首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bacterial chemotaxis results from the ability of flagellated bacteria to control the frequency of switching between smooth-swimming and tumbling episodes in response to changes in concentration of extracellular substances. High levels of phosphorylated CheY protein are the intracellular signal for inducing the tumbling mode of swimming. The CheZ protein has been shown to control the level of phosphorylated CheY by regulating its rate of dephosphorylation. To identify functional domains in the CheZ protein, we made mutants by random mutagenesis of the cheZ gene and constructed a series of deletions. The map position and the in vivo and in vitro activity of the resulting gain- or loss-of-function mutant proteins define separate functional domains of the CheZ protein.  相似文献   

2.
CheY, a small cytoplasmic response regulator, plays an essential role in the chemotaxis pathway. The concentration of phospho-CheY is thought to determine the swimming behaviour of the cell: high levels of phospho-CheY cause bacteria to rotate their flagella clockwise and tumble, whereas low levels of the phos-phorylated form of the protein allow counter-ciockwise rotation of the flagella and smooth swimming. The phosphorylation state of CheY in vivo is determined by the activity of the phosphoryl donor CheA, and by the antagonistic effect of dephosphorylation of phospho-CheY. The dephosphorylation rate is controlled by the intrinsic autohydrolytic activity of phospho-CheY and by the CheZ protein, which accelerates dephosphorylation. We have analysed the effect of CheZ on the dephosphorylation rates of several mutant CheY proteins. Two point mutations were identified which were 50-fold and 5-fold less sensitive to the activity of CheZ than was the wild-type protein. Nonetheless, the phosphorylation and autodephos-phorylation rates of these mutants, CheY23ND and CheY26KE, were observed to be identical to those of wild-type CheY in the absence of CheZ. These are the first examples of CheY mutations that reduce sensitivity to the phosphatase activity of CheZ without being altered in terms of their intrinsic phosphorylation and autodephospborylation rates, interestingly, the residues Asn-23 and Lys-26 are located on a face of CheY far from the phosphorylation site (Asp-57), distinct from the previously described site of inter-action with the histidine kinase CheA, and partially overlapping with a region implicated in interaction with the flagellar switch.  相似文献   

3.
Defects in the chemotaxis proteins CheY and CheZ of Salmonella typhimurium can be suppressed by mutations in the flagellar switch, such that swarming of a pseudorevertant on semisolid plates is significantly better than that of its parent. cheY suppressors contribute to a clockwise switch bias, and cheZ suppressors contribute to a counterclockwise bias. Among the three known switch genes, fliM contributes most examples of such suppressor mutations. We have investigated the changes in FliM that are responsible for suppression, as well as the changes in CheY or CheZ that are being compensated for. Ten independently isolated parental cheY mutations represented nine distinct mutations, one an amino acid duplication and the rest missense mutations. Several of the altered amino acids lie on one face of the three-dimensional structure of CheY (A. M. Stock, J. M. Mottonen, J. B. Stock, and C. E. Schutt, Nature (London) 337:745-749, 1989; K. Volz and P. Matsumura, J. Biol. Chem. 266:15511-15519, 1991); this face may constitute the binding site for the switch. All 10 cheZ mutations were distinct, with several of them resulting in premature termination. cheY and cheZ suppressors in FliM occurred in clusters, which in general did not overlap. A few cheZ suppressors and one cheY suppressor involved changes near the N terminus of FliM, but neither cheY nor cheZ suppressors involved changes near the C terminus. Among the strongest cheY suppressors were changes from Arg to a neutral amino acid or from Val to Glu, suggesting that electrostatic interactions may play an important role in switching. A given cheY or cheZ mutation could be suppressed by many different fliM mutations; conversely, a given fliM mutation was often encountered as a suppressor of more than one cheY or cheZ mutation. The data suggest that an important factor in suppression is a balancing of the shift in switch bias introduced by alteration of CheY or CheZ with an appropriate opposing shift introduced by alteration of FliM. For strains with a severe parental mutation, such as the cheZ null mutations, adjustment of switch bias is essentially the only factor in suppression, since the attractant L-aspartate caused at most a slight further enhancement of the swarming rate over that occurring in the absence of a chemotactic stimulus. We discuss a model for switching in which there are distinct interactions for the counterclockwise and clockwise states, with suppression occurring by impairment of one of the states and hence by relative enhancement of the other state. FliM can also undergo amino acid changes that result in a paralyzed (Mot-) phenotype; these changes were confined to a very few residues in the protein.  相似文献   

4.
The Escherichia coli chemotaxis signal transduction pathway has: CheA, a histidine protein kinase; CheW, a linker between CheA and sensory proteins; CheY, the effector; and CheZ, a signal terminator. Rhodobacter sphaeroides has multiple copies of these proteins (2 x CheA, 3 x CheW and 3 x CheY, but no CheZ). In this study, we found a fourth cheY and expressed these R. sphaeroides proteins in E. coli. CheA2 (but not CheA1) restored swarming to an E. coli cheA mutant (RP9535). CheW3 (but not CheW2) restored swarming to a cheW mutant of E. coli (RP4606). R. sphaeroides CheYs did not affect E. coli lacking CheY, but restored swarming to a cheZ strain (RP1616), indicating that they can act as signal terminators in E. coli. An E. coli CheY, which is phosphorylated but cannot bind the motor (CheY109KR), was expressed in RP1616 but had no effect. Overexpression of CheA2, CheW2, CheW3, CheY1, CheY3 and CheY4 inhibited chemotaxis of wild-type E. coli (RP437) by increasing its smooth-swimming bias. While some R. sphaeroides proteins restore tumbling to smooth-swimming E. coli mutants, their activity is not controlled by the chemosensory receptors. R. sphaeroides possesses a phosphorelay cascade compatible with that of E. coli, but has additional incompatible homologues.  相似文献   

5.
Two-component regulatory systems, in which phosphorylation controls the activity of a response regulator protein, provide signal transduction in bacteria. For example, the phosphorylated CheY response regulator (CheYp) controls swimming behavior. In Escherichia coli, the chemotaxis phosphatase CheZ stimulates the dephosphorylation of CheYp. CheYp apparently binds first to the C terminus of CheZ and then binds to the active site where dephosphorylation occurs. The phosphatase activity of the CheZ2 dimer exhibits a positively cooperative dependence on CheYp concentration, apparently because the binding of the first CheYp to CheZ2 is inhibited compared to the binding of the second CheYp. Thus, CheZ phosphatase activity is reduced at low CheYp concentrations. The CheZ21IT gain-of-function substitution, located far from either the CheZ active site or C-terminal CheY binding site, enhances CheYp binding and abolishes cooperativity. To further explore mechanisms regulating CheZ activity, we isolated 10 intragenic suppressor mutations of cheZ21IT that restored chemotaxis. The suppressor substitutions were located along the central portion of CheZ and were not allele specific. Five suppressor mutants tested biochemically diminished the binding of CheYp and/or the catalysis of dephosphorylation, even when the suppressor substitutions were distant from the active site. One suppressor mutant also restored cooperativity to CheZ21IT. Consideration of results from this and previous studies suggests that the binding of CheYp to the CheZ active site (not to the C terminus) is rate limiting and leads to cooperative phosphatase activity. Furthermore, amino acid substitutions distant from the active site can affect CheZ catalytic activity and CheYp binding, perhaps via the propagation of structural or dynamic perturbations through a helical bundle.  相似文献   

6.
We prepared fusions of yellow fluorescent protein [the YFP variant of green fluorescent protein (GFP)] with the cytoplasmic chemotaxis proteins CheY, CheZ and CheA and the flagellar motor protein FliM, and studied their localization in wild-type and mutant cells of Escherichia coli. All but the CheA fusions were functional. The cytoplasmic proteins CheY, CheZ and CheA tended to cluster at the cell poles in a manner similar to that observed earlier for methyl-accepting chemotaxis proteins (MCPs), but only if MCPs were present. Co-localization of CheY and CheZ with MCPs was CheA dependent, and co-localization of CheA with MCPs was CheW dependent, as expected. Co-localization with MCPs was confirmed by immunofluorescence using an anti-MCP primary antibody. The motor protein FliM appeared as discrete spots on the sides of the cell. These were seen in wild-type cells and in a fliN mutant, but not in flhC or fliG mutants. Co-localization with flagellar structures was confirmed by immunofluorescence using an antihook primary antibody. Surprisingly, we did not observe co-localization of CheY with motors, even under conditions in which cells tumbled.  相似文献   

7.
To understand output control in bacterial chemotaxis, we varied the levels of expression of cellular cheY and cheZ genes and found that the overproduction of the corresponding proteins affected Escherichia coli swimming behavior. In the absence of other signal-transducing gene products, CheY overproduction made free-swimming cells tumble more frequently. A plot of the fraction of the population that are tumbling versus the CheY concentration was hyperbolic, with half of the population tumbling at 30 microM (25,000 copies per cell) CheY monomers in the cytosol. Overproduction of aspartate receptor (Tar) by 30-fold had a negligible effect on CheY-induced tumbling, so Tar does not sequester CheY. CheZ overproduction decreased tumbling in all tumbling mutants except certain flaAII(cheC) mutants. In the absence of other chemotaxis gene products, CheZ overproduction inhibited CheY-induced tumbling. Models for CheY as a tumbling signal and CheZ as a smooth-swimming signal to control flagellar rotation are discussed.  相似文献   

8.
The site of phosphorylation of the chemotaxis response regulator CheY is aspartate 57. When Asp-57 is replaced with an asparagine, the resultant protein can be phosphorylated at an alternative site. We report here that phosphorylation of this mutant protein, CheY D57N, at the alternative site affords the protein activity in vivo in the absence of CheZ. Using a direct phosphopeptide mapping approach, we identified the alternate phosphorylation site as serine 56. Introduction of a Ser-->Ala substitution at this position in wild-type CheY had no effect on function. However, replacement of Ser-56 with Ala in CheY D57N abrogated the activity seen in vivo for the CheY D57N single mutant protein, and no phosphorylation of the CheY S56A/D57N double mutant protein was observed in vitro. Construction and analysis of double mutants CheY D57N/T87A and CheY D57N/K109R, which were both inactive, suggested that phosphorylation at Ser-56 or Asp-57 may activate the protein by similar mechanisms. In contrast to CheY D57N, mutant CheY D57E displayed no activity in vivo, despite its ability to be phosphorylated in vitro. Acid-base stability analysis indicated that CheY D57E phosphorylates on an acidic residue, presumably Glu-57. These data suggest that a key determinant of the ability of a phosphoryl group to activate CheY is proximity to the hydrophobic core of the protein, with consequent opportunity to reposition key residues, irrespective of the chemical nature of the linkage attaching the phosphoryl group to CheY.  相似文献   

9.
The chemotactic responses of bacteria such as Escherichia coli and Salmonella typhimurium are mediated by phosphorylation of the CheY protein. Phospho-CheY interacts with the flagellar motor switch to cause tumbly behavior. CheY belongs to a large family of phosphorylated response regulators that function in bacteria to control motility and regulate gene expression. Residues corresponding to Asp57, Asp13, and Lys109 in CheY are highly conserved among all of these proteins. The site of phosphorylation in CheY is Asp57, and in the three-dimensional structure of CheY the Asp57 carboxylate side chain is in close proximity to the beta-carboxylate of Asp13 and the epsilon-amin of Lys109. To further examine the roles of these residues in response regulator function, each has been mutated to a conservative substitution. Asn for Asp and Arg for Lys. All mutations abolished CheY function in vivo. Whereas the Asp to Asn mutations dramatically reduced levels of CheY phosphorylation, the Lys to Arg mutation had the opposite effect. The high level of phosphorylation in the Lys109 mutant results from a decreased autophosphatase activity as well as a lack of phosphatase stimulation by the phosphatase activating protein, CheZ. Despite its high level of phosphorylation, the Lys109 mutant protein cannot produce tumbly behavior. Thus, Lys109 is required for an event subsequent to phosphorylation. We propose that an interaction between the epsilon-amino of Lys109 and the phosphoryl group at Asp57 is essential for the conformational switch that leads to activation of CheY.  相似文献   

10.
Chemotaxis, the environment-specific swimming behavior of a bacterial cell is controlled by flagellar rotation. The steady-state level of the phosphorylated or activated form of the response regulator CheY dictates the direction of flagellar rotation. CheY phosphorylation is regulated by a fine equilibrium of three phosphotransfer activities: phosphorylation by the kinase CheA, its auto-dephosphorylation and dephosphorylation by its phosphatase CheZ. Efficient dephosphorylation of CheY by CheZ requires two spatially distinct protein-protein contacts: tethering of the two proteins to each other and formation of an active site for dephosphorylation. The former involves interaction of phosphorylated CheY with the small highly conserved C-terminal helix of CheZ (CheZ(C)), an indispensable structural component of the functional CheZ protein. To understand how the CheZ(C) helix, representing less than 10% of the full-length protein, ascertains molecular specificity of binding to CheY, we have determined crystal structures of CheY in complex with a synthetic peptide corresponding to 15 C-terminal residues of CheZ (CheZ(200-214)) at resolutions ranging from 2.0 A to 2.3A. These structures provide a detailed view of the CheZ(C) peptide interaction both in the presence and absence of the phosphoryl analog, BeF3-. Our studies reveal that two different modes of binding the CheZ(200-214) peptide are dictated by the conformational state of CheY in the complex. Our structures suggest that the CheZ(C) helix binds to a "meta-active" conformation of inactive CheY and it does so in an orientation that is distinct from the one in which it binds activated CheY. Our dual binding mode hypothesis provides implications for reverse information flow in CheY and extends previous observations on inherent resilience in CheY-like signaling domains.  相似文献   

11.
Two chemotaxis-defective mutants of Pseudomonas aeruginosa, designated PC3 and PC4, were selected by the swarm plate method after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. These mutants were not complemented by the P. aeruginosa cheY and cheZ genes, which had been previously cloned (Masduki et al., J. Bacteriol., 177, 948-952, 1995). DNA sequences downstream of the cheY and cheZ genes were able to complement PC3 but not PC4. Sequence analysis of a 9.7-kb region directly downstream of the cheZ gene found three chemotaxis genes, cheA, cheB, and cheW, and seven unknown open reading frames (ORFs). The predicted translation products of the cheA, cheB, and cheW genes showed 33, 36, and 31% amino acid identity with Escherichia coli CheA, CheB, and CheW, respectively. Two of the unknown ORFs, ORF1 and ORF2, encoded putative polypeptides that resembled Bacillus subtilis MotA (40% amino acid identity) and MotB (34% amino acid identity) proteins, respectively. Although P. aeruginosa was found to have proteins similar to the enteric chemotaxis proteins CheA, CheB, CheW, CheY, and CheZ, the gene encoding a CheR homologue did not reside in the chemotaxis gene cluster. The P. aeruginosa cheR gene could be cloned by phenotypic complementation of the PC4 mutant. This gene was located at least 1,800 kb away from the chemotaxis gene cluster and encoded a putative polypeptide that had 32% amino acid identity with E. coli CheR.  相似文献   

12.
The flaAII.2, flaQ, and flaN genes of Salmonella typhimurium are important for assembly, rotation, and counterclockwise-clockwise switching of the flagellar motor. Paralyzed and nonchemotactic mutants were subjected to selection pressure for partial acquisition of motility and chemotaxis, and the suppressor mutations of the resulting pseudorevertants were mapped and isolated. Many of the intergenic suppressor mutations were in one of the other two genes. Others were in genes for cytoplasmic components of the chemotaxis system, notably cheY and cheZ; one of the mutations was found in the cheA gene and one in a motility gene, motB. Suppression among the three fla genes was allele specific, and many of the pseudorevertants were either cold sensitive or heat sensitive. We conclude that the FlaAII.2, FlaQ, and FlaN proteins form a complex which determines the rotational sense, either counterclockwise or clockwise, of the motor and also participates in the conversion of proton energy into mechanical work of rotation. This switch complex is probably mounted to the base of the flagellar basal body and, via binding of the CheY and CheZ proteins, receives sensory information and uses it to control flagellar operation.  相似文献   

13.
K Oosawa  J F Hess  M I Simon 《Cell》1988,53(1):89-96
To examine the correlation between CheA phosphorylation and bacterial chemotaxis, cheA mutations leading to defects in chemotaxis were mapped and characterized. Mutant CheA proteins were tested in vitro for phosphorylation and were grouped into four classes: nonphosphorylated, partially phosphorylated, phosphorylated but not dephosphorylated by CheB and CheY, and phosphorylated and dephosphorylated. Nearly all the mutants were found to be defective in an aspect of phosphorylation. Furthermore, the mutant phenotypes were found to cluster in different regions of the cheA gene. We suggest that the CheA protein has three functional domains: one for interaction with CheB and CheY, a second for regulating phosphorylation and controlling the stability of the protein, and a third for receiving input signals regulating CheA activity.  相似文献   

14.
CheZ Has No Effect on Flagellar Motors Activated by CheY13DK106YW   总被引:4,自引:1,他引:3       下载免费PDF全文
The behaviors of both cheZ-deleted and wild-type cells of Escherichia coli were found to be very sensitive to the level of expression of CheZ, a protein known to accelerate the dephosphorylation of the response regulator CheY-phosphate (CheY-P). However, cells induced to run and tumble by the unphosphorylated mutant protein CheY13DK106YW (CheY**) failed to respond to CheZ, even when CheZ was expressed at high levels. Therefore, CheZ neither affects the flagellar motors directly nor sequesters CheY**. In in vitro cross-linking studies, CheY** promoted trimerization of CheZ to the same extent as wild-type CheY but failed to induce the formation of complexes of higher molecular weight observed with CheY-P. Also, CheY** could be cross-linked to FliM, the motor receptor protein, nearly as well as CheY-P. Thus, to CheZ, CheY** looks like CheY, but to FliM, it looks like CheY-P.  相似文献   

15.
CheY is a response regulator in bacterial chemotaxis. Escherichia coli CheY mutants T87I and T87I/Y106W CheY are phosphorylatable on Asp57 but unable to generate clockwise rotation of the flagella. To understand this phenotype in terms of structure, stable analogs of the two CheY-P mutants were synthesized: T87I phosphono-CheY and T87I phosphono-CheY. Dissociation constants for peptides derived from flagellar motor protein FliM and phosphatase CheZ were determined for phosphono-CheY and the two mutants. The peptides bind phosphono-CheY almost as strongly as CheY-P; however, they do not bind T87I phosphono-CheY or T87I/Y106W phosphono-CheY, implying that the mutant proteins cannot bind FliM or CheZ tightly in vivo. The structures of T87I phosphono-CheY and T87I/Y106W phosphono-CheY were solved to resolutions of 1.8 and 2.4 Å, respectively. The increased bulk of I87 forces the side-chain of Y106 or W106, into a more solvent-accessible conformation, which occludes the peptide-binding site.  相似文献   

16.
In bacterial chemotaxis, phosphorylated CheY levels control the sense of flagella rotation and thereby determine swimming behavior. In E. coli, CheY dephosphorylation by CheZ extinguishes the switching signal. But, instead of CheZ, many chemotactic bacteria contain CheC, CheD, and/or CheX. The crystal structures of T. maritima CheC and CheX reveal a common fold unlike that of any other known protein. Unlike CheC, CheX dimerizes via a continuous beta sheet between subunits. T. maritima CheC, as well as CheX, dephosphorylate CheY, although CheC requires binding of CheD to achieve the activity of CheX. Structural analyses identified one conserved active site in CheX and two in CheC; mutations therein reduce CheY-phosphatase activity, but only mutants of two invariant asparagine residues are completely inactive even in the presence of CheD. Our structures indicate that the flagellar switch components FliY and FliM resemble CheC more closely than CheX, but attribute phosphatase activity only to FliY.  相似文献   

17.
The signal transduction protein CheY displays an alpha/beta-parallel polypeptide folding, including a highly unstable helix alpha4 and a strongly charged active site. Helix alpha4 has been shown to adopt various positions and conformations in different crystal structures, suggesting that it is a mobile segment. Furthermore, the instability of this helix is believed to have functional significance because it is involved in protein-protein contacts with the transmitter protein kinase CheA, the target protein FliM and the phosphatase CheZ. The active site of CheY comprises a cluster of three aspartic acid residues and a lysine residue, all of which participate in the binding of the Mg(2+) needed for the protein activation. Two steps were followed to study the activation mechanism of CheY upon phosphorylation: first, we independently substituted the three aspartic acid residues in the active site with alanine; second, several mutations were designed in helix alpha 4, both to increase its level of stability and to improve its packing against the protein core. The structural and thermodynamic analysis of these mutant proteins provides further evidence of the connection between the active-site area and helix alpha 4, and helps to understand how small movements at the active site are transmitted and amplified to the protein surface.  相似文献   

18.
The signal transduction system that mediates bacterial chemotaxis allows cells to moduate their swimming behavior in response to fluctuations in chemical stimuli. Receptors at the cell surface receive information from the surroundings. Signals are then passed from the receptors to cytoplasmic chemotaxis components: CheA, CheW, CheZ, CheR, and CheB. These proteins function to regulate the level of phosphorylation of a response regulator designated CheY that interacts with the flagellar motor switch complex to control swimming behavior. The structure of CheY has been determined. Magnesium ion is essential for activity. The active site contains highly conserved Asp residues that are required for divalent metal ion binding and CheY phosphorylation. Another residue-at the active site, Lys109, is important in the phosphorylation-induced conformational change that facilitates communication with the switch complex and another chemotaxis component, CheZ. CheZ facilitates the dephosphorylation of phospho-CheY. Defects in CheY and CheZ can be suppressed by mutations in the flagellar switch complex. CheZ is thought to modulate the switch bias by varying the level of phospho-CheY. © 1993 Wiley-Liss, Inc.  相似文献   

19.
Bacterial chemotaxis is a colonization factor for the ulcer-causing pathogen Helicobacter pylori. H. pylori contains genes encoding the chemotaxis signalling proteins CheW, CheA and CheY; CheW couples chemoreceptors to the CheA kinase and is essential for chemotaxis. While characterizing a cheW mutant, we isolated a spontaneous, chemotactic variant (Che+). We determined that this phenotype was caused by a genetic change unlinked to the original cheW mutation. To locate the underlying Che+ mutation, we compared total protein profiles of the non-chemotactic mutant (cheW) with those from the cheW Che+ variant by two-dimensional differential in-gel electrophoresis. One protein was found only in the cheW Che+ variant. This protein was identified by MS/MS as HP0170, a hypothetical protein with no known function. DNA sequencing verified that hp0170 was mutated in the cheW Che+ suppressor, and deletion of this open reading frame in the cheW background nearly recapitulated the Che+ suppressor phenotype. Using hidden Markov models, we found that HP0170 is a remote homologue of E. coli CheZ. CheZ interacts with phosphorylated CheY and stimulates its autodephosphorylation. CheZ was not predicted to be present in epsilon-proteobacteria. We found that chemotaxis in the cheW Che+ suppressor depended on both cheY and cheA. We hypothesize that a small amount of phosphorylated CheY is generated via CheA in the cheW mutant, and this amount is sufficient to affect flagellar rotation when HP0170 is removed. Our results suggest that HP0170 is a remote homologue of CheZ, and that CheZ homologues are found in a broader range of bacteria than previously supposed.  相似文献   

20.
X Zhu  C D Amsler  K Volz    P Matsumura 《Journal of bacteriology》1996,178(14):4208-4215
CheY is the response regulator in the signal transduction pathway of bacterial chemotaxis. Position 106 of CheY is occupied by a conserved aromatic residue (tyrosine or phenylalanine) in the response regulator superfamily. A number of substitutions at position 106 have been made and characterized by both behavioral and biochemical studies. On the basis of the behavioral studies, the phenotypes of the mutants at position 106 can be divided into three categories: (i) hyperactivity, with a tyrosine-to-tryptophan mutation (Y106W) causing increased tumble signaling but impairing chemotaxis; (ii) low-level activity, with a tyrosine-to-phenylalanine change (Y106F) resulting in decreased tumble signaling and chemotaxis; and (iii) no activity, with substitutions such as Y106L, Y106I, Y106V, Y106G, and Y106C resulting in no chemotaxis and a smooth-swimming phenotype. All three types of mutants can be phosphorylated by CheA-phosphate in vitro to a level similar to that of wild-type CheY. Autodephosphorylation rates are similar for all categories of mutants. All mutant proteins displayed less than twofold increased rates compared with wild-type CheY. Binding of the mutant proteins to FliM was similar to that of the wild-type CheY in the CheY-FliM binding assays. The combined results from in vivo behavioral and in vitro biochemical studies suggest that the diverse phenotypes of the Y106 mutants are not due to a variation in phosphorylation or dephosphorylation ability nor in affinity for the switch. With reference to the structures of wild-type CheY and the T871 CheY mutant, our results suggest that rearrangements of the orientation of the tyrosine side chain at position 106 are involved in the signal transduction of CheY. These data also suggest that the binding of phosphoryl-CheY to the flagellar motor is a necessary, but not sufficient, event for signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号