaceans (16%) and radiolarians (1%). All groups,with the exception of silicoflagellates, peaked noticeably inthe vicinity of the southern end of the transect (76–77°S).Relationships between concentrations of chlorophyll a and microzooplanktonicbiomass were present, yet not altogether consistent, but bothphyto- and microzooplankton seemed to generally respond to regionalenhancements associated with the ice edge. Comparison with similarWeddell and Weddell-Scotia data retrieved in February-March1987 and November 1988-December 1989, respectively, are highlycoherent in terms of microplanktonic abundances, their geographicand vertical distribution patterns, and the specific make-upand distribution of tintinnid assemblages. Analyses of the oraldiameters of tintinnid morphotypes suggest that the latitudinaland vertical distribution of their five dominant taxa (whichaccount for >90% of all individuals) is structured so asto maximize resource partitioning.  相似文献   

19.
The seasonal changes in the abundance of protozoan and bacterialplankton in a large, coloured, oligotrophic lake. Loch Ness(Scotland), were investigated between August 1991 and January1993. The coloured water supported only low concentrations ofchlorophyll a (<1.6 µgl–1). with the highestvalues occurring in summer. Mean bacterial abundance rangedbetween 2.3 x 108 and 7.1 x 108 l–1 in the 100 m watercolumn. Maximum abundance did not correlate with maximum chlorophylla concentrations, but appeared to be related to the input ofallochthonous carbon from the catchment, which in turn was influencedby rainfall levels. Consequently, the highest bacterioplanktonconcentrations occurred in autumn and winter. The pattern ofheterotrophic nanoflagellate abundance tended to follow thatfor bacteria, with mean concentrations in the top 100 m of thewater column of between 12 x 103 and 273 x 103 l–1. Ciliateabundance showed no seasonal trends over the study period andprobably mirrored the fluctuating availability of various foodresources. Oligotrichs, particularly mixotrophic taxa, werea prominent element of the community throughout the year. Aggregatesof detrital material were a regular feature in the plankton.When these occurred, they formed foci for bacteria and nanoflagellates.The evidence suggests that the dynamics of the microbial planktonin Loch Ness may be driven by allochthonous carbon inputs ratherthan by the more usual dominance of carbon fixed within thesystem. 1Present address: School of Zoology, La Trobe University, Bundoora,Melbourne, Victoria 3083, Australia 2Present address: Loch Ness & Morar Project, Loch Ness Centre,Drumnadrochit, Invernesshire, UK  相似文献   

20.
For Gyrodinium aureolum significant irradiance and daylengtheffects were found on the division rate and on the growth-relevantChla-normalized photosynthetic rate (gPB). Optimum conditionsof irradiance and daylength were found at 230 µmol m–2s–1 and 14 h for the division rate, and at >260 µmolm–2 s–1 and <6 h for gPB.gPB showed no photoinhibition,while the division rate decreased markedly at irradiances abovesaturation. This difference and the difference in optimum irradiancebetween the division rate and gPB are explained by a decreasein cellular Chla/carbon ratio with increasing irradiance. Thecellular content of carbon and nitrogen decreased significantlywith increasing irradiance. Total phosphorus was independentof irradiance and daylength. Below the saturation irradiancefor gPB the daily Chla-normalized carbon yield may be describedas an exponential function of the daily irradiance (irradiancex daylength).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号