首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Xie, Ailiang, Fiona Rankin, Ruth Rutherford, and T. DouglasBradley. Effects of inhaledCO2 and added dead space on idiopathic central sleep apnea. J. Appl.Physiol. 82(3): 918-926, 1997.We hypothesizedthat reductions in arterial PCO2 (PaCO2) below the apnea threshold play akey role in the pathogenesis of idiopathic central sleep apnea syndrome(ICSAS). If so, we reasoned that raisingPaCO2 would abolish apneas in thesepatients. Accordingly, patients with ICSAS were studied overnight onfour occasions during which the fraction of end-tidalCO2 and transcutaneous PCO2 were measured: during room airbreathing (N1), alternating room airand CO2 breathing(N2),CO2 breathing all night(N3), and addition of dead space viaa face mask all night (N4).Central apneas were invariably preceded by reductions infraction of end-tidal CO2. Bothadministration of a CO2-enrichedgas mixture and addition of dead space induced 1- to 3-Torr increasesin transcutaneous PCO2, whichvirtually eliminated apneas and hypopneas; they decreased from43.7 ± 7.3 apneas and hypopneas/h onN1 to 5.8 ± 0.9 apneas andhypopneas/h during N3(P < 0.005), from 43.8 ± 6.9 apneas and hypopneas/h during room air breathing to 5.9 ± 2.5 apneas and hypopneas/h of sleep duringCO2 inhalation during N2 (P < 0.01), and to 11.6% of the room air level while the patients werebreathing through added dead space duringN4 (P < 0.005). Because raisingPaCO2 through two different meansvirtually eliminated central sleep apneas, we conclude that centralapneas during sleep in ICSA are due to reductions inPaCO2 below the apnea threshold.

  相似文献   

2.
Cala, S. J., P. Sliwinski, M. G. Cosio, and R. J. Kimoff.Effect of topical upper airway anesthesia on apnea duration through the night in obstructive sleep apnea. J. Appl.Physiol. 81(6): 2618-2626, 1996.It haspreviously been reported that the duration of obstructive apneasincreases from the beginning to the end of the night (M. Charbonneau,J. M. Marin, A. Olha, R. J. Kimoff, R. D. Levy, and M. Cosio.Chest 106: 1695-1701, 1994). The purpose of this study wasto test the hypothesis that stimulation of upper airway (UA) sensoryreceptors during obstructed inspiratory efforts contributes to arousaland apnea termination and that a progressive attenuation of thismechanism through the night contributes to apnea lengthening. Westudied seven patients (six men, one woman) with severe obstructivesleep apnea (apnea-hypopnea index = 93 ± 26 events/h) during twoconsecutive nights of polysomnographic monitoring. On one night (randomorder), we performed topical UA anesthesia with 0.2% tetracaine and onthe control night, sham anesthesia. We measured apnea duration,esophageal pressure (Pes) during apneas, and apneicO2 desaturation. Consistent withprevious findings, apnea duration, number of efforts per apnea, andpeak Pes at end apnea increased from the beginning to the end of the control nights. UA anesthesia produced a significant increase in apneaduration at the beginning of the night but no change in apnea length atthe end of the night. Peak Pes and the rate of increase in Pes duringthe anesthesia nights were greater than during control nights, but therate of increase in Pes was similar for the beginning and end of thecontrol and anesthesia nights. These findings suggest that UA sensoryreceptors play a role in mediating apnea termination at the beginningof the night but that the contribution of these receptors diminishes asthe night progresses such that greater inspiratory efforts arerequired to trigger arousal, leading to apnea prolongation.

  相似文献   

3.
Meza, S., E. Giannouli, and M. Younes. Control ofbreathing during sleep assessed by proportional assist ventilation. J. Appl. Physiol. 84(1): 3-12, 1998.We used proportional assist ventilation (PAV) to evaluate thesources of respiratory drive during sleep. PAV increases the slope ofthe relation between tidal volume(VT) andrespiratory muscle pressure output (Pmus). We reasoned that ifrespiratory drive is dominated by chemical factors, progressiveincrease of PAV gain should result in only a small increase inVT because Pmus would bedownregulated substantially as a result of small decreases inPCO2. In the presence of substantialnonchemical sources of drive [believed to be the case inrapid-eye-movement (REM) sleep] PAV should result in a substantial increase in minute ventilation and reductionin PCO2 as the output related to thechemically insensitive drive source is amplified severalfold. Twelvenormal subjects underwent polysomnography while connected to a PAVventilator. Continuous positive air pressure (5.2 ± 2.0 cmH2O) was administered tostabilize the upper airway. PAV was increased in 2-min steps from 0 to20, 40, 60, 80, and 90% of the subject's elastance and resistance.VT, respiratory rate, minuteventilation, and end-tidal CO2pressure were measured at the different levels, and Pmus wascalculated. Observations were obtained in stage 2 sleep (n = 12), slow-wave sleep(n = 11), and REM sleep(n = 7). In all cases, Pmus wassubstantially downregulated with increase in assist so that theincrease in VT, althoughsignificant (P < 0.05), was small(0.08 liter at the highest assist). There was no difference in responsebetween REM and non-REM sleep. We conclude that respiratory driveduring sleep is dominated by chemical control and that there is nofundamental difference between REM and non-REM sleep in this regard.REM sleep appears to simply add bidirectional noise to what isbasically a chemically controlled respiratory output.

  相似文献   

4.
Gender differences in airway resistance during sleep   总被引:7,自引:0,他引:7  
Trinder, John, Amanda Kay, Jan Kleiman, and Judith Dunai.Gender differences in airway resistance during sleep.J. Appl. Physiol. 83(6):1986-1997, 1997.At the onset of non-rapid-eye-movement (NREM)sleep there is a fall in ventilation and an increase in upper airwayresistance (UAR). In healthy men there is a progressive increase in UARas NREM sleep deepens. This study compared the pattern of change in UARand ventilation in 14 men and 14 women (aged 18-25 yr) both duringsleep onset and over the NREM phase of a sleep cycle (from wakefulnessto slow-wave sleep). During sleep onset, fluctuations betweenelectroencephalographic alpha and theta activity were associated withmean alterations in inspiratory minute ventilation and UAR of between 1 and 4.5 l/min and between 0.70 and 5.0 cmH2O · l1 · s,respectively, with no significant effect of gender on either change(P > 0.05). During NREM sleep,however, the increment in UAR was larger in men than in women(P < 0.01), such that the meanlevels of UAR at peak flow reached during slow-wave sleep were ~25and 10 cmH2O · l1 · sin men and women, respectively. We speculate that the greater increasein UAR in healthy young men may represent a gender-related susceptibility to sleep-disordered breathing that, in conjunction withother predisposing factors, may contribute to the development ofobstructive sleep apnea.

  相似文献   

5.
Trbovic, Sinisa M., Miodrag Radulovacki, and David W. Carley. Protoveratrines A and B increase sleep apneaindex in Sprague-Dawley rats. J. Appl.Physiol. 83(5): 1602-1606, 1997.The action ofprotovertarines A and B, which stimulate carotid sinus baroreceptorsand vagal sensory endings in the heart as well as pulmonary bed, wereassessed on spontaneous and postsigh central sleep apneas in freelymoving Sprague-Dawley rats. During the 6-h recording period, animalswere simultaneously monitored for sleep by using electroencephalogramand electromyogram recordings, for respiration by single-chamberplethysmography, and for blood pressure and heart period by usingradiotelemetry. After administration of 0.2, 0.5, or 1 mg/kg sc ofprotoveratrines, cardiopulmonary changes lasting at least 6 h wereobserved in all three behavioral states [heart period increasedup to 23% in wakefulness, 21% in non-rapid-eye-movement (non-REM)sleep, and 20% in REM sleep; P < 0.005 for each]. At the same time, there was a substantial increase in the number of spontaneous (375% increase;P = 0.04) and postsigh (268%increase, P = 0.0002) apneas. Minuteventilation decreased by up to 24% in wakefulness, 25% in non-REM,and 35% in REM sleep (P < 0.05 foreach). We conclude that pharmacological stimulation of baroreflexespromotes apnea expression in the sleeping rat.

  相似文献   

6.
Isono, Shiroh, John E Remmers, Atsuko Tanaka, Yasuhide Sho,Jiro Sato, and Takashi Nishino. Anatomy of pharynx in patients with obstructive sleep apnea and in normal subjects.J. Appl. Physiol. 82(4):1319-1326, 1997.Anatomic abnormalities of the pharynx arethought to play a role in the pathogenesis of obstructive sleep apnea(OSA), but their contribution has never been conclusively proven. Thepresent study tested this anatomic hypothesis by comparing themechanics of the paralyzed pharynx in OSA patients and in normalsubjects. According to evaluation of sleep-disordered breathing (SDB)by nocturnal oximetry, subjects were divided into three groups: normalgroup (n = 17), SDB-1(n = 18), and SDB-2(n = 22). The static pressure-arearelationship of the passive pharynx was quantified under generalanesthesia with complete paralysis. Age and body mass index werematched among the three groups. The site of the primary closure was thevelopharynx in 49 subjects and the oropharynx in only 8 subjects.Distribution of the location of the primary closure did not differamong the groups. Closing pressure(PC) of the velopharynx forSDB-1 and SDB-2 groups (0.90 ± 1.34 and 2.78 ± 2.78 cmH2O, respectively) wassignificantly higher than that for the normal group (3.77 ± 3.44 cmH2O;P < 0.01). Maximal velopharyngealarea for the normal group (2.10 ± 0.85 cm2) was significantly greaterthan for SDB-1 and SDB-2 groups (1.15 ± 0.46 and 1.06 ± 0.75 cm2, respectively). Theshape of the pressure-area curve for the velopharynx differed betweennormal subjects and patients with SDB, being steeper in slope nearPC in patients with SDB.Multivariate analysis of mechanical parameters and oxygen desaturationindex (ODI) revealed that velopharyngealPC was the only variable highly correlated with ODI. VelopharyngealPC was associated withoropharyngeal PC, suggestingmechanical interdependence of these segments. We conclude that thepassive pharynx is more narrow and collapsible in sleep-apneic patientsthan in matched controls and that velopharyngeal PC is the principal correlate ofthe frequency of nocturnal desaturations.

  相似文献   

7.
Kocis, Keith C., Peter J. Radell, Wayne I. Sternberger, JaneE. Benson, Richard J. Traystman, and David G. Nichols. Ultrasound evaluation of piglet diaphragm function before and after fatigue. J. Appl. Physiol. 83(5):1654-1659, 1997.Clinically, a noninvasive measure of diaphragmfunction is needed. The purpose of this study is to determine whetherultrasonography can be used to 1)quantify diaphragm function and 2)identify fatigue in a piglet model. Five piglets were anesthetized withpentobarbital sodium and halothane and studied during the followingconditions: 1) baseline (spontaneous breathing); 2) baseline + CO2 [inhaledCO2 to increase arterial PCO2 to 50-60 Torr (6.6-8kPa)]; 3) fatigue + CO2 (fatigue induced with 30 minof phrenic nerve pacing); and 4)recovery + CO2 (recovery after 1 hof mechanical ventilation). Ultrasound measurements of the posteriordiaphragm were made (inspiratory mean velocity) in the transverseplane. Images were obtained from the midline, just inferior to thexiphoid process, and perpendicular to the abdomen. M-mode measures weremade of the right posterior hemidiaphragm in the plane just lateral tothe inferior vena cava. Abdominal and esophageal pressures weremeasured and transdiaphragmatic pressure (Pdi) was calculated duringspontaneous (Sp) and paced (Pace) breaths. Arterial blood gases werealso measured. Pdi(Sp) and Pdi(Pace)during baseline + CO2 were 8 ± 0.7 and 49 ± 11 cmH2O, respectively, anddecreased to 6 ± 1.0 and 27 ± 7 cmH2O,respectively, during fatigue + CO2. Mean inspiratory velocityalso decreased from 13 ± 2 to 8 ± 1 cm/s during theseconditions. All variables returned to baseline during recovery + CO2. Ultrasonography can beused to quantify diaphragm function and identify piglet diaphragm fatigue.

  相似文献   

8.
The effects of periodic obstructive apneas onsystemic and myocardial hemodynamics were studied in ninepreinstrumented sedated pigs under four conditions: breathing room air(RA), breathing 100% O2,breathing RA after critical coronary stenosis (CS) of the left anteriordescending coronary artery, and breathing RA after autonomic blockadewith hexamethonium (Hex). Apneas with RA increased mean arterialpressure (MAP; from baseline 103.0 ± 3.5 to late apnea 123.6 ± 7.0 Torr, P < 0.001) and coronary blood flow (CBF; late apnea 193.9 ± 22.9% of baseline,P < 0.001) but decreased cardiacoutput (CO; from baseline 2.97 ± 0.15 to late apnea 2.39 ± 0.19 l/min, P < 0.001). Apneas withO2 increased MAP (from baseline105.1 ± 4.6 to late apnea 110.7 ± 4.8 Torr, P < 0.001). Apneas with CS producedsimilar increases in MAP as apneas with RA but greater decreases in CO(from baseline 3.03 ± 0.19 to late apnea 2.1 ± 0.15 l/min,P < 0.001). In LAD-perfused myocardium, there was decreased segmental shortening (baseline 11.0 ± 1.5 to late apnea 7.6 ± 2.0%,P < 0.01) and regionalintramyocardial pH (baseline 7.05 ± 0.03 to late apnea 6.72 ± 0.11, P < 0.001) during apneas withCS but under no other conditions. Apneas with Hex increased to the sameextent as apneas with RA. Myocardial O2 demand remained unchangedduring apnea relative to baseline. We conclude that obstructiveapnea-induced changes in left ventricular afterload and CO aresecondary to autonomic-mediated responses to hypoxemia. Increased CBFduring apneas is related to regional metabolic effects of hypoxia andnot to autonomic factors. In the presence of limited coronary flowreserve, decreased O2 supply during apneas can lead to myocardial ischemia, which in turnadversely affects left ventricular function.

  相似文献   

9.
Megirian, David, Jacek Dmochowski, and Gaspar A. Farkas. Mechanism controlling sleep organization ofthe obese Zucker rat. J. Appl.Physiol. 84(1): 253-256, 1998.We tested thehypothesis that the obese (fa/fa)Zucker rat has a sleep organization that differs from that of leanZucker rats. We used the polygraphic technique to identify and toquantify the distribution of the three main states of the rat:wakefulness (W), non-rapid-eye-movement (NREM), and rapid-eye-movement(REM) sleep states. Assessment of states was made with light present(1000-1600), at the rats thermoneutral temperature of 29°C.Obese rats, compared with lean ones, did not show significantdifferences in the total time spent in the three main states. Whereasthe mean durations of W and REM states did not differ statistically,that of NREM did (P = 0.046). However,in the obese rats, the frequencies of switching from NREM sleep to W,which increased, and from NREM to REM sleep, which decreased, werestatistically significantly different(P = 0.019). Frequency of switchingfrom either REM or W state was not significantly different. We concludethat sleep organization differs between lean and obese Zucker rats andthat it is due to a disparity in switching from NREM sleep to either Wor REM sleep and the mean duration of NREM sleep.

  相似文献   

10.
We studied the within-night variability of themaximum esophageal pressure deflection before apnea termination(DPmax) in nine patients withsevere obstructive sleep apnea as an index of the arousal threshold andthe mean electroencephalogram (EEG) delta power for each 30 s as anindex of the timing of sleep cycles. Periodicity in the time variationof delta power and DPmax was analyzed by determining their power spectral density and their relationship determined by cross correlation.DPmax and delta power variedcyclically and in phase with a major periodicity (major peak in powerspectral density) of 117.6 ± 8.8 (SE) min. The correlation betweenthe values of DPmax and deltapower was significant (P < 0.001) ineach subject (mean r = 0.47 ± 0.03), and the coherence betweenDPmax and delta power at theirdominant frequency was high. Within cycles of non-rapid-eye-movementsleep, DPmax and delta powerincreased, reaching peak values on average at or after midcycle. Thesefindings suggest that the arousal threshold to airway occlusion inpatients with obstructive sleep apnea varies cyclically during thenight synchronous to the underlying cycles of sleep.

  相似文献   

11.
Isono, Shiroh, Thom R. Feroah, Eric A. Hajduk, Rollin Brant,William A. Whitelaw, and John E. Remmers. Interaction ofcross-sectional area, driving pressure, and airflow of passive velopharynx. J. Appl. Physiol. 83(3):851-859, 1997.Previous studies have shown that, when thepharyngeal muscles are relaxed, the velopharynx is a highly compliantsegment of the pharynx. Thus, under these circumstances,cross-sectional area of the velopharynx (AVP), drivingpressure across the velopharynx (P), and inspiratory airflow(I) willbe mutually interdependent variables. The purpose of the presentinvestigation was to describe the interrelation among these threevariables during inspiration. We studied 15 sleeping patients withobstructive sleep apnea/hypopnea when the pharyngeal muscles wererendered hypotonic by applying continuous positive airway pressure tothe nasal airway.AVP, determined by endoscopic imaging, was significantly greater at onset ofI limitationthan at minimum oropharyngeal pressure(P < 0.01). Snoring was neverobserved duringIlimitation. In a subgroup of six patients, values for P,I, andAVP were obtainedat 0.1-s intervals at various levels of mask pressure. For these sixpatients, the mathematical expressionI = 0.657(AVP/Amax) · P0.332,where Amax ismaximal AVP,described the relationship among the three variables(R2 = 0.962) forflow-limited and non-flow-limited inspirations. The impedance of thepassive velopharynx, defined asP0.33/,was inversely related toAVP and increaseddramatically when AVP was <0.3cm2. In summary, we observed aprogressive decrease inAVP during flow-limited inspiration in patients with obstructive sleep apnea. Thisconstriction of the velopharynx contributes to an increase invelopharyngeal impedance that, in turn, counterbalances the increase inP during flow limitation.

  相似文献   

12.
To determine sleep effects on baro- andventilatory responses to transient chemo- and barostimulation inAfrican-Americans and Caucasians, 26 nonobese normotensive youngsubjects (13 African-Americans and 13 Caucasians) were studied awakeand in non-rapid-eye movement (NREM) and rapid-eye-movement sleepduring induced transient hypoxemia (N2), hypertension(phenylephrine, PE), and concomitant hypoxemia and hypertension(N2 + PE). Arterial blood pressurewas recorded by plethysmographic volume clamp, minute ventilation bypneumotachograph, and arterial O2saturation by pulse oximeter. For all subjects, chronotropicbaroresponse (pulse interval/systolic blood pressure, where  is change) increased with NREM sleep(P = 0.007). Baroresponse slope wasgreater in Caucasians than in African-Americans (ANOVA, P = 0.02). Hypoxemic ventilatoryresponse (minute ventilation/arterial O2 saturation) was greater inAfrican-Americans than in Caucasians in NREM sleep(P = 0.01), as was hypoxemicattenuation of baroresponse (N2 + PE, P = 0.03). These data suggestsleep-related differences in arterial chemo- and baroreceptor responsesin normal young African-Americans and Caucasians, which may haveimplications concerning development of systemic hypertension.

  相似文献   

13.
Failure toautoresuscitate by hypoxic gasping during prolonged sleep apnea hasbeen suggested to play a role in sudden infant death. Furthermore,maternal smoking has been repeatedly shown to be a risk factor forsudden infant death. The present experiments were carried out onnewborn rat pups to investigate the influence of perinatal exposure tonicotine (the primary pharmacological and addictive agent in tobacco)on their time to last gasp during a single hypoxic exposure and ontheir ability to autoresuscitate during repeated exposure to hypoxia.Pregnant rats received either nicotine (6 mg · kg1 · 24 h1) or vehiclecontinuously from day 6 of gestationto days 5 or 6 postpartum via an osmotic minipump.On days 5 or6 postpartum, pups were exposed eitherto a single period of hypoxia (97%N2-3% CO2) and their time to last gaspwas determined, or they were exposed repeatedly to hypoxia and theirability to autoresuscitate from primary apnea was determined. Perinatalexposure to nicotine did not alter the time to last gasp, but it didimpair the ability of pups to autoresuscitate from primary apnea. Aftervehicle, the pups were able to autoresuscitate from 18 ± 1 (SD)periods of hypoxia, whereas, after nicotine, the pups were able toautoresuscitate from only 12 ± 2 periods(P < 0.001) of hypoxia. Thus ourdata provide evidence that perinatal exposure to nicotine impairs the ability of newborn rats to autoresuscitate from primary apnea duringrepeated exposure to hypoxia, such as may occur during episodes ofprolonged sleep apnea.

  相似文献   

14.
Reinertsen, R. E., V. Flook, S. Koteng, and A. O. Brubakk.Effect of oxygen tension and rate of pressure reduction duringdecompression on central gas bubbles. J. Appl.Physiol. 84(1): 351-356, 1998.Reduction inascent speed and an increase in theO2 tension in the inspired airhave been used to reduce the risk for decompression sickness. It haspreviously been reported that decompression speed andO2 partial pressure are linearly related for human decompressions from saturation hyperbaric exposures. The constant of proportionality K(K = rate/partial pressure of inspiredO2) indicates the incidence ofdecompression sickness. The present study investigated the relationshipamong decompression rate, partial pressure of inspiredO2, and the number of central gasbubbles after a 3-h dive to 500 kPa while breathing nitrox with an O2 content of 35 kPa. Weused transesophageal ultrasonic scanning to determine the number ofbubbles in the pulmonary artery of pigs. The results show that, for agiven level of decompression stress, decompression rate andO2 tension in the inspired air canbe traded off against each other by using pulmonary artery bubbles asan end point. The results also seem to confirm that decompressions thathave a high K value are morestressful.

  相似文献   

15.
Hong, Ju-Lun, and Lu-Yuan Lee. Cigarette smoke-inducedbronchoconstriction: causative agents and role of thromboxane receptors. J. Appl. Physiol. 81(5):2053-2059, 1996.Inhalation of cigarette smoke induces a biphasicbronchoconstriction in guinea pigs: the first phase is induced by acombination of cholinergic reflex and tachykinins, whereas the secondphase involves cyclooxygenase metabolites (J.-L. Hong, I. W. Rodger,and L.-Y. Lee. J. Appl. Physiol. 78:2260-2266, 1995). This study was carried out to further determinethe causative agents in the smoke and the types of prostanoid receptorsand endogenous prostanoids mediating the bronchoconstriction. Inhalation of 10 ml of high-nicotine cigarette smoke consistently elicited the biphasic bronchoconstriction in anesthetized and artificially ventilated guinea pigs. Pretreatment with hexamethonium (10 mg/kg iv) significantly reduced the first-phase bronchoconstriction but did not have any measurable effect on the second-phase response. Insharp contrast, gas-phase smoke did not elicit any bronchoconstrictive effect. Furthermore, when the animals were challenged with low-nicotine cigarette smoke, only a single second-phase response was evoked, accompanied by increases in thromboxane (Tx)B2 (a stable metabolite ofTxA2), prostaglandin (PG)D2,PGF2 in the bronchoalveolar lavage fluid. The bronchoconstrictive response induced by low-nicotine smoke was completely prevented by pretreatment with SQ-29548 (0.3 mg/kgiv), a TxA2-receptor antagonist.These results indicate that 1)nicotine is the primary causative agent responsible for the first-phasebronchoconstriction and 2)nonnicotine smoke particulates evoke the release ofTxA2,PGD2, andPGF2, which act onTxA2 receptors on airway smoothmuscles and induce the second-phase response to cigarette smoke.

  相似文献   

16.
Trinder, John, John A. Van Beveren, Philip Smith, JanKleiman, and Amanda Kay. Correlation between ventilation and EEG-defined arousal during sleep onset in young subjects.J. Appl. Physiol. 83(6):2005-2011, 1997.In studies of elderly individuals, ventilationand EEG-defined arousal have been shown to vary periodically andsynchronously. Such results have been interpreted as indicating theprimacy of sleep/wake state in causing ventilatory instability duringsleep onset. However, because the elderly individuals studied wereperiodic breathers, the results do not unequivocally support thisconclusion. In this study the relationship between ventilation andEEG-defined arousal was assessed in a group of 21 young, healthy men inwhom ventilatory instability during sleep onset was not periodic.Ventilation and EEG(O1-A2)recordings were collected, and the longest uncontaminated periods fromearly and late in sleep onset were selected for subsequent analysis.The 84 time series (21 subjects, 2 variables, and 2 occasions in sleeponset) were subjected to spectral analysis to identify periodicity, and the relationship between the two variables was determined bycross-correlational methods. The results indicated that the time serieswere nonperiodic, yet significant correlations were observed betweenthe two variables. The data support the view that during sleep onsetventilatory instability is driven primarily by variations in sleep/wakearousal level.

  相似文献   

17.
Verbitsky, O., J. Mizrahi, M. Levin, and E. Isakov.Effect of ingested sodium bicarbonate on muscle force, fatigue, and recovery. J. Appl. Physiol. 83(2):333-337, 1997.The influence of acute ingestion ofNaHCO3 on fatigue and recovery ofthe quadriceps femoris muscle after exercise was studied in six healthymale subjects. A bicycle ergometer was used for exercising under three loading conditions: test A, loadcorresponding to maximal oxygen consumption; testB, load in test A + 17%; test C, load intest B but performed 1 h after acuteingestion of NaHCO3.Functional electrical stimulation (FES) was applied to provokeisometric contraction of the quadriceps femoris. The resulting kneetorque was monitored during fatigue (2-min chronic FES) and recovery (10-s FES every 10 min, for 40 min). Quadriceps torques were higher inthe presence of NaHCO3(P < 0.05): withNaHCO3 the peak, residual, andrecovery (after 40 min) normalized torques were, respectively, 0.68 ± 0.05 (SD), 0.58 ± 0.05, and 0.73 ± 0.05; withoutNaHCO3 the values were 0.45 ± 0.04, 0.30 ± 0.06, and 0.63 ± 0.06. The increasedtorques obtained after acute ingestion ofNaHCO3 indicate the possibleexistence of improved nonoxidative glycolysis in isometric contraction,resulting in reduced fatigue and enhanced recovery.

  相似文献   

18.
Cohn, David, Joshua O. Benditt, Scott Eveloff, and F. DennisMcCool. Diaphragm thickening during inspiration.J. Appl. Physiol. 83(1): 291-296, 1997.Ultrasound has been used to measure diaphragm thickness(Tdi) in thearea where the diaphragm abuts the rib cage (zone of apposition).However, the degree of diaphragm thickening during inspiration reportedas obtained by one-dimensional M-mode ultrasound was greater than thatpredicted by using other radiographic techniques. Becausetwo-dimensional (2-D) ultrasound provides greater anatomic definitionof the diaphragm and neighboring structures, we used this technique toreevaluate the relationship between lung volume andTdi. We firstestablished the accuracy and reproducibility of 2-D ultrasound bymeasuring Tdiwith a 7.5-MHz transducer in 26 cadavers. We found thatTdi measured byultrasound correlated significantly with that measured by ruler (R2 = 0.89), withthe slope of this relationship approximating a line of identity(y = 0.89x + 0.04 mm). The relationship between lung volume andTdi was thenstudied in nine subjects by obtaining diaphragm images at the fivetarget lung volumes [25% increments from residual volume (RV) tototal lung capacity (TLC)]. Plots ofTdi vs. lungvolume demonstrated that the diaphragm thickened as lung volumeincreased, with a more rapid rate of thickening at the higher lungvolumes[Tdi = 1.74 vital capacity (VC)2 + 0.26 VC + 2.7 mm] (R2 = 0.99; P < 0.001) where lung volumeis expressed as a fraction of VC. The mean increase inTdi between RVand TLC for the group was 54% (range 42-78%). We conclude that2-D ultrasound can accurately measureTdi and that theaverage thickening of the diaphragm when a subject is inhaling from RVto TLC using this technique is in the range of what would be predictedfrom a 35% shortening of the diaphragm.

  相似文献   

19.
Boriek, Aladin M., Joseph R. Rodarte, and Susan S. Margulies. Zone of apposition in the passive diaphragm of thedog. J. Appl. Physiol. 81(5): 1929-1940, 1996.Wedetermined the regional area of the diaphragmatic zone of apposition(ZAP) as well as the regional craniocaudal extent of the ZAP(ZAPht) of the passive diaphragm in six paralyzedanesthetized beagle dogs (8-12 kg) at residual lung volume (RV),functional residual capacity (FRC), FRC + 0.25 and FRC + 0.5 inspiratory capacity, and total lung capacity (TLC) in prone and supinepostures. To identify the caudal boundary of the ZAP, 17 lead markers(1 mm) were sutured to the abdominal side of the costal and cruraldiaphragms around the diaphragm insertion on the chest wall. Two weekslater, the dogs' caudal thoraces were scanned by the use of thedynamic spatial reconstructor (DSR), a prototype fast volumetric X-raycomputer tomographic scanner, developed at the Mayo Clinic. Thethree-dimensional spatial coordinates of the markers were identified(±1.4 mm), and the cranial boundary of the ZAP was determined from30-40 1.4-mm-thick sagittal and coronal slices in each DSR image.We interpolated the DSR data to find the position of the cranial andcaudal boundaries of the ZAP every 5° around the thorax and computedthe distribution of regional variation of area of the ZAP andZAPht as well as the total area of ZAP. TheZAPht and area of ZAP increased as lung volume decreasedand were largest near the lateral extremes of the rib cage. We measuredthe surface area of the rib cage cephaled to the ZAP(AL) in both postures in another six beagle dogs(12-16 kg) of similar stature, scanned previously in the DSR. Weestimated the entire rib cage surface area(Arc = AZAP +AL). The AZAP as a percentageof Arc increased more than threefold as lung volumedecreased from TLC to RV, from ~9 to 29% of Arc.

  相似文献   

20.
Kayar, Susan R., and Erich C. Parker. Oxygen pulse inguinea pigs in hyperbaric helium and hydrogen. J. Appl. Physiol. 82(3): 988-997, 1997.We analyzedO2 pulse, the total volume of O2 consumed per heart beat, inguinea pigs at pressures from 10 to 60 atmospheres. Animals were placedin a hyperbaric chamber and breathed 2%O2 in either helium (heliox) orhydrogen (hydrox). Oxygen consumption rate(O2) was measured by gaschromatographic analysis. Core temperature and heart rate were measuredby using surgically implanted radiotelemeters. TheO2 was modulated over afourfold range by varying chamber temperature from 25 to 36°C. There was a direct correlation betweenO2 and heartrate, which was significantly different for animals in heliox vs.hydrox (P = 0.003). By usingmultivariate regression analysis, we identified variables that weresignificant to O2 pulse: bodysurface area, chamber temperature, core temperature, and pressure.After normalizing for all nonpressure variables, the residualO2 pulse was found to decreasesignificantly (P = 0.02) with pressurefor animals in heliox but did not decrease significantly(P = 0.38) with pressure for animalsin hydrox over the range of pressures studied. This amounted to aroughly 25% lower O2 pulse fornormothermic animals in 60 atmospheres heliox vs. hydrox. These resultssuggest that reduction of cardiovascular efficiency in a hyperbaricenvironment can be mitigated by the choice of breathing gas.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号