首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photosystem I of higher plants is characterized by a typically long wavelength fluorescence emission associated to its light-harvesting complex I moiety. The origin of these low energy chlorophyll spectral forms was investigated by using site-directed mutagenesis of Lhca1-4 genes and in vitro reconstitution into recombinant pigment-protein complexes. We showed that the red-shifted absorption originates from chlorophyll-chlorophyll (Chl) excitonic interactions involving Chl A5 in each of the four Lhca antenna complexes. An essential requirement for the presence of the red-shifted absorption/fluorescence spectral forms was the presence of asparagine as a ligand for the Chl a chromophore in the binding site A5 of Lhca complexes. In Lhca3 and Lhca4, which exhibit the most red-shifted red forms, its substitution by histidine maintains the pigment binding and, yet, the red spectral forms are abolished. Conversely, in Lhca1, having very low amplitude of red forms, the substitution of Asn for His produces a red shift of the fluorescence emission, thus confirming that the nature of the Chl A5 ligand determines the correct organization of chromophores leading to the excitonic interaction responsible for the red-most forms. The red-shifted fluorescence emission at 730 nm is here proposed to originate from an absorption band at approximately 700 nm, which represents the low energy contribution of an excitonic interaction having the high energy band at 683 nm. Because the mutation does not affect Chl A5 orientation, we suggest that coordination by Asn of Chl A5 holds it at the correct distance with Chl B5.  相似文献   

2.
The red-most fluorescence emission of photosystem I (733 nm at 4 K) is associated with the Lhca4 subunit of the antenna complex. It has been proposed that this unique spectral feature originates from the low energy absorption band of an excitonic interaction involving chlorophyll A5 and a second chlorophyll a molecule, probably B5 (Morosinotto, T., Breton, J., Bassi, R., and Croce, R. (2003) J. Biol. Chem. 278, 49223-49229). Because of the short distances between chromophores in Lhc proteins, the possibility that other pigments are involved in the red-shifted spectral forms could not be ruled out. In this study, we have analyzed the pigment-pigment interactions between nearest neighboring chromophores in Lhca4. This was done by deleting individual chlorophyll binding sites by mutagenesis, and analyzing the changes in the spectroscopic properties of recombinant proteins refolded in vitro. The red-shifted (733 nm) fluorescence peak, the major target of this analysis, was lost upon mutations affecting sites A4, A5, and B5 and was modified by mutating site B6. In agreement with the shorter distance between chlorophylls A5 and B5 (7.9 A) versus A4 and A5 (12.2 A) in Lhca4 (Ben-Shem, A., Frolow, F., and Nelson, N. (2003) Nature 426, 630-635), we conclude that the low energy spectral form originates from an interaction involving pigments in sites A5 and B5. Mutation at site B6, although inducing a 15-nm blue-shift of the emission peak, maintains the red-shifted emission. This implies that chromophores responsible for the interaction are conserved and suggests a modification in the pigment organization. Besides the A5-B5 pair, evidence for additional pigment-pigment interactions between chlorophylls in sites B3-A3 and B6-A6 was obtained. However, these features do not affect the red-most spectral form responsible for the 733-nm fluorescence emission band.  相似文献   

3.
In this work the spectroscopic properties of the special low-energy absorption bands of the outer antenna complexes of higher plant Photosystem I have been investigated by means of low-temperature absorption, fluorescence, and fluorescence line-narrowing experiments. It was found that the red-most absorption bands of Lhca3, Lhca4, and Lhca1-4 peak, respectively, at 704, 708, and 709 nm and are responsible for 725-, 733-, and 732-nm fluorescence emission bands. These bands are more red shifted compared to "normal" chlorophyll a (Chl a) bands present in light-harvesting complexes. The low-energy forms are characterized by a very large bandwidth (400-450 cm(-1)), which is the result of both large homogeneous and inhomogeneous broadening. The observed optical reorganization energy is untypical for Chl a and resembles more that of BChl a antenna systems. The large broadening and the changes in optical reorganization energy are explained by a mixing of an Lhca excitonic state with a charge transfer state. Such a charge transfer state can be stabilized by the polar residues around Chl 1025. It is shown that the optical reorganization energy is changing through the inhomogeneous distribution of the red-most absorption band, with the pigments contributing to the red part of the distribution showing higher values. A second red emission form in Lhca4 was detected at 705 nm and originates from a broad absorption band peaking at 690 nm. This fluorescence emission is present also in the Lhca4-N-47H mutant, which lacks the 733-nm emission band.  相似文献   

4.
The light harvesting complex Lhca1, one of the four gene products comprising the photosystem I antenna system, has been analyzed by site-directed mutagenesis with the aim of determining the chromophore(s) responsible for its long wavelength chlorophyll spectral form, a specific characteristic of the LHCI antenna complex. A family of mutant proteins, each carrying a mutation at a single chlorophyll-binding residue, was obtained and characterized by biochemical and spectroscopic methods. A map of the chromophores bound to each of the 10 chlorophyll-binding sites was drawn, and the energy levels of the Q(y) transition were determined in most cases. When compared with Lhcb proteins previously analyzed, Lhca1 is characterized by stronger interactions between individual chromophores as detected by both biochemical and spectroscopic methods; most mutations, although targeted to a single residue, lead to the loss of more than one chromophore and of conservative CD signals typical of chlorophyll-chlorophyll interactions. The lower energy absorption form (686 nm at 100K, 688 nm at room temperature), which is responsible for the red-shifted emission components at 690 and 701 nm, typical of Lhca1, is associated with a chlorophyll a/chlorophyll a excitonic interaction originating from a pigment cluster localized in the protein domain situated between helix C and the helix A/helix B cross. This cluster includes chlorophylls bound to sites A5-B5-B6 and a xanthophyll bound to site L2.  相似文献   

5.
6.
Photosystem I (PSI) plays a major role in the light reactions of photosynthesis. In higher plants, PSI is composed of a core complex and four outer antennas that are assembled as two dimers, Lhca1/4 and Lhca2/3. Time-resolved fluorescence measurements on the isolated dimers show very similar kinetics. The intermonomer transfer processes are resolved using target analysis. They occur at rates similar to those observed in transfer to the PSI core, suggesting competition between the two transfer pathways. It appears that each dimer is adopting various conformations that correspond to different lifetimes and emission spectra. A special feature of the Lhca complexes is the presence of an absorption band at low energy, originating from an excitonic state of a chlorophyll dimer, mixed with a charge-transfer state. These low-energy bands have high oscillator strengths and they are superradiant in both Lhca1/4 and Lhca2/3. This challenges the view that the low-energy charge-transfer state always functions as a quencher in plant Lhc's and it also challenges previous interpretations of PSI kinetics. The very similar properties of the low-energy states of both dimers indicate that the organization of the involved chlorophylls should also be similar, in disagreement with the available structural data.  相似文献   

7.
H Zhang  H M Goodman    S Jansson 《Plant physiology》1997,115(4):1525-1531
The function of Lhca4, a gene encoding the photosystem 1 type IV chlorophyll a/b-binding protein complex in Arabidopsis, was investigated using antisense technology. Lhca4 protein was reduced in a number of mutant lines and abolished in one. The inhibition of protein was not correlated with the inhibition of mRNA. No depletion of Lhca1 was observed, but the low-temperature fluorescence emission spectrum was drastically altered in the mutants. The emission maximum was blue-shifted by 6 nm, showing that chlorophyll molecules bound to Lhca4 are responsible for most of the long-wavelength fluorescence emission. Some mutants also showed an unexplainable delay in flowering time and an increase in seed weight.  相似文献   

8.
The specific functions of the light-harvesting proteins Lhca2 and Lhca3 were studied in Arabidopsis ecotype Colombia antisense plants in which the proteins were individually repressed. The antisense effect was specific in each plant, but levels of Lhca proteins other than the targeted products were also affected. The contents of Lhca1 and Lhca4 were unaffected, but Lhca3 (in Lhca2-repressed plants) was almost completely depleted, and Lhca2 decreased to about 30% of wild-type levels in Lhca3-repressed plants. This suggests that the Lhca2 and Lhca3 proteins are in physical contact with each other and that they require each other for stability. Photosystem I fluorescence at 730 nm is thought to emanate from pigments bound to Lhca1 and Lhca4. However, fluorescence emission and excitation spectra suggest that Lhca2 and Lhca3, which fluoresce in vitro at 680 nm, also could contribute to far-red fluorescence in vivo. Spectral forms with absorption maxima at 695 and 715 nm, apparently with emission maxima at 702 and 735 nm, respectively, might be associated with Lhca2 and Lhca3.  相似文献   

9.
The selectively red excited emission spectrum, at room temperature, of the in vitro reconstituted Lhca4, has a pronounced non-equilibrium distribution, leading to enhanced emission from the directly excited low-energy pigments. Two different emitting forms (or states), with maximal emission at 713 and 735nm (F713 and F735) and unusual spectral properties, have been identified. Both high-energy states are populated when selective excitation is into the F735 state and the fluorescence anisotropy spectrum attains the value of 0.3 in the wavelength region where both emission states are present. This indicates that the two states are on the same Lhca4 complex and have transition dipoles with similar orientation.  相似文献   

10.
The Lhca antenna complexes of photosystem I (PSI) have been characterized by comparison of native and recombinant preparations. Eight Lhca polypeptides have been found to be all organized as dimers in the PSI-LHCI complex. The red emission fluorescence is associated not only with Lhca1-4 heterodimer, but also with dimers containing Lhca2 and/or Lhca3 complexes. Reconstitution of Lhca1 and Lhca4 monomers as well as of the Lhca1-4 dimer in vitro was obtained. The biochemical and spectroscopic features of these three complexes are reported. The monomers Lhca1 and Lhca4 bind 10 Chls each, while the Chl a/b ratio is lower in Lhca4 as compared to Lhca1. Three carotenoid binding sites have been found in Lhca1, while only two are present in Lhca4. Both complexes contain lutein and violaxanthin while beta-carotene is selectively bound to the Lhca1-4 dimer in substoichiometric amounts upon dimerization. Spectral analysis revealed the presence of low energy absorption forms in Lhca1 previously thought to be exclusively associated with Lhca4. It is shown that the process of dimerization changes the spectroscopic properties of some chromophores and increases the amplitude of the red absorption tail of the complexes. The origin of these spectroscopic features is discussed.  相似文献   

11.
The Lhca antenna complexes of photosystem I (PSI) have been characterized by comparison of native and recombinant preparations. Eight Lhca polypeptides have been found to be all organized as dimers in the PSI-LHCI complex. The red emission fluorescence is associated not only with Lhca1-4 heterodimer, but also with dimers containing Lhca2 and/or Lhca3 complexes. Reconstitution of Lhca1 and Lhca4 monomers as well as of the Lhca1-4 dimer in vitro was obtained. The biochemical and spectroscopic features of these three complexes are reported. The monomers Lhca1 and Lhca4 bind 10 Chls each, while the Chl a/b ratio is lower in Lhca4 as compared to Lhca1. Three carotenoid binding sites have been found in Lhca1, while only two are present in Lhca4. Both complexes contain lutein and violaxanthin while β-carotene is selectively bound to the Lhca1-4 dimer in substoichiometric amounts upon dimerization. Spectral analysis revealed the presence of low energy absorption forms in Lhca1 previously thought to be exclusively associated with Lhca4. It is shown that the process of dimerization changes the spectroscopic properties of some chromophores and increases the amplitude of the red absorption tail of the complexes. The origin of these spectroscopic features is discussed.  相似文献   

12.
The first event of photosynthesis is the harvesting of solar energy by a large array of pigments. These pigments are coordinated to proteins that organize them to assure efficient excitation energy transfer. The protein plays an essential role in tuning the spectroscopic properties of the pigments, by determining their site energy and/or by favoring pigment-pigments interactions. Here we investigate how the protein modulates the pigment properties by using a single-point-mutation approach. We monitor changes in the low-energy absorption/emission band of Lhca4, which is well separated from the bulk absorption and thus represents an attractive model system. Moreover, it was recently shown that Lhca4 exists in at least two conformations, a dominating one emitting at 720nm and a second one emitting at 685nm (Kruger et al. PNAS 2011). Here we show that a single amino-acid substitution (from Asn to Gln, which are both chlorophyll-binding residues and only differ for one C-C bond), moves the equilibrium almost completely towards the 685-nm conformation. This indicates that small changes in the protein can have a large effect on the properties of the pigments. We show that His99, which was suggested to coordinate a red-absorbing chlorophyll (Melkozernov and Blankenship, JBC 2003), is not a chlorophyll ligand. We also show that single amino-acid substitutions nearby the chlorophylls allow to tune the emission spectrum of the pigments over a wide range of wavelengths and to modulate the excited-state lifetimes of the complex. These findings are discussed in the light of previously proposed non-photochemical quenching models.  相似文献   

13.
We report on spectral features for two and three diphenylacetylene chromophores aligned in close proximity in aqueous solution by self assembly of attached oligonucleotide arms. Two duplex systems were examined in detail. One was formed by hybridization (Watson-Crick base pairing) of two oligonucleotide 10-mers, each containing the diphenylacetylene insert. The other was generated by self-folding of a 36-mer oligonucleotide containing two diphenylacetylene inserts. The triplex system was obtained by hybridization (Hoogsteen base pairing) of a 16-mer oligonucleotide diphenylacetylene conjugate to the folded 36-mer hairpin. Formation of duplex and triplex entities from these conjugates was demonstrated experimentally by thermal dissociation and spectroscopic studies. The UV and CD spectra for the duplex systems exhibit bands in the 300-350 nm region attributable to exciton coupling between the two chromophores, and the emission spectra show a strong band centered at 410 nm assigned to excimer fluorescence. Addition of the third strand to the hairpin duplex has little effect on the CD spectrum in the 300-350 nm region, but leads to a negative band at short wavelengths characteristic of a triplex and to a strongly enhanced band at 410 nm in the fluorescence spectrum. The third strand alone shows a broad fluorescence band at approximately 345-365 nm, but this band is virtually absent in the triplex system. A model for the triplex system is proposed in which two of the three aligned diphenylacetylenes function as a ground state dimer that on excitation gives rise to the exciton coupling observed in the UV and CD spectra and to the excimer emission observed in the fluorescence spectrum. Excitation of the third chromophore results in enhanced excimer fluorescence, as a consequence of energy transfer from the locally excited singlet of one chromophore to the ground state dimer formed by the other two chromophores.  相似文献   

14.
Twenty-three chlorina (clo) mutants from the barley mutant collection of the Carlsberg Laboratory, Copenhagen, were tested for the presence of the four light-harvesting chlorophyll (Chl) a/b-binding proteins (LHC) of Photosystem I (Lhca1-4) and the PS II antenna proteins Lhcb1-3 (LHC II), Lhcb4-6 (CP29, CP26, CP24) and PsbS (CP22) using monospecific and monoclonal antibodies. Mutants allelic to barley mutant clo-f2, impaired in Chl b synthesis, provided evidence that Lhca4, Lhcb1 and Lhcb6 are unstable in the absence of Chl b, and the accumulation of Lhcb2, Lhcb3 and Lhcb4 is also impaired. Mutants at the locus chlorina-a (clo-a117, clo-a126 and clo-a134) lack or have only trace amounts of Lhca1, Lhca4, Lhcb1 and Lhcb3, whereas a mutant at the locus chlorina-b (clo-b125) had reduced amounts of all Lhca proteins. These two mutations could have an effect in protein import or assembly. Evidence is presented that Lhcb5 is the innermost LHC protein of PS II, and that Lhca1 and Lhca4, which have been supposed to be intimately associated in the LHCI-730 complex, can accumulate independently of each other. 77 K fluorescence emission spectra taken from leaves of clo-f2 101, clo-a126 and clo-b125 indicate that chlorophyll(s) emitting at 742 nm are coupled to the presence of Lhca4 that is bound to the reaction centre, and those emitting around 730 nm are located on Lhca1.  相似文献   

15.
In this work, we have investigated the role of the individual antenna complexes and of the low-energy forms in excitation energy transfer and trapping in Photosystem I of higher plants. To this aim, a series of Photosystem I (sub)complexes with different antenna size/composition/absorption have been studied by picosecond fluorescence spectroscopy. The data show that Lhca3 and Lhca4, which harbor the most red forms, have similar emission spectra (λmax = 715–720 nm) and transfer excitation energy to the core with a relative slow rate of ∼25/ns. Differently, the energy transfer from Lhca1 and Lhca2, the “blue” antenna complexes, occurs about four times faster. In contrast to what is often assumed, it is shown that energy transfer from the Lhca1/4 and the Lhca2/3 dimer to the core occurs on a faster timescale than energy equilibration within these dimers. Furthermore, it is shown that all four monomers contribute almost equally to the transfer to the core and that the red forms slow down the overall trapping rate by about two times. Combining all the data allows the construction of a comprehensive picture of the excitation-energy transfer routes and rates in Photosystem I.  相似文献   

16.
The xanthophyll cycle pigments, violaxanthin and zeaxanthin, present outside the light-harvesting pigment-protein complexes of Photosystem II (LHCII) considerably enhance specific aggregation of proteins as revealed by analysis of the 77 K chlorophyll a fluorescence emission spectra. Analysis of the infrared absorption spectra in the Amide I region shows that the aggregation is associated with formation of intermolecular hydrogen bonding between the alpha helices of neighboring complexes. The aggregation gives rise to new electronic energy levels, in the Soret region (530 nm) and corresponding to the Q spectral region (691 nm), as revealed by analysis of the resonance light scattering spectra. New electronic energy levels are interpreted in terms of exciton coupling of protein-bound photosynthetic pigments. The energy of the Q excitonic level of chlorophyll is not high enough to drive the light reactions of Photosystem II but better suited to transfer excitation energy to Photosystem I, which creates favourable energetic conditions for the state I-state II transition. The lack of fluorescence emission from this energy level, at physiological temperatures, is indicative of either very high thermal energy conversion rate or efficient excitation quenching by carotenoids. Chlorophyll a fluorescence was quenched up to 61% and 34% in the zeaxanthin- and violaxanthin-containing samples, respectively, as compared to pure LHCII. Enhanced aggregation of LHCII, observed in the presence of the xanthophyll cycle pigments, is discussed in terms of the switch between light-harvesting and energy dissipation systems.  相似文献   

17.
PSI-K is a subunit of photosystem I. The function of PSI-K was characterized in Arabidopsis plants transformed with a psaK cDNA in antisense orientation, and several lines without detectable PSI-K protein were identified. Plants without PSI-K have a 19% higher chlorophyll a/b ratio and 19% more P700 than wild-type plants. Thus, plants without PSI-K compensate by making more photosystem I. The photosystem I electron transport in vitro is unaffected in the absence of PSI-K. Light response curves for oxygen evolution indicated that the photosynthetic machinery of PSI-K-deficient plants have less capacity to utilize light energy. Plants without PSI-K have less state 1-state 2 transition. Thus, the redistribution of absorbed excitation energy between the two photosystems is reduced. Low temperature fluorescence emission spectra revealed a 2-nm blue shift in the long wavelength emission in plants lacking PSI-K. Furthermore, thylakoids and isolated PSI without PSI-K had 20-30% less Lhca2 and 30-40% less Lhca3, whereas Lhca1 and Lhca4 were unaffected. During electrophoresis under mildly denaturing conditions, all four Lhca subunits were partially dissociated from photosystem I lacking PSI-K. The observed effects demonstrate that PSI-K has a role in organizing the peripheral light-harvesting complexes on the core antenna of photosystem I.  相似文献   

18.
CP47 is a pigment-protein complex in the core of photosystem II that tranfers excitation energy to the reaction center. Here we report on a spectroscopic investigation of the isolated CP47 complex. By deconvoluting the 77 K absorption and linear dichroism, red-most states at 683 and 690 nm have been identified with oscillator strengths corresponding to approximately 3 and approximately 1 chlorophyll, respectively. Both states contribute to the 4 K emission, and the Stark spectrum shows that they have a large value for the difference polarizability between their ground and excited states. From site-selective polarized triplet-minus-singlet spectra, an excitonic origin for the 683 nm state was found. The red shift of the 690 nm state is most probably due to strong hydrogen bonding to a protein ligand, as follows from the position of the stretch frequency of the chlorophyll 13(1) keto group (1633 cm(-)(1)) in the fluorescence line narrowing spectrum at 4 K upon red-most excitation. We discuss how the 683 and 690 nm states may be linked to specific chlorophylls in the crystal structure [Zouni, A., Witt, H.-T., Kern, J., Fromme, P., Krauss, N., Saenger, W., and Orth, P. (2001) Nature 409, 739-743].  相似文献   

19.
Changes in low-temperature fluorescence spectra of pea chloroplasts induced by the short-term heating were studied. Excitation spectra of the long-wavelength fluorescence were studied as well. Heating was carried out at 45°C for 5 min in the darkness or in the presence of white light sourced with intensities of 260 or 1400 μmol/m2 s. All variants of heating decreased the intensity of the long-wavelength fluorescence band. The integral of the excitation spectrum decreased after the exposure to heating in the darkness and increased after the exposure to heating in the presence of light. The observed changes in most intensive components — 726, 729 and 731 nm — of the long-wavelength fluorescence band, induced by various modes of heating, were similar. The changes in the fourth intensive component at 735 nm were different. Twenty-five components were found in the fine structure of the excitation spectrum of the long-wavelength fluorescence. Positions of most of peaks corresponded to the absorption peaks of Lhca proteins. Heat-induced changes in the excitation spectrum in the regions corresponding to the absorption of chl b and short-wavelength forms of chl a have been shown to correlate with changes in the intensities of the 726-, 729-, and 731-nm components of the long-wavelength fluorescence. This allows one to assign them to the emission of the outer antenna of Photosystem I. Changes in the intensity of the component at 735 nm correlated only with changes in excitation spectrum in the long-wavelength region that corresponded to the absorption of the long-wave-length forms of chlorophyll a. Therefore, the 735-nm component could be assigned to the emission of the Photosystem I inner antenna. Analysis of the changes induced by heating in the emission and excitation spectra of fluorescence revealed changes in the energy transfer in the outer and the inner antennas of Photosystem I. Heating in the darkness lowered the energy transfer in the outer and in the inner antennas. Both modes of heating in the presence of light increased the energy transfer in the outer antenna. For the inner antenna, presence of the light promotes an efficient of energy transfer at the levels close to the control one. It is proposed that illumination during heating exposure causes a specific state of the antenna complex in Photosystem I that provides an increase in funneling of the energy toward the reaction centers.  相似文献   

20.
The peripheral light-harvesting complex of photosystem I contains red chlorophylls (Chls) that, unlike the typical antenna Chls, absorb at lower energy than the primary electron donor P700. It has been shown that the red-most absorption band arises from two excitonically coupled Chls, although this interaction alone cannot explain the extreme red-shifted emission (25 nm, ∼480 cm−1 for Lhca4 at 4 K) that the red Chls present. Here, we report the electric field-induced absorption changes (Stark effect) on the Qy region of the Lhca4 complex. Two spectral forms, centered around 690 nm and 710 nm, were necessary to describe the absorption and Stark spectra. The analysis of the lowest energy transition yields a high value for the change in dipole moment, Δμ710nm ≈ 8 Df−1, between the ground and excited states as compared with monomeric, Δμ = 1 D, or dimeric, Δμ = 5 D, Chl a in solution. The high value of the Δμ demonstrates that the origin of the red-shifted emission is the mixing of the lowest exciton state with a charge-transfer state of the dimer. This energetic configuration, an excited state with charge-transfer character, is very favorable for the trapping and dissipation of excitations and could be involved in the photoprotective mechanism(s) of the photosystem I complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号