首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression balance of M2 and M3 muscarinic receptor subtypes on the pathogenesis of airway hyperresponsiveness was investigated by using two congenitally related strains of guinea pigs, bronchial-hypersensitive (BHS) and bronchial-hyposensitive (BHR). CCh-induced airway responses in vivo and in vitro were investigated by comparing the effects of muscarinic receptor subtype antagonists, and the relative amounts of M2 and M3 muscarinic receptor mRNA in tracheal smooth muscle and lung tissue were investigated. After treatment with muscarinic receptor subtype antagonists, the ventilatory mechanics (VT, Raw, and Cdyn) of response to CCh aerosol inhalation were measured by the bodyplethysmograph method. The effects of these antagonists on CCh-induced tracheal smooth muscle contraction were also investigated. The effects of M2 muscarinic receptor blockade were less but the effects of M3 muscarinic receptors blockade on the airway contractile responses were greater in BHS than in BHR. In M3 muscarinic receptor blockades, CCh-induced tracheal contractions in BHS were significantly greater than those in BHR. In tracheal smooth muscle from BHS, the relative amount of M2 muscarinic receptors mRNA was less but that of M3 muscarinic receptor mRNA was more than those in BHR. These results suggest that the high ACh level as a consequence of dysfunction of M2 muscarinic autoreceptors and the excessive effect of M3 muscarinic receptors on the airway smooth muscle may play an important role in the pathogenesis of airway hyperresponsiveness.  相似文献   

2.
In a previous study, we reported that as model animals to be used in the study of bronchial asthma in humans, two lines of guinea pigs were developed by ourselves: bronchial hypersensitive line (BHS) and bronchial hyposensitive line (BHR) as a control. Studies on biological characteristics in guinea pigs of two lines were undertaken, and the following results were obtained. 1) Airway resistance of guinea pigs of the two lines to intravenously administered acetylcholine, histamine and leukotriene D4 was found to be different between BHS and BHR. Airway resistance of BHS to the chemicals was increased compared with those of BHR. 2) The number of muscarinic acetylcholine receptors in lung membrane preparation and its affinity increased significantly in BHS compared with those of BHR. In beta-adrenergic and histamine H1 receptors, there was observed no difference between BHS and BHR. 3) No difference in IgE antibody production to ovalbumin was observed between BHS and BHR. 4) When total leukocytes and differential leukocyte count (percentage, %) in peripheral blood of BHS and BHR were examined, relative percentage of lymphocytes and eosinophils was significantly higher in BHS than in BHR, while percentage of neutrophils was significantly lower in the former than in the latter.  相似文献   

3.
We studied the characteristics of the rhythmicity of heart rate (HR), body temperature (BT), locomotor activity (LA) and autonomic nervous activity in bronchial-hypersensitive (BHS) and bronchial-hyposensitive (BHR) guinea pigs. For this purpose, HR, BT, LA, and electrocardiogram (ECG) were recorded from conscious and unrestrained guinea pigs using a telemetry system. Autonomic nervous activity was analyzed by power spectral analysis of heart rate variability. Nocturnal patterns, in which the values in the dark phase (20:00-06:00) were higher than those in the light phase (06:00-20:00), were observed in HR, BT and LA in both strains of guinea pigs. The autonomic nervous activity in BHS guinea pigs showed a daily pattern, although BHR guinea pigs did not show such a rhythmicity. The high frequency (HF) power in BHS guinea pigs was higher than that in BHR guinea pigs throughout the day. Moreover, the low frequency/high frequency (LF/HF) ratio in BHS guinea pigs was lower than that in BHR guinea pigs throughout the day. These results suggest that parasympathetic nervous activity may be predominant in BHS guinea pigs.  相似文献   

4.
The effects of nebulized diuretics on citric acid-induced cough and airway obstruction in guinea pigs and capsaicin-induced cough and increase in airway resistance in humans have been studied. Half-maximum inhibition of cough in the guinea pig was produced by 1.3 mM furosemide and 0.25 mM hydrochlorothiazide. Cough was inhibited by 78 +/- 9% by 3 mM furosemide (P less than 0.05) and 89 +/- 11% by 3 mM hydrochlorothiazide (P less than 0.01). At the same time, airway obstruction was inhibited by 50 +/- 9% (P less than 0.001) and 42 +/- 15% (P less than 0.05), respectively. Nebulized furosemide (3 mM) was without effect on the airway obstruction produced by inhaled histamine or acetylcholine in the guinea pigs. Intravenously administered furosemide (270 nmol/kg) did not affect citric acid-induced responses. In humans, aerosolized furosemide (9 mM) and hydrochlorothiazide (3.4 mM) reduced the percent increase in respiratory resistance from 22.1 +/- 3.7 and 15.6 +/- 3.4 to 10.5 +/- 4.9 and 9.4 +/- 3.3%, respectively (P less than 0.05), but were without effect on cough due to capsaicin. Thus both furosemide and hydrochlorothiazide inhibited airway obstruction in the guinea pig and reduced the capsaicin-induced increase in airway resistance in humans. However, whereas coughing was inhibited in the guinea pig, neither drug affected cough in humans. This difference in the action of the loop diuretic and thiazide, which interact differently with Na(+)-K(+)-Cl-transport within the airway mucosa, on the cough and airflow obstruction in guinea pig and humans supports the view that different sensory limbs are involved in these reflexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Experiments carried out in conscious guinea pigs suggest that citric acid-evoked coughing is partly mediated by transient receptor potential vanilloid type 1 (TRPV1) receptor-dependent activation of tachykinin-containing, capsaicin-sensitive C fibers. In vitro electrophysiological analyses indicate, however, that acid also activates capsaicin-sensitive and -insensitive vagal afferent nerves by a TRPV1-independent mechanism, and studies in anesthetized guinea pigs show that coughing evoked by acid is mediated by activation of capsaicin-insensitive vagal afferent nerves. In the present study, we have characterized the mechanisms of citric acid-evoked coughing in anesthetized guinea pigs. Drugs were administered directly to the Krebs buffer perfusing the extrathoracic trachea. Citric acid was applied topically to the tracheal mucosa, directly into the tracheal perfusate in increasing concentrations and at 1-min intervals. Citric acid dose dependently evoked coughing in anesthetized guinea pigs. This was mimicked by hydrochloric acid but not by sodium citrate. The coughing evoked by acid was nearly or completely abolished by TTX or by cutting the recurrent laryngeal nerves. Perfusing the trachea with a low Cl- buffer potentiated the acid-induced cough reflex. In contrast, prior capsaicin desensitization, 10 microM capsazepine, Ca2+-free perfusate, 0.1 microM iberiotoxin, 1 microM atropine, 10 microM isoproterenol, 10 microM albuterol, 3 microM indomethacin, 0.1 microM HOE-140, a combination of neurokinin1 (NK1; CP-99994), NK2 (SR-48968), and NK3 (SB-223412) receptor antagonists (0.1 microM each), a combination of histamine H1 (3 microM pyrilamine) and cysLT1 (1 microM ICI-198615) receptor antagonists, superior laryngeal nerve transection, or epithelium removal did not inhibit citric acid-evoked coughing. These and other data indicate that citric acid-evoked coughing in anesthetized guinea pigs is mediated by direct activation of capsaicin-insensitive vagal afferent nerves, perhaps through sequential activation of acid-sensing ion channels and chloride channels.  相似文献   

6.
《Phytomedicine》2015,22(12):1088-1095
BackgroundThe aerial parts of Peganum harmala L. (APP) is a well-known and effective herbal medicine in China, and has been commonly used for treating various ailments, including cough and asthma.ObjectivesTo evaluate the antitussive, expectorant, and bronchodilating effects of the quinazoline alkaloids (±)-vasicine (VAS), deoxyvasicine (DVAS) (both isolated from the alkaloid fraction of APP) and (±)-vasicinone (VAO) (synthesized from VAS).MethodsThe three quinazoline alkaloids were tested as antitussive on cough models in mice and guinea pigs. VAO was synthesized from VAS via the oxidation of hydrogen peroxide. VAS, VAO, and DVAS were orally administered at dosages of 5, 15, and 45 mg/kg. Cough in these models was induced by ammonia, capsaicin, and citric acid. Phenol red secretion experiments in mice were performed to evaluate the expectorant activity of the alkaloids. Bronchodilating effects were evaluated by using a bronchoconstrictive induced by acetylcholine chloride and histamine in guinea pigs.ResultsIn antitussive tests, VAS, VAO, and DVAS significantly inhibited coughing frequency and prolonged the cough latency period in animals. At the highest doses tested (45 mg/kg), they showed antitussive activities similar to codeine phosphate (30 mg/kg) in mice and guinea pigs. Expectorant evaluation showed that VAS, VAO, and DVAS could significantly increase phenol red secretion in mice by 0.54-, 0.79- and 0.97-fold, by 0.60-, 0.99-, and 1.06-fold, and by 0.46-, 0.73-, and 0.96-fold, respectively, at dosages of 5, 15, and 45 mg/kg compared with the control (0.5% CMC-Na, 20 ml/kg). Ammonium chloride at 1500 mg/kg increased phenol red secretion in mice by 0.97-fold compared with the control. Bronchodilation tests showed that VAS, VAO, and DVAS prolonged the pre-convulsive time for 28.59%, 57.21%, and 29.66%, respectively, at a dose of 45 mg/kg in guinea pigs, whereas aminophylline prolonged the pre-convulsive time by 46.98% compared with pretreatment.ConclusionsQuinazoline alkaloids VAS, VAO, and DVAS have significant antitussive, expectorant, and bronchodilating activities. VAS, VAO, and DVAS are the active ingredients in APP, which can be used to treat respiratory disease.  相似文献   

7.
The hypothesis that respiratory reflexes, such as cough, reflect the net and often opposing effects of activation of multiple afferent nerve subpopulations throughout the airways was evaluated. Laryngeal and tracheal mucosal challenge with either citric acid or mechanical probing reliably evoked coughing in anesthetized guinea pigs. No other stimulus reliably evoked coughing in these animals, regardless of route of administration and despite some profound effects on respiration. Selectively activating vagal C-fibers arising from the nodose ganglia with either adenosine or 2-methyl-5-HT evoked only tachypnea. Selectively activating vagal afferents arising from the jugular ganglia induced respiratory slowing and apnea. Nasal afferent nerve activation by capsaicin, citric acid, hypertonic saline, or histamine evoked only respiratory slowing. Histamine, which activates intrapulmonary rapidly adapting receptors but not airway or lung C-fibers or tracheal bronchial cough receptors induced bronchospasm and tachypnea, but no coughing. The results indicate that the reflexes initiated by stimuli thought to be selective for some afferent nerve subtypes will likely depend on the net and potentially opposing effects of multiple afferent nerve subpopulations throughout the airways. The data also provide further evidence that the afferent nerves regulating cough in anesthetized guinea pigs are distinct from either C-fibers or intrapulmonary rapidly adapting receptors.  相似文献   

8.
Loop diuretics have been shown to inhibit cough and other airway defensive reflexes via poorly defined mechanisms. We test the hypothesis that the furosemide-sensitive Na+-K+-2Cl- cotransporter (NKCC1) is expressed by sensory nerve fibers innervating the airways where it plays an important role in regulating sensory neural activity. NKCC1 immunoreactivity was present on the cell membranes of most nodose and jugular ganglia neurons projecting to the trachea, and it was present on the peripheral terminals of putative mechanosensory nerve fibers in the airways. In urethane-anesthetized, spontaneously breathing guinea pigs, bolus application of citric acid (1 mM to 2 M) to an isolated and perfused segment of the tracheal mucosa evoked coughing and respiratory slowing. Removal of Cl- from the tracheal perfusate evoked spontaneous coughing and significantly potentiated cough and respiratory slowing reflexes evoked by citric acid. The NKCC1 inhibitor furosemide (10-100 microM) significantly reduced both the number of coughs evoked by citric acid and the degree of acid-evoked respiratory slowing (P < 0.05). Localized tracheal pretreatment with the Cl- channel inhibitors DIDS or niflumic acid (100 microM) also significantly reduced cough, whereas the GABAA receptor agonist muscimol potentiated acid-evoked responses. These data suggest that vagal sensory neurons may accumulate Cl- due to the expression of the furosemide-sensitive Cl- transporter, NKCC1. Efflux of intracellular Cl-, in part through calcium-activated Cl- channels, may play an important role in regulating airway afferent neuron activity.  相似文献   

9.
To clarify the effect of acetylcholinesterase (AChE) on the pathogenesis of airway hyperresponsiveness, AChE activities in tracheal smooth muscle and lung tissue from congenitally bronchial-hypersensitive (BHS) and bronchial-hyposensitive (BHR) guinea pigs were compared. For this purpose, AChE activities were determined by measuring the rate of absorbance of tissue homogenate. Relative amounts of AChE mRNA were also evaluated by the RT-PCR method. In both tracheal smooth muscle and lung tissue from BHS, the AChE activity and the relative amount of AChE mRNA were less than those in BHR. These results suggest that the reduced AChE activity is at least a candidate for inducing airway hyperresponsiveness.  相似文献   

10.
The aim of this study was to elucidate the role of thromboxane A(2) (TxA(2)) on asthma-related cough in guinea pigs. Animals were immunosensitized and repeatedly challenged with ovalbumin as an antigen. Coughs were induced by the inhalation of 10(-5) M capsaicin solution for 10 min. Thromboxane synthetase (TxS) inhibitor OKY-046 and thromboxane-receptor antagonist AA-2414 significantly inhibited cough responses in repeatedly challenged animals. Inhalation of TxA(2) mimic STA-2- potentiated cough responses in normal and immunosensitized animals but not in repeatedly challenged ones. Moreover, STA-2-potentiated coughs were inhibited by administration of neurokinin-receptor antagonist FK-224. In repeatedly challenged animals, concentration of TxB(2) in airway lavage fluid, expression of TxS mRNA in tracheal epithelia, and the immunostaining intensity against TxS in mucous cells of the epithelium significantly increased compared with normal and sensitized animals. These results suggest that TxA(2) derived from mucous cells potentiated cough responses to capsaicin in allergic airway inflammation.  相似文献   

11.
We developed two lines of guinea pigs, one as model animals for bronchial asthma with bronchial hypersensitivity and the other with hyposensitivity as a control. In the last four years, the bronchial hypersensitive line (BHS) and hyposensitive line (BHR), both derived from Hartley strain guinea pigs, have been selected by using bronchial reactivity to acetylcholine and to histamine as parameters. Both lines have reached the F6 generation. The following results were obtained with the two lines: 1) Sib and cous in matings, and mating of selected consanguineous individuals were adopted in breeding BHS and BHR. The breeding started with six families, each, but in the F6 generation the number of families decreased to two in each line. 2) Appearance rates of hyper- or hyposensitivity to acetylcholine and histamine increased with successive generations in both lines, which had been completely separated by the F6 generation. 3) Coefficients of inbreeding in BHS and BHR in the F6 generation ranged from 42% to 45% in the former and 42% in the latter. 4) Heritabilities (h2) of BHS and BHR for the appearance rates of sensitivity to acetylcholine were presumed to be 0.54 in the former and 0.69 in the latter. 5) No difference in the body weight of 0, 20, and 40 day-old BHS was observed in any generation. On the other hand, the body weight of 20 and 40 day-old BHR tended to decrease with successive generations. 6) Mean litter sizes of BHS and BHR in each of the generations ranged from 2.24 to 3.47 animals in the former and from 2.63 to 3.38 animals in the latter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Toxic influence of high oxygen concentration on pulmonary function and structures has been known for many years. However, the influence of high oxygen concentration breathing on defensive respiratory reflexes is still not clear. In our previous experiments, we found an inhibitory effect of 100 % oxygen breathing on cough reflex intensity in healthy guinea pigs. The present study was designed to detect the effects of hyperoxia on cough reflex in guinea pigs with allergic airway inflammation. In the first phase of our experiment, the animals were sensitized with ovalbumin. Thirty-two sensitized animals were used in two separate experiments according to oxygen concentration breathing: 100 % or 50 % oxygen for 60 h continuously. In each experiment, one group of animals was exposed to hyperoxia, another to ambient air. The cough reflex was induced both by aerosol of citric acid before sensitization, then in sensitized animals at 24 h and 60 h of exposition to oxygen/air in awake animals, and by mechanical stimulation of airway mucosa in anesthetized animals just after the end of the experiment. In contrast to 50 % oxygen, 100 % oxygen breathing leads to significant decrease in chemically induced cough in guinea pigs with allergic inflammation. No significant changes were present in cough induced by mechanical stimulation of airways.  相似文献   

13.
To test the hypothesis that the development of airway hyperresponsiveness (AHR) lasting greater than or equal to 3 days after the last antigenic exposure required repeated mediator release, we compared dose-response changes in lung resistance (RL) to acetylcholine (ACh) in animals sensitized with 1% ovalbumin (OA), 4% Bordatella pertussis aerosol and subsequently challenged with 0.5% OA aerosol twice weekly for 4-6 wk vs. animals receiving saline aerosol instead of OA. Despite antihistamine pretreatment, each OA challenge produced cyanosis and inspiratory indrawing. Blood gas analysis in six guinea pigs revealed an immediate fall in arterial PO2 (PaO2) from 104.3 +/- 4.9 to 35.4 +/- 2.2 Torr after a 1-min exposure to aerosolized OA. ACh dose-response measurements of RL 3 days after the last OA challenge demonstrated a leftward shift and an increased magnitude of response. These differences were less marked at 7 days, and by 14 days after the last OA challenge, ACh dose-response curves were not different from those of control guinea pigs. Sensitization without repeated antigen challenge did not cause hyperresponsiveness. Morphometric analysis showed significantly increased numbers of eosinophils in the epithelium of airways in hyperresponsive guinea pigs, without neutrophil infiltration or alterations in epithelium and airway wall areas. We conclude that repeated antigenic challenge, but not sensitization alone, causes prolonged AHR in guinea pigs, which is associated with tissue eosinophilia.  相似文献   

14.
Endotheline-1 (ET-1) has been shown to enhance tachykinin-induced airway constriction. This study was designed to test whether ET-1 is involved in citric acid-induced bronchoconstriction. Forty-eight anesthetized-paralyzed guinea pigs were divided into six groups of 8 animals each: saline control; citric acid; ET-1; ET-1 + citric acid; BQ123 + ET-1 + citric acid; and BQ788 + ET-1 + citric acid. BQ123 and BQ788 are specific ETA and ETB receptor antagonists, respectively. Each animal in the saline control group received 50 breaths of 4 ml saline aerosol and in all citric acid-treated groups was given 50 breaths of 4 ml aerosol generated from 0.6 M citric acid. In all ET-1-treated groups, each animal was exposed to aerosol generated from 10(-8) M ET-1. The animal in the ET-1 + citric acid group was exposed to ET-1 5 min prior to the citric acid. For the last two groups, each animal was first exposed to aerosol generated from either 10(-5) M BQ123 or 10(-5) M BQ788. Five min later, the animal was exposed to ET-1; and then 5 min later was followed by citric acid. Dynamic respiratory compliance (Crs), forced expiratory volume in 0.1 sec (FEV(0.1)), and maximal expiratory flow at 30% total lung capacity (Vmax 30) were obtained before and 3-15 min after citric acid. Either citric acid or ET-1 inhalation caused significant decreases in Crs, FEV(0.1), and Vmax 30, indicating airway constriction. Citric acid-induced airway constriction, for most cases, was not significantly augmented by ET-1. However, either BQ123 or BQ 788 significantly attenuated the airway constriction induced by the combination of ET-1 and citric acid. Also, in an additional study, either BQ123 or BQ788 significantly attenuated citric acid-induced airway constriction. These data suggest that endogenous ET-1 plays an important role in citric acid aerosol-induced airway constriction in guinea pigs.  相似文献   

15.
To evaluate the contribution of vagal airway receptors to ventilatory control during hypercapnia, we studied 11 normal humans. Airway receptor block was induced by inhaling an aerosol of lidocaine; a preferential upper oropharyngeal block was also induced in a subgroup by gargling a solution of the anesthetic. Inhalation of lidocaine aerosol adequate to increase cough threshold, as measured by citric acid, did not change the ventilatory response to CO2, ratio of the change in minute ventilation to change in alveolar PCO2 (delta VI/delta PACO2), compared with saline control. Breathing pattern at mean CO2-stimulated ventilation of 25 l/min showed significantly decreased respiratory frequency, increased tidal volume, and prolonged inspiratory time compared with saline. Resting breathing pattern also showed significantly increased tidal volume and inspiratory time. In nine of the same subjects gargling a lidocaine solution adequate to extinguish gag response without altering cough threshold did not change delta VI/delta PACO2 or ventilatory pattern during CO2-stimulated or resting ventilation compared with saline. These results suggest that lower but not upper oropharyngeal vagal airway receptors modulate breathing pattern during hypercapnic as well as resting ventilation but do not affect delta VI/delta PACO2.  相似文献   

16.
Mechanism of A23187-induced airway obstruction in the guinea pig   总被引:1,自引:0,他引:1  
Exposure of conscious guinea pigs to A23187 aerosol produced a concentration-related increase of excised lung gas volumes (ELGV), i.e., postmortem pulmonary gas trapping. Measurements of ELGV were highly correlated with in vivo measurements of dynamic compliance (Cdyn) and total pulmonary resistance (RL) and were used as an indication of in vivo airway obstruction. We pretreated guinea pigs intravenously with the following drugs: atropine; LY163443, a selective LTD4/E4 antagonist; indomethacin; propranolol; and pyrilamine. The guinea pigs were exposed for 8 minutes to the A23187 aerosol, and ELGV measurements were then made. Atropine or pyrilamine prevented the A23187-induced gas trapping. Indomethacin or propranolol tended to potentiate the response and when combined, they potentiated the gas trapping by 80%. LY163443 had no effect alone, but when combined with indomethacin, propranolol, and pyrilamine, inhibited A23187-induced gas trapping by 67%. We conclude that cholinergic and histaminergic mechanisms play major roles in the ionophore-induced pulmonary gas trapping of the guinea pig. With appropriate pretreatment, sulfidopeptide leukotrienes may produce a substantial effect.  相似文献   

17.
Excessive coughing is a common feature of airway diseases. Different G-protein coupled receptors, including β2-adrenergic receptors (β2-AR), have been implicated in the molecular mechanisms underlying the cough reflex. However, the potential antitussive property of β2-AR agonists in patients with respiratory disease is a matter of ongoing debate. The aim of our study was to test the efficacy of the long-acting β2-AR agonist olodaterol with regard to its antitussive property in a pre-clinical model of citric acid-induced cough in guinea pigs and to compare the results to different clinically relevant β2-AR agonists. In our study β2-AR agonists were intratracheally administered, as dry powder, into the lungs of naïve or ovalbumin-sensitized guinea pigs 15 minutes prior to induction of cough by exposure to citric acid. Cough events were counted over 15 minutes during the citric acid exposure. Olodaterol dose-dependently inhibited the number of cough events in naïve and even more potently and with a greater maximal efficacy in ovalbumin-sensitized guinea pigs (p < 0.01). Formoterol and salmeterol showed a trend towards reducing cough. On the contrary, indacaterol demonstrated pro-tussive properties as it significantly increased the number of coughs, both in naïve and ovalbumin-sensitized animals (p < 0.001). In conclusion, olodaterol, at doses eliciting bronchodilation, showed antitussive properties in a model of citric acid-induced cough in naïve and ovalbumin-sensitized guinea pigs. This is in agreement with pre-clinical and clinical studies showing antitussive efficacy of β2-AR agonists. Indacaterol increased the number of coughs in this model, which concurs with clinical data where a transient cough has been observed after indacaterol inhalation. While the antitussive properties of β2-AR agonists can be explained by their ability to lead to the cAMP-induced hyperpolarization of the neuron membrane thereby inhibiting sensory nerve activation and the cough reflex, the mechanism underlying the pro-tussive property of indacaterol is not known.  相似文献   

18.
We investigated whether the airway constrictive response to stimulation of bronchopulmonary C-fiber afferents is altered during the maturation process. Isometric tension was measured in airway rings isolated from three tracheobronchial locations (intrathoracic trachea and main and hilar bronchi) and compared in mature [M, 407 +/- 10 (SE) g body wt, n = 36] and immature (IM, 161 +/- 5 g body wt, n = 35) guinea pigs. Our results showed no difference in the ACh (10(-5) M)- or KCl (40 mM)-induced contraction between M and IM groups, regardless of the airway location. In sharp contrast, the concentration-response curves of 10(-8)-10(-6) M capsaicin were distinctly lower in IM hilar bronchi; for example, response to the same concentration of capsaicin (10(-6) M) was 89.2 +/- 15.3% of the response to 10(-5) M ACh in IM and 284.7 +/- 43.2% in M animals. Similar, but smaller, differences in the bronchoconstrictive response to capsaicin between IM and M groups were also observed in the trachea and main bronchus. Electrical field stimulation induced airway constriction in all three locations in M and IM groups. However, after administration of 10(-6) M atropine and 10(-6) M propranolol, electrical field stimulation-induced contraction was significantly smaller in the hilar bronchus of IM than M animals, and this difference was not prevented by pretreatment with 5 x 10(-5) M indomethacin. Although radioimmunoassay showed no difference in the tissue content of substance P between M and IM airways, the constrictive responses to exogenous substance P and neurokinin A were markedly greater in M airways at all three locations. In conclusion, the constriction of isolated airways evoked by C-fiber stimulation was significantly weaker in the IM guinea pigs, probably because of a less potent effect of tachykinins on the airway smooth muscle.  相似文献   

19.
Tobacco smoke (TS) exposure induces airway hyperreactivity, particularly in sensitive individuals with asthma. However, the mechanism of this airway hyperreactivity is not well understood. To investigate the relative susceptibility of atopic and nonatopic individuals to TS-induced airway hyperreactivity, we exposed ovalbumin (OA)-sensitized and nonsensitized guinea pigs to TS exposure (5 mg/l air, 30-min exposure, 7 days/wk for 120-156 days). Two similar groups exposed to compressed air served as controls. Airway reactivity was assessed as an increase in enhanced pause (Penh) units using a plethysmograph that allowed free movement of the animals. After 90 days of exposure, airway reactivity increased in OA-TS guinea pigs challenged with capsaicin, bradykinin, and neurokinin A fragment 4--10 aerosols. In addition, substance P content increased in lung perfusate of OA-TS guinea pigs in response to acute TS challenge compared with that of the other groups. Airway hyperirritability was not enhanced by phosphoramidon but was attenuated by a cocktail of neurokinin antagonists, nor was airway hyperreactivity observed after either methacholine or histamine challenge in OA-TS guinea pigs. Chronic TS exposure enhanced neither airway reactivity to histamine or methacholine nor contractility of isolated tracheal rings. In conclusion, chronic TS exposure increased airway reactivity to capsaicin and bradykinin aerosol challenge, and OA-TS guinea pigs were most susceptible to airway dysfunction as the result of exposure to TS compared with the other groups. Increased airway reactivity to capsaicin suggests a mechanism involving neurogenic inflammation, such as increased activation of lung C fibers.  相似文献   

20.
Airway hyperreactivity in antigen-challenged animals is mediated by eosinophil major basic protein (MBP) that blocks inhibitory M(2) muscarinic receptors on parasympathetic nerves, increasing acetylcholine release onto M(3) muscarinic receptors on airway smooth muscle. Acutely, anticholinergics block hyperreactivity in antigen-challenged animals and reverse asthma exacerbations in the human, but are less effective in chronic asthma. We tested whether atropine, given before antigen challenge, affected hyperreactivity, M(2) receptor function, eosinophil accumulation, and activation. Sensitized guinea pigs received atropine (1 mg/kg ip) 1 h before challenge and 6 h later. Twenty-four hours after challenge, animals were anesthetized, vagotomized, paralyzed, and ventilated. Airway reactivity to electrical stimulation of the vagi and to intravenous acetylcholine was not altered by atropine pretreatment in nonsensitized animals, indicating that atropine was no longer blocking postjunctional muscarinic receptors. Antigen challenge induced airway hyperreactivity to vagal stimulation that was significantly potentiated by atropine pretreatment. Bronchoconstriction induced by acetylcholine was not changed by antigen challenge or by atropine pretreatment. M(2) receptor function was lost in challenged animals but protected by atropine pretreatment. Eosinophils in bronchoalveolar lavage and within airway tissues were significantly increased by challenge but significantly reduced by atropine pretreatment. However, extracellular MBP in challenged airways was significantly increased by atropine pretreatment, which may account for reduced eosinophils. Depleting eosinophils with antibody to IL-5 before challenge prevented hyperreactivity and significantly reduced MBP in airways of atropine-pretreated animals. Thus atropine pretreatment potentiated airway hyperreactivity by increasing eosinophil activation and degranulation. These data suggest that anticholinergics enhance eosinophil interactions with airway nerves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号