共查询到20条相似文献,搜索用时 15 毫秒
1.
S-adenosylmethionine (SAM)-dependent methyltransferases (MTases) transfer methyl groups to substrates. In this study, a novel putative tobacco SAM-MTase termed Golgi-localized methyl transferase 1 (GLMT1) has been characterized. GLMT1 is comprised of 611 amino acids with short N-terminal region, putative transmembrane region, and C-terminal SAM-MTase domain. Expression of monomeric red fluorescence protein (mRFP)-tagged protein in tobacco BY-2 cell indicated that GLMT1 is a Golgi-localized protein. Analysis of the membrane topology by protease digestion suggested that both C-terminal catalytic region and N-terminal region seem to be located to the cytosolic side of the Golgi apparatus. Therefore, GLMT1 might have a different function than the previously studied SAM-MTases in plants. 相似文献
2.
The molecular mechanisms controlling cytokinesis in plant cell division cycle remains largely unknown. In this study, a functional
approach was taken to identify genes that may play roles in cytokinesis in tobacco BY-2 cells, using fission yeast as the
host organism. A total of 22 BY-2 genes that perturbed the terminal stage of cell division when ectopically expressed in yeast
cells were isolated, among which, several encode for uncharacterized genes. Additionally, RT-PCR analysis indicated that four
of the isolated genes were expressed in a cell cycle-dependent manner. Our results demonstrate that fission yeast system can
be efficiently used to identify the genes that may function, either positively or negatively, in the regulation of cytokinesis.
More importantly, the candidate genes we have isolated in this work can provide useful information for unraveling the regulators
controlling cell separation at the late stage of BY-2 cell division.
Yi Yu and Hai-Yun Wang contributed equally to this work. 相似文献
3.
Summary Immunofluorescence microscopy using an antibody against xyloglucan (XG) revealed its dynamics during the cell cycle. In interphase tobacco BY-2 cells, punctate and scattered fluorescence was observed throughout the cytoplasm. Colocalization of such signals with cortical microtubules (MTs) was clearly observed on the membrane ghosts. They were also associated and accumulated on MT bundles of the preprophase band. Treatment of protoplasts with cytochalasin B prior to the preparation of the ghosts had no effect on the pattern of anti-XG staining, while treatment with propyzamide caused the disappearance of the staining. These results suggest an association of Golgi apparatus and/or Golgi-derived vesicles with MTs. In metaphase cells, the staining was dispersed in the cytoplasm, except in the area occupied by the metaphase spindle. During anaphase, a broad fluorescence band appeared between daughter chromosomes and gradually concentrated at the equatorial plane before formation of the phragmoplast. At telophase, a bright line of fluorescence appeared at the equatorial plane corresponding to the position of the cell plate. The length of the line increased as cytokinesis proceeded. Thus, we showed that immunofluorescence microscopy using anti-XG antibody can be considered as a powerful tool for the analysis of Golgi apparatus and Golgi-derived vesicles containing XG. 相似文献
4.
5.
The vacuole is a characteristic organelle of plant cells and fulfills several important functions related to metabolism and growth of the cell. To shed light on the details of vacuolar structural changes in plant cells, we explored the three-dimensional organization and dynamics of living Nicotiana tabacum L. cv. Bright Yellow 2 cell vacuoles by real-time confocal time-lapse imaging. For imaging, the cells were pulse-labeled with the amphipathic styryl dye FM1-43 (N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide), which is delivered to the plant vacuole by endocytic uptake and then incubated overnight. Imaging of the membrane-labeled vacuole revealed a complex vacuole morphology underlaid by constant remodeling. The vacuole is traversed by multiple transvacuolar strands which move along each other and fuse in multiple manners. New strands were created by fission of large membrane sheets. Endocytic vesicle trafficking was followed within the dynamic transvacuolar strands. The movement occurred in a stop-and-go fashion with an average vesicle velocity of 0.46 microm/s and a peak velocity of 0.82 microm/s. Transvacuolar-strand reduction and creation is a characteristic event observed during mitosis. Here we propose a mechanistic model for the alteration of the number of transvacuolar strands, on the basis of their fusion and fission. 相似文献
6.
Seiji Sonobe 《Journal of plant research》1996,109(4):437-448
Vacuoles in plant cells can be eliminated by centrifugation of protoplasts through a density gradient. In this review, properties
of evacuolated protoplasts, named ‘miniprotoplasts’, and the significant roles in plant cytoskeleton studies are described.
Miniprotoplasts, prepared from tobacco BY-2 cells whose cell-cycle had been synchronized at late anaphase, continued to divide
to form two daughter cells. In the presence of cytochalasin B cytokinetic cleavage was enhanced, suggesting a role of actin
filaments in plant cytokinesis. In the cytoplasmic extract of miniprotoplasts both tubulin and actin could be polymerized
to form microtubules (MTs) and actin filaments (AFs), respectively. A purification method for tubulin, actin and related proteins
was developed using the extract. To investigate the interaction between cortical microtubules and the plasma membrane, an
experimental system in which MTs were reconstructed on membrane ghosts was developed by combination of membrane ghosts and
the extract. 相似文献
7.
The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells 总被引:12,自引:0,他引:12
Summary The effects of ascorbate (ASC) and dehydroascorbate (DHA) on cell proliferation were examined in the tobacco Bright Yellow
2 (TBY-2) cell line to test the hypothesis that the ASC-DHA pair is a specific regulator of cell division. The hypothesis
was tested by measuring the levels of ASC and DHA or another general redox pair, glutathione (GSH) and glutathione disulfide
(GSSG), during the exponential-growth phase of TBY-2 cells. A peak in ASC, but not GSH, levels coincided with a peak in the
mitotic index. Moreover, when the cells were enriched with ascorbate, a stimulation of cell division occurred whereas, when
the cells were enriched with DHA, the mitotic index was reduced. In contrast, glutathione did not affect the mitotic-index
peak during this exponential-growth phase. The data are consistent in showing that the ASC-DHA pair acts as a specific redox
sensor which is part of the mechanism that regulates cell cycle progression in this cell line. 相似文献
8.
Summary. Newly synthesized DNA can be observed on chromosomes or extended chromatin fibers after incorporation and immunodetection of bromodeoxyuridine. This technique, frequently used in animal cells, was adapted for use in BY-2 cells. For the first time, the origins of replication in plant cells could be visualized and monitored on DNA fibers without the use of radioactive traces. The replicon size for BY-2 cells was estimated to be 12.9 µm; and the fork rate, 1.17 µm/h. These values are comparable to those reported for tomato and mustard cells. Furthermore, the data confirm our previous observation that DNA synthesis is not totally blocked by aphidicolin. Bromodeoxyuridine incorporation into DNA was obvious from 24 h onwards after treatment with aphidicolin.Correspondence and reprints: Department of Biology, Universitaire Instelling Antwerpen, Universiteitsplein 1, 2610 Wilrijk, Belgium. 相似文献
9.
Summary. The mode of cytokinesis, especially in determining the site of cell division, is not well understood in higher-plant cells. The division site appears to be predicted by the preprophase band of microtubules that develop with the phragmosome, an intracellular structure of the cytoplasm suspending the nucleus and the mitotic apparatus in the center. As the preprophase band disappears during mitosis, it is thought to leave some form of memory on the plasma membrane to guide the growth of the new cell plate at cytokinesis. However, the intrinsic nature of this memory remains to be clarified. In addition to microtubules, microfilaments also dynamically change forms during cell cycle transition from the late G2 to the early G1 phase. We have studied the relationships between microtubules and microfilaments in tobacco BY-2 cells and transgenic BY-2 cells expressing a fusion protein of green-fluorescent protein and tubulin. At the late G2 phase, microfilaments colocalize with the preprophase band of microtubules. However, an actin-depleted zone which appears at late prometaphase is observed around the chromosomes, especially at metaphase, but also throughout anaphase. To study the functions of the actin-depleted zone, we disrupted the microfilament structures with bistheonellide A, a novel macrolide that depolymerizes microfilaments very rapidly even at low concentrations. The division planes became disorganized when the drug was added to synchronized BY-2 cells before the appearance of the actin-depleted zone. In contrast, the division planes appeared smooth, as in control cells, when the drug was added after the appearance of the actin-depleted zone. These results suggest that the actin-depleted zone may participate in the demarcation of the division site at the final stage of cell division in higher plants.Correspondence and reprints: Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba Prefecture 277-8562, Japan. 相似文献
10.
Summary. Complete depolymerization of actin filaments (AFs) at low temperature (0 °C) is followed by the formation of transient actin
structures at 25 °C in tobacco BY-2 cells (Nicotiana tabacum L.). Using antibodies against fission yeast actin-related proteins (ARP2 and ARP3), we show here that transient actin structures
(dots, dotted filaments, rods) colocalize with epitopes stained by these antibodies and thus are likely to represent sites
of actin filament nucleation (SANs). In contrast to the cold-induced disassembly of AFs, no transient actin structures were
detectable during recovery of AFs from latrunculin B-induced depolymerization. However, the staining pattern obtained with
ARP antibodies in latrunculin B-treated cells was similar to that in controls and cold-treated cells. This suggests that,
in addition to the complete depolymerization of AFs, disruption of other cellular structures is needed for the formation of
transient actin structures during the early phase of recovery from cold treatment.
Correspondence and reprints: Department of Plant Physiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague
2, Czech Republic. 相似文献
11.
Kane MD Schwarz RD St Pierre L Watson MD Emmerling MR Boxer PA Walker GK 《Journal of neurochemistry》1999,72(5):1939-1947
The functional viability of cells can be evaluated using a number of different assay determinants. One common assay involves exposing cells to 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), which is converted intracellularly to a colored formazan precipitate and often used to assess amyloid peptide-induced cytotoxic effects. The MTT assay was employed to evaluate the role of endosomal uptake and lysosomal acidification in amyloid peptide-treated differentiated PC12 cell cultures using selective vacuolar-type (V-type) ATPase inhibitors. The macrolides bafilomycin A1 (BAF) and concanamycin A (CON) block lysosomal acidification through selective inhibition of the V-type ATPase. Treating nerve growth factor-differentiated PC12 cells with nanomolar concentrations of BAF or CON provides complete protection against the effects of beta-amyloid peptides Abeta(1-42), Abeta(1-40), and Abeta(25-35) and of amylin on MTT dye conversion. These macrolides do not inhibit peptide aggregation, act as antioxidants, or inhibit Abeta uptake by cells. Measurements of lysosomal acidification reveal that the concentrations of BAF and CON effective in reversing Abeta-mediated MTT dye conversion also reverse lysosomal pH. These results suggest that lysosomal acidification is necessary for Abeta effects on MTT dye conversion. 相似文献
12.
13.
The significance of cytokinins for the progression of the cell cycle is well known. Cytokinins contribute to the control of the expression of D-cyclins and other cell cycle genes, but knowledge as to how they affect the progression of the cell cycle is still limited. Highly synchronized tobacco BY-2 cells with clearly defined cell cycle stages were employed to determine cytokinin patterns in detail throughout the entire cycle. Concentrations of trans-zeatin, and of some other cytokinins, oscillated during the course of the cell cycle, increasing substantially at all four phase transitions and decreasing again to a minimum value during the course of each subsequent phase. Addition of exogenous cytokinins or inhibition of cytokinin biosynthesis promoted the progression of the cell cycle when the effects of these manipulations intensified the endogenous fluctuations, whereas the progression of the cycle was retarded when the amplitude of the fluctuations was decreased. The results show that the attainment of low concentrations of cytokinins is as important as the transient increases in concentration for a controlled progression from one phase of the cell cycle to the next. Cytokinin oxidase/dehydrogenase activity also showed fluctuations during the course of the cell cycle, the timing of which could at least partly explain oscillations of cytokinin levels. The activities of the enzyme were sufficient to account for the rates of cytokinin disappearance observed subsequent to a phase transition. 相似文献
14.
Suspension-cultured BY-2 tobacco cells produce and mature immunologically active house dust mite allergens 总被引:1,自引:1,他引:0
Lienard D Tran Dinh O van Oort E Van Overtvelt L Bonneau C Wambre E Bardor M Cosette P Didier-Laurent A de Borne FD Delon R van Ree R Moingeon P Faye L Gomord V 《Plant biotechnology journal》2007,5(1):93-108
The replacement of crude allergen extracts by selected allergens currently represents a major goal for the improvement of allergy diagnosis and immunotherapy. Indeed, the development of molecularly defined vaccines would facilitate both standardization and enhance batch-to-batch reproducibility as well as treatment specificity. In this study, we have investigated the potential of tobacco plant cells to produce biologically active forms of the two major allergens from the house dust mite. A detailed characterization of these plant-made allergens has shown similar proteolytic maturation and folding as well as comparable immunoreactivity to their natural counterparts. Altogether, our results exemplify that suspension-cultured BY-2 tobacco cells represent a low cost and environmentally safe expression system suitable to produce recombinant allergens from Dermatophagoides pteronyssinus under a form appropriate for diagnostic and therapeutic purposes. 相似文献
15.
Kanako Yano Takahiro Yanagisawa Kyosuke Mukae Yasuo Niwa Yuko Inoue Yuji Moriyasu 《Plant signaling & behavior》2015,10(11)
Tobacco BY-2 cells undergo autophagy in sucrose-free culture medium, which is the process mostly responsible for intracellular protein degradation under these conditions. Autophagy was inhibited by the vacuolar H+-ATPase inhibitors concanamycin A and bafilomycin A1, which caused the accumulation of autophagic bodies in the central vacuoles. Such accumulation did not occur in the presence of the autophagy inhibitor 3-methyladenine, and concanamycin in turn inhibited the accumulation of autolysosomes in the presence of the cysteine protease inhibitor E-64c. Electron microscopy revealed not only that the autophagic bodies were accumulated in the central vacuole, but also that autophagosome-like structures were more frequently observed in the cytoplasm in treatments with concanamycin, suggesting that concanamycin affects the morphology of autophagosomes in addition to raising the pH of the central vacuole. Using BY-2 cells that constitutively express a fusion protein of autophagosome marker protein Atg8 and green fluorescent protein (GFP), we observed the appearance of autophagosomes by fluorescence microscopy, which is a reliable morphological marker of autophagy, and the processing of the fusion protein to GFP, which is a biochemical marker of autophagy. Together, these results suggest the involvement of vacuole type H+-ATPase in the maturation step of autophagosomes to autolysosomes in the autophagic process of BY-2 cells. The accumulation of autophagic bodies in the central vacuole by concanamycin is a marker of the occurrence of autophagy; however, it does not necessarily mean that the central vacuole is the site of cytoplasm degradation. 相似文献
16.
Summary The sites of microtubule (MT) reorganization were examined in synchronized tobacco BY-2 cells. The MTs of these cells were completely destroyed by a combined cold and drug treatment at 0 °C with 100 M propyzamide for 3 h. After the cells were washed and cultured at 30 °C, the reorganization of MTs was observed in detail. Sites for MT reorganization at each stage of the cell cycle were identified on the cell cortex and nuclei, the mitotic apparatus, the nuclei (or the nuclei and cell cortex), and the cell cortex in the S-G2 phase, M phase, M/G1 interface, and g1 phase, respectively. The polypeptide synthesis elongation factor (EF)-1 is co-localized with these sites of MT reorganization. At some stages, microfilaments (MFs) were found to be involved in the reorganization of MTs. Based on these results, the mode of MT reorganization during cell cycle progression is discussed.Abbreviations EF-1
elongation factor 1
- MAP
microtubule-associated protein
- MF
microfilament
- MIs
mitotic indices
- MT
microtubule 相似文献
17.
Momoyama Y Miyazawa Y Miyagishima SY Mori T Misumi O Kuroiwa H Tsuneyoshi K 《European journal of cell biology》2003,82(6):323-332
Plastids, an essential group of plant cellular organelles, proliferate by division to maintain continuity through cell lineages in plants. In recent years, it was revealed that the bacterial cell division protein FtsZ is encoded in the nuclear genome of plant cells, and plays a major role in the plastid division process forming a ring along the center of plastids. Although the best-characterized type of plastid division so far is the division with a single FtsZ ring at the plastid midpoint, it was recently reported that in some plant organs and tissues, plastids are pleomorphic and form multiple FtsZ rings. However, the pleomorphic plastid division mechanism, such as the formation of multiple FtsZ rings, the constriction of plastids and the behavior of plastid (pt) nucleoids, remains totally unclear. To elucidate these points, we used the cultured cell line, tobacco (Nicotiana tabacum L.) Bright Yellow-2, in which plastids are pleomorphic and show dynamic morphological changes during culture. As a result, it was revealed that as the plastid elongates from an ellipsoid shape to a string shape after medium renewal, FtsZ rings are multiplied almost orderly and perpendicularly to the long axis of plastids. Active DNA synthesis of pt nucleoids is induced by medium transfer, and the division and the distribution of pt nucleoids occur along with plastid elongation. Although it was thought that the plastid divides with simultaneous multiple constrictions at all the FtsZ ring sites, giving rise to many small plastids, we found that the plastids generally divide constricting at only one FtsZ ring site. Moreover, using electron microscopy, we revealed that plastid-dividing (PD) rings are observed only at the constriction site, and not at swollen regions. These results indicate that in the pleomorphic plastid division with multiple FtsZ rings, the formation of PD rings occurs at a limited FtsZ ring site for one division. Multiplied FtsZ rings seem to localize in advance at the expected sites of division, and the formation of a PD ring at each FtsZ ring site occurs in a certain order, not simultaneously. Based on these results, a novel model for the pleomorphic plastid division with multiple FtsZ rings is proposed. 相似文献
18.
Excellent visualisation of microtubules and actin filaments was obtained in fixed tobacco BY-2 suspension cells after optimising a protocol for whole mount immunolabelling. The procedure is based on modification of fixation, cell wall digestion, dimethyl sulfoxide (DMSO) treatment, post fixation, and blocking. The most critical aspects of successful preservation and visualization of cytoskeletal elements appeared to be: a two-step fixation with paraformaldehyde and glutaraldehyde before enzymatic cell wall digestion and a post fixation with aldehydes thereafter. The method allows the improved visualization of the organisation of the microtubular and actin filament arrays during the successive stages of cell division and at interphase. Although we present the application of our protocols for cytoskeleton labelling, the excellent results show the potential of using this method for the analysis of various proteins and molecules in plant cells.Electronic Supplementary Material Supplementary material is available for this article at 相似文献
19.
Jindriska Fiserova Elena Kiseleva Martin W. Goldberg 《The Plant journal : for cell and molecular biology》2009,59(2):243-255
The nuclear envelope (NE) is a fundamental structure of eukaryotic cells with a dual role: it separates two distinct compartments, and enables communication between them via nuclear pore complexes (NPCs). Little is known about NPCs and NE structural organization in plants. We investigated the structure of NPCs from both sides of the NE in tobacco BY-2 cells. We detected structural differences between the NPCs of dividing and quiescent nuclei. Importantly, we also traced the organizational pattern of the NPCs, and observed non-random NPC distribution over the nuclear surface. Lastly, we observed an organized filamentous protein structure that underlies the inner nuclear membrane, and interconnects NPCs. The results are discussed within the context of the current understanding of NE structure and function in higher eukaryotes. 相似文献
20.
Shigeru Hanamata Takamitsu Kurusu Masaaki Okada Akiko Suda Koki Kawamura Emi Tsukada Kazuyuki Kuchitsu 《Plant signaling & behavior》2013,8(1)
Autophagy has been shown to play essential roles in the growth, development and survival of eukaryotic cells. However, simple methods for quantification and visualization of autophagic flux remain to be developed in living plant cells. Here, we analyzed the autophagic flux in transgenic tobacco BY-2 cell lines expressing fluorescence-tagged NtATG8a as a marker for autophagosome formation. Under sucrose-starved conditions, the number of punctate signals of YFP-NtATG8a increased, and the fluorescence intensity of the cytoplasm and nucleoplasm decreased. Conversely, these changes were not observed in BY-2 cells expressing a C-terminal glycine deletion mutant of the NtATG8a protein (NtATG8aΔG). To monitor the autophagic flux more easily, we generated a transgenic BY-2 cell line expressing NtATG8a fused to a pH-sensitive fluorescent tag, a tandem fusion of the acid-insensitive RFP and the acid-sensitive YFP. In sucrose-rich conditions, both fluorescent signals were detected in the cytoplasm and only weakly in the vacuole. In contrast, under sucrose-starved conditions, the fluorescence intensity of the cytoplasm decreased, and the RFP signal clearly increased in the vacuole, corresponding to the fusion of the autophagosome to the vacuole and translocation of ATG8 from the cytoplasm to the vacuole. Moreover, we introduce a novel simple easy way to monitor the autophagic flux non-invasively by only measuring the ratio of fluorescence of RFP and YFP in the cell suspension using a fluorescent image analyzer without microscopy. The present in vivo quantitative monitoring system for the autophagic flux offers a powerful tool for determining the physiological functions and molecular mechanisms of plant autophagy induced by environmental stimuli. 相似文献