首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary habitats of oral veillonellae are the tongue, dental plaque, and the buccal mucosa. Isolates were obtained from each habitat and tested for coaggregation with a battery of other oral bacterial strains. All 59 tongue isolates tested for coaggregation were Veillonella atypica or Veillonella dispar. All but one of them coaggregated with strains of Streptococcus salivarius, a predominant inhabitant of the tongue surface but not subgingival dental plaque. These tongue isolates were unable to coaggregate with most normal members of the subgingival flora such as Actinomyces viscosus, Actinomyces naeslundii, Actinomyces israelii, and Streptococcus sanguis. In contrast, 24 of 29 Veillonella isolates, of which 20 were Veillonella parvula from subgingival dental plaque samples, coaggregated strongly with the three species of Actinomyces, S. sanguis, and other bacteria usually present in subgingival plaque, but they did not coaggregate with S. salivarius. The majority of isolates from the buccal mucosa (42 of 55) has coaggregation properties like those from the tongue. These results indicate that the three human oral Veillonella species are distributed on oral surfaces that are also occupied by their coaggregation partners and thus provide strong evidence that coaggregation plays a critical role in the bacterial ecology of the oral cavity.  相似文献   

2.
The primary habitats of oral veillonellae are the tongue, dental plaque, and the buccal mucosa. Isolates were obtained from each habitat and tested for coaggregation with a battery of other oral bacterial strains. All 59 tongue isolates tested for coaggregation were Veillonella atypica or Veillonella dispar. All but one of them coaggregated with strains of Streptococcus salivarius, a predominant inhabitant of the tongue surface but not subgingival dental plaque. These tongue isolates were unable to coaggregate with most normal members of the subgingival flora such as Actinomyces viscosus, Actinomyces naeslundii, Actinomyces israelii, and Streptococcus sanguis. In contrast, 24 of 29 Veillonella isolates, of which 20 were Veillonella parvula from subgingival dental plaque samples, coaggregated strongly with the three species of Actinomyces, S. sanguis, and other bacteria usually present in subgingival plaque, but they did not coaggregate with S. salivarius. The majority of isolates from the buccal mucosa (42 of 55) has coaggregation properties like those from the tongue. These results indicate that the three human oral Veillonella species are distributed on oral surfaces that are also occupied by their coaggregation partners and thus provide strong evidence that coaggregation plays a critical role in the bacterial ecology of the oral cavity.  相似文献   

3.
Abstract Using a visual coaggregation assay, 43% (6 of 14) of Prevotella nigrescens and 50% (4 of 8) of Prevotella intermedia strains coaggregated with Actinomyces naeslundii strains which represented the six Actinomyces coaggregation groups (A to F). For both species, coaggregation occurred most frequently with A. naeslundii strains from coaggregation groups C, D and E. No coaggregation was observed with Actinomyces israelii , Actinomyces odontolyticus or six oral Streptococcus species. Coaggregation was not inhibited by lactose, saliva or serum. Pretreatment of Prevotella strains with heat, SDS and proteinase K abolished coaggregation when the treated cells were added to untreated Actinomyces strains. The same pretreatment of the Actinomyces strains had no effect on their ability to coaggregate with untreated Prevotella strains. Pretreatment of all coaggregating P. nigrescens strains with trypsin abolished coaggregation, whereas the coaggregation ability of the P. intermedia and Actinomyces strains was resistant to trypsin pretreatment. Pretreatment of the strains of both Prevotella species and the Actinomyces with periodate abolished coaggregation in all cases. These results suggest that the Prevotella strains each possess a protein coaggregation adhesin, which for the P. intermedia strains is resistant to trypsin, that interacts with a non-protein receptor on the A. naeslundii strains.  相似文献   

4.
Diverse microbial communities chronically colonize the lungs of cystic fibrosis patients. Pyrosequencing of amplicons for hypervariable regions in the 16S rRNA gene generated taxonomic profiles of bacterial communities for sputum genomic DNA samples from 22 patients during a state of clinical stability (outpatients) and 13 patients during acute exacerbation (inpatients). We employed quantitative PCR (qPCR) to confirm the detection of Pseudomonas aeruginosa and Streptococcus by the pyrosequencing data and human oral microbe identification microarray (HOMIM) analysis to determine the species of the streptococci identified by pyrosequencing. We show that outpatient sputum samples have significantly higher bacterial diversity than inpatients, but maintenance treatment with tobramycin did not impact overall diversity. Contrary to the current dogma in the field that Pseudomonas aeruginosa is the dominant organism in the majority of cystic fibrosis patients, Pseudomonas constituted the predominant genera in only half the patient samples analyzed and reported here. The increased fractional representation of Streptococcus in the outpatient cohort relative to the inpatient cohort was the strongest predictor of clinically stable lung disease. The most prevalent streptococci included species typically associated with the oral cavity (Streptococcus salivarius and Streptococcus parasanguis) and the Streptococcus milleri group species. These species of Streptococcus may play an important role in increasing the diversity of the cystic fibrosis lung environment and promoting patient stability.  相似文献   

5.
Oral and sputum isolates of Pseudomonas aeruginosa in patients with cystic fibrosis were investigated. Of the 17 patients studied, 12 patients (71%) yielded both mucoid and nonmucoid variants of Pseudomonas aeruginosa from sputum and (or) various oral ecological sites, such as buccal mucosa, tongue dorsum, dental plaques, and saliva. A total of 51 strains of mucoid and nonmucoid Pseudomonas aeruginosa were isolated from these patients and were phenotypically characterized by both pyocine typing and serotyping. Five patients (42%) were colonized or infected by a single strain of Pseudomonas aeruginosa, whereas 7 patients (58%) were cocolonized or coinfected by two or more phenotypically different strains of Pseudomonas aeruginosa. To understand the mechanisms involved in Pseudomonas aeruginosa colonization, it may be necessary to identify multiple isolates of Pseudomonas aeruginosa not only from the sputum but also from the various oral ecological sites and to further explore the role of the oral cavity in this colonization.  相似文献   

6.
The ability of 59 wild-type strains of Pseudomonas aeruginosa to adhere to the HeLa and Buffalo Green Monkey Kidney (BGMK) cells was investigated. Twenty strains were isolated from sputa of cystic fibrosis patients, while 19 strains were isolated from tracheal aspirates and 20 from bronchial secretions of patients without cystic fibrosis, and they were used as a control group of strains. The statistically significant difference between adherence ability of strains was observed (p < 0.01). While most of the tracheal and bronchial isolates were hyperadhesive (51-110 bacteria per cell) most of the cystic fibrosis isolates adhered poorly to the HeLa and BGMK cells (1-10 bacteria per cell). The bacterial binding to the cells was blocked when bacteria were incubated at 80 degrees C for 20 min before the adherence assay. These results indicate that alginate is not involved in the adherence of P. aeruginosa to the used epithelial cell lines, and, because of that, mucoid strains isolated from persistently colonized cystic fibrosis patients showed poor adherence ability.  相似文献   

7.
Streptococci and actinomyces that initiate colonization of the tooth surface frequently coaggregate with each other as well as with other oral bacteria. These observations have led to the hypothesis that interbacterial adhesion influences spatiotemporal development of plaque. To assess the role of such interactions in oral biofilm formation in vivo, antibodies directed against bacterial surface components that mediate coaggregation interactions were used as direct immunofluorescent probes in conjunction with laser confocal microscopy to determine the distribution and spatial arrangement of bacteria within intact human plaque formed on retrievable enamel chips. In intrageneric coaggregation, streptococci such as Streptococcus gordonii DL1 recognize receptor polysaccharides (RPS) borne on other streptococci such as Streptococcus oralis 34. To define potentially interactive subsets of streptococci in the developing plaque, an antibody against RPS (anti-RPS) was used together with an antibody against S. gordonii DL1 (anti-DL1). These antibodies reacted primarily with single cells in 4-h-old plaque and with mixed-species microcolonies in 8-h-old plaque. Anti-RPS-reactive bacteria frequently formed microcolonies with anti-DL1-reactive bacteria and with other bacteria distinguished by general nucleic acid stains. In intergeneric coaggregation between streptococci and actinomyces, type 2 fimbriae of actinomyces recognize RPS on the streptococci. Cells reactive with antibody against type 2 fimbriae of Actinomyces naeslundii T14V (anti-type-2) were much less frequent than either subset of streptococci. However, bacteria reactive with anti-type-2 were seen in intimate association with anti-RPS-reactive cells. These results are the first direct demonstration of coaggregation-mediated interactions during initial plaque accumulation in vivo. Further, these results demonstrate the spatiotemporal development and prevalence of mixed-species communities in early dental plaque.  相似文献   

8.
Abstract Type strains and 62 clinical isolates of Prevotella intermedia and Prevotella nigrescens were typed with the use of genomic DNA fingerprints and rRNA gene probes. The strains were further serotyped with monoclonal antibodies and characterized with SDS-PAGE, enzymatic activities, hemolysis and hemagglutination and coaggregation with Streptococcus and Actinomyces spp. P. intermedia and P. nigrescens were found to have distinct ribotype patterns which correspond to previously defined serotypes I and II/III, respectively. No clear phenotypic difference related to hemolysis, hemagglutination and coaggregation with Streptococcus and Actinomyces species, or expression of aminopeptides and lipase was found between P. intermedia and P. nigrescens .  相似文献   

9.
Pseudomonas aeruginosa is an important human pathogen, producing lung infection in individuals with cystic fibrosis (CF), patients who are ventilated and those who are neutropenic. The respiratory epithelium provides the initial barrier to infection. Pseudomonas aeruginosa can enter epithelial cells, although the mechanism of entry and the role of intracellular organisms in its life cycle are unclear. We devised a model of infection of polarized human respiratory epithelial cells with P. aeruginosa and investigated the role of the cystic fibrosis transmembrane conductance regulator (CFTR) in adherence, uptake and IL-8 production by human respiratory epithelial cells. We found that a number of P. aeruginosa strains could invade and replicate within cells derived from a patient with CF. Intracellular bacteria did not produce host cell cytotoxicity over a period of 24 h. When these cells were transfected with wild-type CFTR, uptake of bacteria was significantly reduced and release of IL-8 following infection enhanced. We propose that internalized P. aeruginosa may play an important role in the pathogenesis of infection and that, by allowing greater internalization into epithelial cells, mutant CFTR results in an increased susceptibility of bronchial infection with this microbe.  相似文献   

10.
11.
The pilin genes of two Pseudomonas aeruginosa strains isolated from two different patients with cystic fibrosis were cloned and sequenced. The predicted protein sequences of these two pilins had several unusual features compared with other published P. aeruginosa pilin sequences.  相似文献   

12.
The occurrence of denitrification in extremely halophilic bacteria   总被引:3,自引:0,他引:3  
Abstract A total of 97 aerobic and facultatively anaerobic bacteria, and 3 Candida albicans , were tested for their ability to inhibit the growth of Haemophilus influenzae . Only strains of Pseudomonas aeruginosa showed any inhibitory effect and all 5 strains tested clearly inhibited the growth of all 10 strains of H. influenzae . The inhibition of H. influenzae . by Ps. aeruginosa may play a role in the establishment of chronic Ps. aeruginosa infections in the respiratory tracts of patients with bronchiectasis and cystic fibrosis (CF).  相似文献   

13.
Coaggregation is believed to facilitate the integration of new bacterial species into polymicrobial communities. The aim of this study was to investigate coaggregation between and among human oral and enteric bacteria. Stationary phase cultures of 10 oral and 10 enteric species, chosen on the basis of numerical and ecological significance in their respective environments together with their ease of cultivation, were tested using a quantitative spectrophotometric coaggregation assay in all possible pairwise combinations to provide quantitative coaggregation scores. While 40% of possible partnerships coaggregated strongly for oral strains, strong interactions between oral and gut strains were considerably less common (4% incidence). Coaggregation scores were also weak between members of the intestinal microbiota (7% incidence), apart from Bacteroides fragilis with Clostridium perfringens, and Bifidobacterium adolescentis with C. perfringens. Oral and intestinal bacteria did not strongly interact, apart from B. adolescentis with Fusobacterium nucleatum, Actinomyces naeslundii with C. perfringens and F. nucleatum with Lactobacillus paracasei. Heating and sugar-addition experiments indicated that similar to oral microorganisms, interactions within intestinal bacteria and between intestinal and oral strains were mediated by lectin-carbohydrate interactions.  相似文献   

14.
Abstract Lipopolysaccharide (LPS, endotoxin) was extracted from biofilm and planktonically grown monoagglutinable (1118) and polyagglutinable (258 and 15703) strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients with chronic pulmonary infections. Analysis by polyacrylamide gel electrophoresis (PAGE) followed by immune-detection of LPS fractions showed an S-form appearance of strain 1118 and 258 with three distinct clusters of high molecular weight bands, whereas 15703 appeared semi-rough. LPS of semi-rough cells grown planktonically and as biofilm showed a very similar PAGE pattern; however, the core/lipid A R-LPS fraction was more prominent in biofilm-LPS than in planktonic-LPS extracted from the S-form bacteria (1118 and 258). The apparent change in LPS sub-unit components of the bacteria when grown as biofilm may reflect changes in the outer membrane structure that contribute to the altered physico-chemical properties of biofilm bacteria in foreign-device associated infections and chronic P. aeruginosa lung infection in cystic fibrosis patients.  相似文献   

15.
The antigen I/II (AgI/II) family polypeptides, ranging from 1310 to 1653 amino acid (aa) residues, are cell wall anchored adhesins expressed by most indigenous species of oral streptococci. The polypeptides interact with a wide range of host molecules, in particular salivary agglutinin glycoprotein (SAG or gp340), and with ligands on other oral bacteria. To determine the receptor recognition properties of six different AgI/II family polypeptides from strains of Streptococcus gordonii, Streptococcus intermedius and Streptococcus mutans, the genes were cloned and expressed on the surface of the surrogate host Lactococcus lactis. The S. gordonii SspA and SspB polypeptides mediated higher binding levels of L. lactis cells to surface immobilized gp340 than did S. intermedius Pas protein, or S. mutans SpaP or PAc proteins. However, the AgI/II proteins were all similar in their abilities to mediate aggregation of lactococci by fluid phase gp340. The SpaP(I) polypeptide from S. mutans Ingbritt, which was C-terminally truncated by approximately 400 aa residues, did not bind gp340. Lactococci expressing AgI/II proteins, including SpaP(I), were aggregated by a synthetic 16 aa residue peptide SRCRP2 derived from the aa repeat block sequences within gp340. In coaggregation assays, SspB from S. gordonii was unique in mediating coaggregation with only group A and group E strains of Actinomyces naeslundii. All the other AgI/II polypeptides mediated coaggregation with group C and group D strains of A. naeslundii. Analysis of chimeric protein constructs revealed that coaggregation specificity was determined by sequences within the N-terminal half of AgI/II protein. A synthetic peptide (20 aa residues), which defines a putative adhesion epitope within the C-terminal region of polypeptide, inhibited AgI/II-mediated aggregation by gp340 but did not affect coaggregation with A. naeslundii. These results suggest that different mechanisms operate in interactions of AgI/II family polypeptides with native gp340, gp340 SRCR domain peptide, and A. naeslundii. Specificity of these interactions appears to be determined by discontinuous but interacting regions of the polypeptides, thus providing flexibility in receptor recognition for streptococcal colonization of the human host.  相似文献   

16.
Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth   总被引:18,自引:0,他引:18  
The biofilm mode of growth is the survival strategy of environmental bacteria like Pseudomonas aeruginosa. Such P. aeruginosa biofilms also occur in the lungs of chronically infected cystic fibrosis patients, where they protect the bacteria against antibiotics and the immune response. The lung tissue damage is due to immune complex mediated chronic inflammation dominated by polymorphonuclear leukocytes releasing proteases and oxygen radicals.  相似文献   

17.
Pseudomonas aeruginosa strains isolated from cystic fibrosis patients agglutinate in antisera against anti-polyagglutinable antigen (PA). Anti-PA antibodies were formed in rabbits when immunization was carried out with bacteria possessing core-bound PA, independently of whether the strains were of S or R phenotype. For bacterial agglutination with anti-PA antibodies two prerequisites are essential: the bacterial cell must be of R phenotype and must possess the core-linked PA. In contrast, the PA in the isolated LPS's can be demonstrated in passive haemagglutination for both (S or R) phenotypes, provided the PA is core-linked. Two PA forms have been recognized, one found only in P. aeruginosa species, both in free and bound form. The other one is shared by all members of Pseudomonas genus but is present only in a free, unbound form.  相似文献   

18.
Abstract Pseudomonas aeruginosa strains isolated from cystic fibrosis patients agglutinate in antisera against anti-polyagglutinable antigen (PA). Anti-PA antibodies were formed in rabbits when immunization was carried out with bacteria possessing core-bound PA, independently of whether the strains were of S or R phenotype. For bacterial agglutination with anti-PA antibodies two prerequisites are essential: the bacterial cell must be of R phenotype and must possess the core-linked PA. In contrast, the PA in the isolated LPS's can be demonstrated in passive haemagglutination for both (S or R) phenotypes, provided the PA is core-linked. Two PA forms have been recognized, one found only in P. aeruginosa species, both in free and bound form. The other one is shared by all members of Pseudomonas genus but is present only in a free, unbound form.  相似文献   

19.
The inability of neutrophils to eradicate Pseudomonas aeruginosa within the cystic fibrosis (CF) airway eventually results in chronic infection by the bacteria in nearly 80 percent of patients. Phagocytic killing of P. aeruginosa by CF neutrophils is impaired due to decreased cystic fibrosis transmembrane conductance regulator (CFTR) function and virulence factors acquired by the bacteria. Recently, neutrophil extracellular traps (NETs), extracellular structures composed of neutrophil chromatin complexed with granule contents, were identified as an alternative mechanism of pathogen killing. The hypothesis that NET-mediated killing of P. aeruginosa is impaired in the context of the CF airway was tested. P. aeruginosa induced NET formation by neutrophils from healthy donors in a bacterial density dependent fashion. When maintained in suspension through continuous rotation, P. aeruginosa became physically associated with NETs. Under these conditions, NETs were the predominant mechanism of killing, across a wide range of bacterial densities. Peripheral blood neutrophils isolated from CF patients demonstrated no impairment in NET formation or function against P. aeruginosa. However, isogenic clinical isolates of P. aeruginosa obtained from CF patients early and later in the course of infection demonstrated an acquired capacity to withstand NET-mediated killing in 8 of 9 isolates tested. This resistance correlated with development of the mucoid phenotype, but was not a direct result of the excess alginate production that is characteristic of mucoidy. Together, these results demonstrate that neutrophils can kill P. aeruginosa via NETs, and in vitro this response is most effective under non-stationary conditions with a low ratio of bacteria to neutrophils. NET-mediated killing is independent of CFTR function or bacterial opsonization. Failure of this response in the context of the CF airway may occur, in part, due to an acquired resistance against NET-mediated killing by CF strains of P. aeruginosa.  相似文献   

20.
Streptococcus gordonii DL1 (Challis) bears coaggregation-mediating surface adhesins which recognize galactoside-containing surface polysaccharides onStreptococcus oralis 34,Streptococcus oralis C104, andStreptococcus SM PK509. Fifty-nine spontaneously-occurring coaggregation-defective (Cog) mutants ofS. gordonii DL1 unable to coaggregate with partner streptococci were isolated. Six representative Cog mutants were characterized by their coaggregation properties with fourActinomyces naeslundii strains (T14V, PK947, PK606, PK984),Veillonella atypica PK1910, andPropionibacterium acnes PK93. The six representative Cog mutants showed altered coaggregation with their streptococcal partners,A. naeslundii PK947, andP. acnes PK93. Based on the coaggregation phenotypes of these mutants, a model for the lactose-inhibitable coaggregation betweenS. gordonii DL1 and its partner bacteria is proposed. The potential use of these mutants in studies of oral biofilms is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号