首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
[RuII(Me2edda)(H2O)2] (1), Me2edda2− = N,N′-dimethylethylenediaminediacetate, exhibits a sterically-controlled molecular recognition in forming η2 and η4 olefin complexes. 1 exists with an N2O2 in-plane set of chelate donors and axial H2O ligands. The two CH3 functionalities of Me2edda2− are poised above and below the N2O2 plane of the glycinato rings. Studies herein of the 2,2′-bipyridine complex, [RuII(Me2edda)(bpy)], with bidentate bpy chelation as established via 1H NMR and electrochemical methods show 1 to be ligated in the S,S configuration with the glycinato rings in-plane as a cis-O form. 1 is sterically discriminating in forming η2 complexes with smaller olefins (ethylene, 2-propene, cis-2-butene, methyl vinyl ketone and 3-cyclohexene-1-methanol), but rejects larger decorated ring structures and branched olefins (1,2-dimethyluracil, cyclohexene-1-one 2-methyl-2-propene). η2 complexes of 1 have characteristic RuII/III DPP waves near 0.55 V which vary slightly with olefin structure. Potentially bidendate dienes (1,3-butadiene, 1,3-cyclohexadiene and 2,5-norbornadiene (nbd) form η4 complexes as shown by RuII/III waves between 0.94 and 1.30 V, indicate of a highly stabilized RuII center by π-backboning. An η2η4 ‘equilibrium’ with apparent K = 22 at 25 °C is observed for nbd coordinated to 1. (The η2 and η4 distribution may be a kinetic one and not a thermodynamic one). To allow formation of the cis η4 complexes, 1 must undergo a shift of one or both glycinato donors from the N2O2 plane into the axial site away from the dimethyl functionalities. η4 chelation by 1,3-butadiene has been confirmed by 1H NMR spectral assignments of two [RuII(Me2edda)] isomers, one in the axial rans-O glycinato configuration, e.g. 1,3-butadiene is bidentate in the original N2O2 plane and a second unsymmetrical glycinato arrangement with in-plane and axial glycinato as well as in-plane and axial η4-1,3-butadiene coordination. [RuII(hedta)(H2O)] (2), hedta3− = N-hydrpxyethylenediaminetriacetate, is less discriminating for olefin structures, forming η2 complexes with all eleven olefins and dienes mentioned for studies with 1. However, 2 does not undergo displacement of a carboxylate donor by the second olefin unit of a diene [RuII(hedta)(diene)] complexes possess a pendant non-coordinated olefin and on η2-bound olefin in the complex, indicated by a normal RuII(pac)(olefin)RuII/III wave near 0.55 V.  相似文献   

2.
A number of N,N′-bis(4-substituted phenyl)-1,7-diaza-12-crown-4 and N,N′-bis(4-substituted phenyl)-1, 10-diaza-18-crown-6 (where the substituents are OCH3, CH3, H, Cl, respectively) have been prepared by cyclization reaction of a ditosylate with the appropriately substituted diol. These new macrocyclic ligands have been characterized by means of elemental analysis, IR, 1H NMR and MS spectra. The crystal structures of N,N′-bis(4-chlorophenyl)-1,10-diaza-18-crown-6 (21) and its complex with barium thiocyanate Ba(SCN)2 (22) have been determined by single crystal X-ray diffraction. The crystallographic data are as follows: 21: C24H32Cl2N2O4, orthorhombic, P212121, A=4.852(1), B=11.989(2), C=41.231(8) Å, V=2398.7(8) Å3, Z=4; 22: C26H32Cl2N4O4S2Ba, monoclinic, P21/c, A=8.801(2), B=11.653(9), C=15.756(6) Å, ß=105.96(3)°, V=1553.7(14) Å3, Z=2. In the complex, the Ba atom is eight-coordinate (O(1), O(2), O(1)′, O(2)′, N(1), N(1)′, N(21), N(21)′) to form a distorted D6h geometry with the Ba atom at the center of crystallographic symmetry.  相似文献   

3.
Monobridged-dinuclear platinum(II) complexes, where the bridging ligand is 4,4′-dipyrazolylmethane, have been prepared for use as potential anticancer agents. The complexes synthesized include [{cis-PtCl2(NH3)}2(μ-dpzm)], [{trans-PtCl2(Me2SO)}2(μ-dpzm)] and [{cis-PtCl2(Me2SO)}2(μ-dpzm)]. The characterization of these complexes is based on microanalytical, IR and 1H NMR data.  相似文献   

4.
Some (η3-crotyl) (2,5-dichlorophenyl)palladium(II) complexes containing phosphine and phosphite ligands Pd(η3-CH2CH-CHMe)(Ar)(PR3) (Ar = C6H3Cl2-2,5) were isolated as crystalline solids or generated in solution. These existed as a mixture of two geometrical isomers arising from a different way of risposition of the crotyl-methyl group and the aryl ligand. The electronic nature of the PR3 ligand controlled the relative rates of the interconversion between the two isomers and the reductive elimination of the complexes which released MeCH=CHCH2Ar and CH2=CHCH(Me)(Ar). Electron-withdrawing phosphite ligands were particularly effective in enhancing the reductive elimination rate, making the contribution of the isomerization path almost negligible and allowing the formation of two coupling products to be followed separately by spectroscopic means. The observations demonstrated the occurrence of C---C coupling between mutually cis carbon ligands in (η3-allyl)(hydrocarbyl)palladium(II) complexes. The η1-crotyl complex, (Pd(η1-CH2CH=CHMe)(Ar) (dppen) (dppen = cis-Ph2PCH=CHPPh2) was isolated and shown to exist as a sole regio-isomer in solution. Reductive elimination of this η1-crotyl complex gave MeCH=CHCH2Ar exclusively.  相似文献   

5.
The dinuclear Pt---Si complex {(Ph3P)Pt{μ-η2-H---SiH(IMP)]}2 (trans-1a–cis-1b=3:1; IMP=2-isopropyl-6-methylphenyl) reacted with basic phosphines such as 1,2-bis(diphenylphosphino)ethane (dppe) and dimethylphenylphosphine (PMe2Ph) to afford different dinuclear Pt---Si complexes with loss of H2, {(P)2Pt[μ-SiH(IMP)]}2 [P=dppe, trans-2a (major), cis-2b (trace); PMe2Ph, 3 (trans only)]. Complexes 2 and 3 were characterized by multinuclear NMR spectroscopy and X-ray crystallography (2a). In contrast, the reaction of 1a,b with the sterically demanding tricyclohexylphosphine (PCy3) afforded {(Cy3P)Pt{μ-η2-H---SiH(IMP)]}2 (trans-4a–cis-4b 2:1) analogous to 1a,b where the central Pt2Si2(μ-H)2 core remains intact but the PPh3 ligands have been replaced by PCy3. Complexes 4a and 4b was characterized by multinuclear NMR and IR spectroscopies.  相似文献   

6.
The reaction of RuCl3(H2O), with C5Me4CF3J in refluxing EtOH gives [Ru25-C5Me1CF2)2 (μ-Cl2] (20 in 44% yield. Dimer 2 antiferromagnetic (−2J=200 cm1). The crystal structures of 2 (rhombohedral system, R3 space group, Z=9, R=0.0589) and [Rh25-C5Me4CF3(2Cl2(μ-Cl)2] (3) (rhombohedral system. space group, Z = 9, R = 0.0641) were solved; both complexes have dimeric structures with a trans arrangement of the η5-C5Me4CF4 rings. Comparison of the geometry of 2 and 3 with those of the corresponding η5-C5Me5 complexes shows that lowering the ring symmetry causes significant distortion of the M2(μ-Cl)2 moiety. The analysis of the MCl3 fragment conformations in 2 and 3 and in the η5-C5ME5 analogues shows that they are correlated with the M---M distances. The Cl atoms are displaced by Br on reaction of 2 with KBr in MeOH to give the diamagnetic dimer [Ru25-C5Me4CF3)2Br2 (μ-Br2] (4). Complex 2 reacts with O2 in CH2Cl2 solution at ambient temperature to form a mixture of isomeric η6-fulvene dimers [Ru26-C5Me3CF3 = CH2)2Cl2(μ-Cl)2] (5). Reactions of 5 with CO and allyl chloride give Ru(η5-C5Me3CF3CH2Cl)(CO)2Cl (6) and Ru(η5-C5Me3CF3CF3CH2Cl)(η3-C3H5)Cl2 (7) respectively.  相似文献   

7.
The chlorocadmate(II) systems of (H2me2pipz)[Cd2Cl6(H2O)2] (1) and (H2mepipz)2[Cd3Cl10(H2O)] (2) (L = me2pipz = N,N′-dimethylpiperazine; L′ = mepipz = N-methylpiperazine) were prepared and their structural and thermal properties investigated. Compound 1 is monoclinic, space group P21/c, A = 7.664(1), B = 7.472(4), C = 15.347(1) Å, β = 99.468(7)°, Z = 2, R = 0.024. The crystal structure consists of organic cations and infinite one-dimensional chains of [CdCl3(H2O)]n3− anions. Each Cd atom is octahedrally surrounded by bridged and terminal chlorine atoms and by a water molecule, which is in trans position with respect to the terminal chlorine atom. Inter- and intrachain hydrogen bond interactions between the terminal chlorine atoms and the water molecules contribute to the crystal packing. Compound 2 is orthorhombic, space group Cmc21, A = 15.286(3), B = 13.354(3), C = 13.154(3) Å, R = 0.023. The crystal structure consists of organic dications and infinite chains of [Cd2Cl6(CdCl4H2O]n4− units running along the [001] axis. Each unit is formed of regularly alternate six-coordinated Cd atoms, one of them linking one pentacoordinated Cd atom which completes its coordination througha water molecule. A strong hydrogen bond interaction involving the organic dication and the inorganic chain contributes to the crystal packing. Differential hydrogen bond interaction involving the organic dication and the inorganic chain contributes to the crystal packing. Differential scanning calorimetry measurements did not show the presence of any structural phase transitions. The structures are compared with those of (H2pipz)[Cd2Cl6(H2O)2] (3), (H2mepipz)[Cd2Cl6(H2O)2]·H2O (4) and (H2mepipz)[Cd2Cl6] (5) (L = pipz = piperazine, L′ = mepipz = N-ethylpiperazine).  相似文献   

8.
Kinetic and activation parameter data for the reactions of cct-Ru(H)2(CO)2(PPh3)2 (1) (cct = cis, cis, trans) in THF with thiols, CO and PPh3 to give cct-RuH(SR)(CO)2(PPh3)2, Ru(CO)3(PPh3)2 and Ru(CO)2(PPh3)2, respectively, reveal a common, rate-determining step, the initial dissociation of H2 from 1; the activated complex probably resembles the corresponding Ru(η2-H2) species. Reaction of Ru(H)2(dppm)2 (2) (as a cis/trans mixture, DPPM = bis(diphenylphosphino)methane) with thiols initially generated cis- and trans- RuH(SR) (dppm)2 with a rate that depends on both the type and concentration of thiol. The higher basicity of the hydride ligands in 2 (versus 1), which is demonstrated by deuterium exchange with CD3OD, gives rise in the thiol reaction to an initial protonation step prior to loss of H2. A species detected in the thiol reaction is possibly [RuH(η2-H2 (dppm)2]2, the anticipated intermediate for this reaction and for the hydrogen exchange with alcohol. A longer reaction of 2 with PhCH2SH gives solely cis-Ru(SCH2Ph)2(dppm)2.  相似文献   

9.
A spectroscopic and spectroelectrochemical comparison is made among homo- and heterobimetallic complexes of the form [(bpy)2Ru(BL)Os(byp)2]4+, [(bpy)2Ru(BL)Ru(bpy)2]4+ and [(bpy)2Os(BL)Os(bpy)2]4+ (BL = 2,3,-bis(2′-pyridyl)pyrazzine(dpp),2,3-bis(2′-pyridyl)quinoxaline(dpq) or 2,3-bis(2′-pyridyl)benzoquinoxaline(dpb); bpy = 2,2′-bipyridine). It has been postulated that the spectroscopy of the mixed-metal bimetallic complexes bridged by polyazine bridging ligands can be assigned by comparison to those of the homobimetallic analogs. We have in hand a unique series of complexes where such a postulate can be tested. Utilizing the visible spectra of the homobimetallic Os,Os and Ru,Ru systems, we have been able to generate the spectra of the mixed-metal complexes. Some differences have been seen, particularly in the energy of the Os → dpp 3MLCT. Oxidative spectroelectrochemistry studies on the homobimetallic ruthenium or osmium based systems indicate that upon complete oxidation of both metal centers, transitions in the visible are lost. Hence, partial oxidation of the ruthenium based homobimetallics and Os, Ru mixed-metal bimetallics allows for the direct comparison of the spectroscopic character of the one remaining ruthenium chromophore within these mixed-valence systems. Oxidation to form the Os(III)/Ru(II) species and the Ru(III)/Ru(II) species resulted in similar spectra. This establishes further that the visible spectroscopy of mixed-metal systems of this nature can be accurately interpreted by comparison to the homobimetallic analogs.  相似文献   

10.
The reaction of TiCl4 with Li2[(SiMe2)25-C5H3)2] in toluene at room temperature afforded a mixture of cis- and trans-[(TiCl3)2{(SiMe2)25-C5H3)2}] in a molar ratio of 1/2 after recrystallization. The complex trans-[(TiCl3)2{(SiMe2)25-C5H3)2}] was hydrolyzed immediately by the addition of water to THF solutions to give trans-[(TiCl2)2(μ-O){(SiMe2)25-C5H3)2}] as a solid insoluble in all organic solvents, whereas hydrolysis of cis-[(TiCl3)2{(SiMe2)25-C5H3)2}] under different conditions led to the dinuclear μ-oxo complex cis-[(TiCl2)2)(μ-O){(SiMe2)25-C5H3)2}] and two oxo complexes of the same stoichiometry [(TiCl)2(μ-O){(SiMe2)25-C5H3)2}]2(μ-O)2 as crystalline solids. Alkylation of cis- and trans-[(TiCl3)2{(SiMe2)25-C5H3)2}] with MgCIMe led respectively to the partially alkylated cis-[(TiMe2Cl)2{(SiMe2)25-C5H3)2}] and the totally alkylated trans-[(TiMe3)2{(SiMe2)25-C5H3)2}] compounds. The crystal and molecular structure of the tetranuclear oxo complex [(TiCl)2(μ-O){(SiMe2)25-C5H3)2}]2(μ-O)2 was determined by X-ray diffraction.  相似文献   

11.
Reactions of [(PPh3)2Pt(η3-CH2CCPh)]OTf with each of PMe3, CO and Br result in the addition of these species to the metal and a change in hapticity of the η3-CH2CCPh to η1-CH2CCPh or η1-C(Ph)=C=CH2. Thus, PMe3 affords [(PMe3)3Pt(η1-C(Ph)=C=CH2)]+, CO gives both [trans-(PPh3)2Pt(CO)(η1-CH2CCPh)]+ and [trans-(PPh3)2Pt(CO)(η1-C(Ph)=C=CH2)]+, and LiBr yields cis-(PPh3)2PtBr(η1-CH2CCPh), which undergoes isomerization to trans-(PPh3)2PtBr(η1-CH2CCPh). Substitution reactions of cis- and trans-(PPh3)2PtBr(η1-CH2CCPh) each lead to tautomerization of η1-CH2CCPh to η1-C(Ph)=C=CH2, with trans-(PPh3)2PtBr(η1-CH2CCPh) affording [(PMe3)3Pt(η1-C(Ph)=C=CH2)]+ at ambient temperature and the slower reacting cis isomer giving [trans-(PPh3)(PMe3)2Pt(η1-C(Ph)=C=CH2)]+ at 54 °C . All new complexes were characterized by a combination of elemental analysis, FAB mas spectrometry and IR and NMR (1H, 13C{1H} and 31P{1H}) spectroscopy. The structure of [(PMe3)3Pt(η1-C(Ph)=C=CH2)]BPh4·0.5MeOH was determined by single-crystal X-ray diffraction analysis.  相似文献   

12.
Reactions of Cr(CO)36-BT), in which the Cr is π-coordinated to the benzene ring of benzo[b]thiophene (BT), with Cp′(CO)2Re(THF), where Cp′ = η5-C5H5 or η5-C5Me5, give the products Cp′(CO)2Re(η262-BT)Cr(CO)3 in which the Cr remains coordinated to the benzene ring and Re is bound to the C(2)=C(3) double bond. An X-ray diffraction study of Cp(CO)2Re(η262-BT)Cr(CO)3 (3) provides details of the geometry. This structure contrasts with that of the Cp′(CO)2Re(BT) complexes that exist as mixtures of isomers in which the BT is coordinated to the Re through either the double bond (2,3-η2) or the sulfur (η1(S)). Thus, the electron-withdrawing Cr(CO)3 group in 3 stabilizes the 2,3-η2 mode of BT coordination to the Cp′(CO)2Re fragment. Implications of these results for catalytic hydrodesulfurization of BT are discussed. Crystal data for 3: triclinic, space group .  相似文献   

13.
Reaction of RuCl(η5-C5H5(pTol-DAB) with AgOTf (OTf = CF3SO3) in CH2Cl2 or THF and subsequent addition of L′ (L′ = ethene (a), dimethyl fumarate (b), fumaronitrile (c) or CO (d) led to the ionic complexes [Ru(η5-C5H5)(pTol-DAB)(L′)][OTf] 2a, 2b and 2d and [Ru(η5-C5H5)(pTol-DAB)(fumarontrile-N)][OTf] 5c. With the use of resonance Raman spectroscopy, the intense absorption bands of the complexes have been assigned to MLCT transitions to the iPr-DAB ligand. The X-ray structure determination of [Ru(η5-C5H5)(pTol-DAB)(η2-ethene)][CF3SO3] (2a) has been carried out. Crystal data for 2a: monoclinic, space group P21/n with A = 10.840(1), b = 16.639(1), C = 14.463(2) Å, β = 109.6(1)°, V = 2465.6(5) Å3, Z = 4. Complex 2a has a piano stool structure, with the Cp ring η5-bonded, the pTol-DAB ligand σN, σN′ bonded (Ru-N distances 2.052(4) and 2.055(4) Å), and the ethene η2-bonded to the ruthenium center (Ru-C distances 2.217(9) and 2.206(8) Å). The C = C bond of the ethene is almost coplanar with the plane of the Cp ring, and the angle between the plane of the Cp ring and the double of the ethene is 1.8(0.2)°. The reaction of [RuCl(η5-C5H5)(PPh)3 with AgOTf and ligands L′ = a and d led to [Ru(η5-C5H5)(PPh3)2(L′)]OTf] (3a) and (3d), respectively. By variable temperature NMR spectroscopy the rottional barrier of ethene (a), dimethyl fumarate (b and fumaronitrile (c) in complexes [Ru(η5-C5H5)(L2)(η2-alkene][OTf] with L2 = iPr-DAB (a, 1b, 1c), pTol-DAB (2a, 2b) and L = PPh3 (3a) was determined. For 1a, 1b and 2b the barrier is 41.5±0.5, 62±1 and 59±1 kJ mol−1, respectively. The intermediate exchange could not be reached for 1c, and the ΔG# was estimated to be at least 61 kJ mol. For 2a and 3a the slow exchange could not be reached. The rotational barrier for 2a was estimated to be 40 kJ mol. The rotational barier for methyl propiolate (HC≡CC(O)OCH3) (k) in complex [Ru(η5-C5H5)(iPr-DAB) η2-HC≡CC(O)OCH3)][OTf] (1k) is 45.3±0.2 kJ mol−1. The collected data show that the barrier of rotational of the alkene in complexes 1a, 2a, 1b, 2b and 1c does not correlate with the strength of the metal-alkene interaction in the ground state.  相似文献   

14.
The solution of [RhCl(PPh3)3] in acidic 1-ethyl-3-methylimidazolium chloroaluminate(III) ionic liquid (AlCl3 molar fraction, xAlCl3=0.67) was investigated by 1H and 31P{1H} NMR. One triphenyl phosphine is lost from the complex and is protonated in the acidic media, and cis-[Rh(PPh3)2ClX], (2), where X is probably [AlCl4], is formed. On, standing, 2 is converted to trans-[Rh(H)(PPh3)2X], (3). The reaction of 2 and H2 also produces trans-[Rh(H)(PPh3)2X], (3). 1H and 31P{1H} NMR support the suggestion that a weak ligand such as [AlCl4], present in solution may interact with the metal centre. When [RhCl(PPh3)3] is dissolved in CH2Cl2/AlCl3/HCl for comparison, two exchanging isomers of what is probably [RhH{(μ-Cl)2AlCl2}{(μ-Cl)AlCl3}(PPh3)2], (6) and (7), are formed.  相似文献   

15.
Preparations by the high dilution method are reported for seven macrocyclic thioether-esters and thioether-thioesters (L1–;L7). Yields in these reactions between thiodiglycolyl dichloride and appropriate ,ω-diols or dithiols range from 10 to 51%. The compounds are characterized by 1H and 13C NMR, IR and high resolution mass spectroscopy. They react with salts of Pd(II), Pt(II) and Ag(I) to form complexes of which MX2·L2, (M = Pt, X = Cl; M = Pd, X = Cl, Br, I, SCN), [Pd(L2)2][CF3SO3]2·H2O and [Ag(L5)2][CF3SO3]·C2H5OH have been isolated and characterized by elemental analysis, IR and NMR spectroscopy. NMR spectra indicate reversible dissociation of the ligand occurs in dimethyl sulfoxide solvent for PdCl2·L2 but not for the Pt analogue. For PtCl2·L2, spectra indicate that the ligand is undergoing a conformational ‘wag’ about its pair of equivalent sulfurs. These remain bound to the metal while the unique sulfur moves from the apical position of the coordination sphere to a non-coordinated situation. Simultaneously, inversions at the bound sulfurs are occurring.  相似文献   

16.
Kinetic results are reported for intramolecular PPh3 substitution reactions of Mo(CO)21-L)(PPh3)2(SO2) to form Mo(CO)22-L)(PPh3)(SO2) (L = DMPE = (Me)2PC2H4P(Me)2 and dppe=Ph2PC2H4PPh2) in THF solvent, and for intermolecular SO2 substitutions in Mo(CO)32-L)(η2-SO2) (L = 2,2′-bipyridine, dppe) with phosphorus ligands in CH2Cl2 solvent. Activation parameters for intramolecular PPh3 substitution reactions: ΔH values are 12.3 kcal/mol for dmpe and 16.7 kcal/mol for dppe; ΔS values are −30.3 cal/mol K for dmpe and −16.4 cal/mol K for dppe. These results are consistent with an intramolecular associative mechanism. Substitutions of SO2 in MO(CO)32-L)(η2-SO2) complexes proceed by both dissociative and associative mechanisms. The facile associative pathways for the reactions are discussed in terms of the ability of SO2 to accept a pair of electrons from the metal, with its bonding transformations of η2-SO2 to η1-pyramidal SO2, maintaining a stable 18-e count for the complex in its reaction transition state. The structure of Mo(CO)2(dmpe)(PPh3)(SO2) was determined crystallographically: P21/c, A=9.311(1), B = 16.344(2), C = 18.830(2) Å, ß=91.04(1)°, V=2865.1(7) Å3, Z=4, R(F)=3.49%.  相似文献   

17.
Lewis acid adducts of the hydrides cis- and trans-Re(CO)(PMe3)4H (1) and (2), mer-Re(CO)2(PMe3)3H (3), fac-Re(CO)2(PMe3)3H (4) and trans-Re(CO)3(PMe3)2H (5) were studied with BH3 and 9-borabicyclo[3,3,1] norbonane (BBNH). Using BH3·THF and (BBNH)2 1 and 2 afforded Re(CO)(PMe3)32-BH4) (6) and Re(CO)(PMe3)32-BBNH2) (7) as stable and isolable products. VT IR studies established for the reaction to 7 that BBNH first attaches in a pre-equilibrium to the OCO atom of 1 or 2. At higher temperatures ReH adduct formation occurs with instantaneous transformation to 7 and elimination of PMe3·BBNH. In a similar way, the hydrides 3 and 4 were converted with BH3·THF and (BBNH)2 to yield the stable complexes Re(CO)2(PMe3)22-BH4) (8) and Re(CO)2(PMe3)22-BBNH2) (9). The intermediacy of the η1-BH4 adducts mer-/fac-Re(CO)2(PMe3)31-BH4) was confirmed by VT 1H, 31P NMR and VT IR experiments. The conversion of 5 with BH3·THF led to equilibria with adducts at the OCO terminus in trans position to H and with HRe as revealed by VT IR studies. Temperature dependent 31P equilibrium studies allowed to calculate ΔH=−4.9 kcal mol−1 and ΔS=+0.034 e.u. for this reaction. These adducts could not be isolated. Compound 5 does not react with (BBNH)2 even at elevated temperatures. DFT calculations were carried out to support the structures of the BH3 adducts of 5. In addition a vibrational analysis helped to unravel the IR band assignments of the involved compounds. DFT calculations on 8 confirmed its C2v structure. X-ray diffraction studies were carried out on single crystals of 6 and 7.  相似文献   

18.
The reversible equilibrium conversion under H2 of [RuCl(dppb) (μ-Cl)]2 (1) to generate (η2-H2) (dppb) (μ-Cl)3RuCl(dppb) in CH2Cl2 (dppb = Ph2P(CH2)4PPh2) has been studied at 0–25 °C by UV-Vis and 31P{1H} NMR spectroscopy, and by stoppe kinetics; the equilibrium constant and corresponding thermodynamic parameters, and the forward and reverse rate constants at 25 °C have been determined. A measured ΔH° value of 0 kJ mol−1 allows for an estimation of an exothermicity of 60 kJ mol−1 for binding an η2-H2 at an Ru(II) centre; a ΔS° value of 60 J mol−1 K−1 indicates that in solution 1 contain s coordinated CH2Cl2. The kinetic and thermodynamic data are compared to those obtained from a previously studied hydrogenation of styrene catalyzed by 1. Preliminary findings on related systems containing Ph2P(CH2)3PPh2 and (C6H11)2P(C6H11)2 are also noted.  相似文献   

19.
A reduction of previously reported 2-methoxyethyl and 2-methylthioethyl functionalized zirconocenedichlorides (η5-C5Me4CH2CH2EMe)(η5-C5Me5)(ZrCl2 (E = O, S) and (η5-C5Me4CH2CH2EMe)(η5-C5Me4CH2CH2E′Me)ZrCl2 (E = O, S; E′ = O, S) with Mg/Hg in THF leads unexpectedly to the products of O---Me and S---Me bond cleavage (η5,σ-C5Me4CH2CH2E)(η5-C5Me5)ZrMe (E = O, S), (η5,σ-C5Me4CH2CH2E)(η5-C5Me4CH2CH2E′Me)ZrMe (E = O, S; E′ = O), and (η5,σ-C5Me4CH2CH2S)2Zr respectively. The crystal structure of (η5,σ-C5Me4CH2CH2S)2Zr was established by X-ray analysis. At that same time the reduction of (ηsu5-C5Me4CH2CH2EMe)(η5-C5Me5)ZrCl2 (E> = O, S) under 1 atm of CO gives either only the dicarbonyl derivative (η5-C5Me4CH2CH2EMe) (η5-C6Me5)Zr(CO)2 (E = O) or a complex mixture of products (E = S).  相似文献   

20.
The first η2-olefinic monocarbon metallacarbone closo-2-(Ph3P)-1-N,2-[μ-(η2-CH2CH=Ch2)]-1-N-(σ-CH2CH=CH2)-2,1- RhCB10H10 has been prepared by the reaction of the dimeric anion {[Ph3PRhB10H10CNH2]2-μ-H}[PPN]+ with allyl bromide and characterized by a combination of spectroscopic methods and a single-crystal X-ray diffraction study. The variable temperature 1H and 13C NMR studies revealed the fluxional behavior of the η2-olefinic complex in CD2Cl2 solution which is associated with the allyl side-chain exchange process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号