共查询到20条相似文献,搜索用时 15 毫秒
1.
The reduction of NADH:Q oxidoreductase by NADPH occurring in submitochondrial particles has been studied with the freeze-quench technique. It was found that 50% of the Fe-S clusters 2, 3 and 4 could be reduced by NADPH within 30 ms at pH 6.5. The remainder of the clusters, including cluster 1, were reduced slowly and incompletely; it was concluded that these clusters play no role in the NADPH oxidase activity. Nearly the same results were obtained at pH 8 under anaerobic conditions, demonstrating that the rate of reaction of NADPH with the enzyme was essentially the same at both pH values. The rate and extent of reduction of half of the clusters 2 by NADPH at pH 8 were not affected by the presence of O2 of rotenone. This implies a pH-dependent oxidation of the enzyme as the cause for the absence of the NADPH oxidase activity at this pH. A dimeric model of the enzyme is proposed in which one protomer, containing FMN and the Fe-S clusters 1–4 in stoichiometric amounts, is responsible for NADH oxidation at pH 8. This protomer cannot react with NADPH. The other protomer, containing only FMN and the clusters 2, 3 and 4, is supposed to catalyse the oxidation of NADPH. The oxidation of this protomer by ubiquinone is expected to be strongly dependent on pH. This protomer might also catalyse NADH oxidation at pH 6–6.5. 相似文献
2.
The pre-steady-state kinetics of reoxidation of NADH:Q oxidoreductase present in submitochondrial particles has been studied by the freeze-quench method. It was found that at pH 8 only 50% of the Fe-S clusters 2 and 4 and 75% of the clusters 3 were rapidly reoxidised after transient and complete reduction by a pulse of NADH in the presence of excess NADPH. Thus, NADPH keeps 50% of the clusters 2 and 4 and 25% of the clusters 3 permanently reduced at this pH. Since NADH oxidation is nearly optimal at this pH, whereas NADPH oxidation is virtually absent, it was concluded that these permanently reduced clusters were not involved in the NADH oxidation activity. Incomplete reoxidation of the clusters 2, 3 and 4 after a pulse of NADH was also found in the absence of NADPH, both at pH 6.5 and at pH 8. A pulse of NADPH given at pH 6.5, where NADPH oxidation by oxygen is nearly optimal, caused a slow reduction of 50% of clusters 2 and 4 and 30% of the clusters 3, which persisted for a period of at least 15 s. It was concluded that these clusters were not involved in the oxidation of NADPH by oxygen, as catalysed by the particles. As a working hypothesis a dimeric model for NAD(P)H:Q oxidoreductase is proposed, consisting of two different protomers. One of the protomers, containing FMN and the Fe-S clusters 1-4 in stoichiometric amounts, only reacts with NADH, and its oxidation by ubiquinone is rapid at pH but slow at pH 6.5. The other protomer, containing FMN and the clusters 2, 3 and 4, reacts with both NADH and NADPH and has a pH optimum at 6-6.5 for the reaction with ubiquinone. 相似文献
3.
Egbert J. Boekema Jan F.L. Van Breemen Wilko Keegstra Ernst F.J. Van Bruggen Simon P.J. Albracht 《BBA》1982,679(1):7-11
Two-dimensional crystalline arrays of NADH:Q oxidoreductase preparations have been obtained by microdiffusion of protein dissolved in detergent against a 15 mM sodium acetate buffer of pH 5.5 containing 10% () ammonium sulphate. Electron microscopy was used to study the structure of negatively stained crystals. Computer-reconstructed images were obtained by the Fourier peak filtering method. The crystals have p4 symmetry and a square unit cell with dimensions of 15.2 ± 0.5 nm. The four asymmetric units in the unit cell form a single tetrameric molecule with a dimension in the third direction of 8.2 nm. It is concluded on the basis of the estimated molecular mass that each tetramer cannot contain more than only one FMN molecule. This implies that the tetramers possibly are only a part of Complex I, since there is much evidence that one functional enzyme molecule of Complex I contains two FMN molecules. 相似文献
4.
The reduction of NADH:Q oxidoreductase by NADPH occurring in submitochondrial particles has been studied with the freeze-quench technique. It was found that 50% of the Fe-S clusters 2, 3 and 4 could be reduced by NADPH within 30 ms at pH 6.5. The remainder of the clusters, including cluster 1, were reduced slowly and incompletely; it was concluded that these clusters play no role in the NADPH oxidase activity. Nearly the same results were obtained at pH 8 under anaerobic conditions, demonstrating that the rate of reaction of NADPH with the enzyme was essentially the same at both pH values. The rate and extent of reduction of half of the clusters 2 by NADPH at pH 8 were not affected by the presence of O2 of rotenone. This implies a pH-dependent oxidation of the enzyme as the cause for the absence of the NADPH oxidase activity at this pH. A dimeric model of the enzyme is proposed in which one protomer, containing FMN and the Fe-S clusters 1-4 in stoichiometric amounts, is responsible for NADH oxidation at pH 8. This protomer cannot react with NADPH. The other protomer, containing only FMN and the clusters 2, 3 and 4, is supposed to catalyse the oxidation of NADPH. The oxidation of this protomer by ubiquinone is expected to be strongly dependent on pH. This protomer might also catalyse NADH oxidation at pH 6-6.5. 相似文献
5.
Kayoko Okamoto Mitsuru Kawada Masazumi Watanabe Shigeru Kobayashi Isuke Imada Hiroshi Morimoto 《BBA》1982,682(1):145-151
The effects of Q metabolites (Q acid-I, Q acid-II) and related compounds (dihydro Q acid-I, dehydro Q acid-II, QS-n, and their esters) on mitochondrial succinate and NADH oxidase systems were investigated. The activity restoring succinate oxidation in acetone-treated beef heart mitochondria was found to decrease with descending order of carbon number (n) of the side chain of the Q metabolites; activity was restored with Q acid-I (n = 7) to one-third as much as that with Q-7 and Q-10, but Q acid-II (n = 5) did not restore any activity. Of the related compounds with a carboxyalkyl group (QS-n), QS-16-QS-18 (n = 16–18) were found to be most active, and their activities were also correlated with n. The relationship between the restoration of activity and the partition coefficient was considered. NADH oxidation in pentane-treated beef heart submitochondrial particles could be restored with esters of low molecular weight quinones to the same extent as with Q-10, but not with the metabolites. 相似文献
6.
Nakashima Y Shinzawa-Itoh K Watanabe K Naoki K Hano N Yoshikawa S 《Journal of bioenergetics and biomembranes》2002,34(2):89-94
The rotenone sensitivity of bovine heart NADH: coenzyme Q oxidoreductase (Complex I) depends significantly on coenzyme Q1 concentration. The rotenone-insensitive Complex I reaction in Q1 concentration range above 300 M indicates an ordered sequential mechanism with Q1 and reduced Q1 (Q1H2) as the initial substrate to bind to the enzyme and the last product to be released from the enzyme product complex, respectively. This is the case in the rotenone-sensitive reaction although both K
m and V
max values of the rotenone-insensitive reaction for Q1 are significantly higher than those of the rotenone-sensitive reaction (Nakashima et al., 2002, J. Bioenerg. Biomemb.
34, 11–19). This rigorous control mechanism between the nucleotide and ubiquinone binding sites strongly suggests that the rotenone-insensitive reaction is also physiologically relevant. 相似文献
7.
Zakharova NV 《Biochemistry. Biokhimii?a》2002,67(6):651-661
The kinetics of the NADH3'-acetylpyridine adenine dinucleotide (APAD+) transhydrogenase reaction (DD-reaction) catalyzed by different preparations of mitochondrial NADH-dehydrogenase (submitochondrial particles (SMP), purified Complex I, and three-subunit fragment of Complex I (FP)) have been studied. Complex I (in SMP or in purified preparation) catalyzes two NADHAPAD+ reactions with different rates and nucleotide affinities. Reaction 1 has high affinity to APAD+ (K
m = 7 M, for SMP) and low rate (V
m = 0.2 mol/min per mg protein, for SMP) and occurs with formation of a ternary complex. Reaction 2 has much higher rate and considerably lower affinity for oxidized nucleotide (V
m = 1.7 mol/min per mg protein and K
m = 160 M, for SMP). FP catalyzes only reaction 1. ADP-ribose inhibits reaction 1 with mixed type inhibition (competitive with non-competitive) with respect to NADH and APAD+. Rhein competes with both substrates. The results suggest that at least two nucleotide-binding sites exist in Complex I. 相似文献
8.
Nakashima Y Shinzawa-Itoh K Watanabe K Naoki K Hano N Yoshikawa S 《Journal of bioenergetics and biomembranes》2002,34(1):11-19
Steady-state kinetics of the bovine heart NADH:coenzyme Q oxidoreductase reaction were analyzed in the presence of various concentrations of NADH and coenzyme Q with one isoprenoid unit (Q1). Product inhibitions by NAD+ and reduced coenzyme Q1 were also determined. These results show an ordered sequential mechanism in which the order of substrate binding and product release is Q1–NADH–NAD+–Q1H2. It has been widely accepted that the NADH binding site is likely to be on the top of a large extramembrane portion protruding to the matrix space while the Q1 binding site is near the transmembrane moiety. The rigorous controls for substrate binding and product release are indicative of a strong, long range interaction between NADH and Q1 binding sites. 相似文献
9.
Ascorbate-reduced horse heart cytochrome c reduces photo-oxidized bacterial reaction centres with a second-order rate constant of (5–8) · 108 M?1 · s?1 at an ionic strength of 50 mM. In the absence of cytochrome c, the cytochrome c1 in the ubiquinol:cytochrome c oxidoreductase is oxidized relatively slowly (k = 3.3 · 105 M?1 · s?1). Ferrocytochrome c binds specifically to ascorbate-reduced reductase, with a Kd of 0.6 μM, and only the free cytochrome c molecules are involved in the rapid reduction of photo-oxidized reaction centres. The electron transfer between ferricytochrome c and ferrocytochrome c1 of the reductase is rapid, with a second-order rate constant of 2.1 · 108 M?1 · s?1 at an ionic strength of 50 mM. The rate of electron transfer from the Rieske iron-sulphur cluster to cytochrome c1 is even more rapid. The cytochrome b of the ubiquinol:cytochrome c oxidoreductase can be reduced by electrons from the reaction centres through two pathways: one is sensitive to antimycin and the other to myxothiazol. The amount of cytochrome b reduced in the absence of antimycin is dependent on the redox potential of the system, but in no case tested did it exceed 25% of the amount of photo-oxidized reaction centres. 相似文献
10.
Hano N Nakashima Y Shinzawa-Itoh K Terada H Yoshikawa S 《Journal of bioenergetics and biomembranes》2003,35(5):419-425
Complete initial steady state kinetics of NADH-decylubiquinone (DQ) oxidoreductase reaction between pH 6.5 and 9.0 show an ordered sequential mechanism in which the order of substrate bindings and product releases is NADH-DQ–DQH2-NAD+. NADH binding to the free enzyme is accelerated by protonation of an amino acid (possibly a histidine) residue. The NADH release is negligibly slow under the turnover conditions. The rate of DQ binding to the NADH-bound enzyme and the maximal rate at the saturating concentrations of the two substrates, which is determined by the rates of DQH2 formation in the active site and releases of DQH2 and NAD+ from the enzyme, are insensitive to pH, in contrast to clear pH dependencies of the maximal rates of cytochrome c oxidase and cytochrome bc
1 complex. Physiological significances of these results are discussed. 相似文献
11.
Hano N Nakashima Y Shinzawa-Itoh K Yoshikawa S 《Journal of bioenergetics and biomembranes》2003,35(3):257-265
Steady state kinetics of bovine heart NADH: coenzyme Q oxidoreductase using coenzyme Q with two isoprenoid unit (Q2) or with a decyl group (DQ) show an ordered sequential mechanism in which the order of substrate binding and product release is NADH-Q2 (DQ) -Q2H2 (DQH2)-NAD+ in contrast to the order determined using Q1 (Q1-NADH-NAD+-Q1H2) (Nakashima et al., J. Bioenerg. Biomembr.
34, 11–19, 2002). The effect of the side chain structure of coenzyme Q suggests that NADH binding to the enzyme results in a conformational change, in the coenzyme Q binding site, which enables the site to accept coenzyme Q with a side chain significantly larger than one isoprenoid unit. The side chains of Q2 and DQ bound to the enzyme induce a conformational change in the binding site to stabilize the substrate binding, while the side chain of Q1 (one isoprenoid unit) is too short to induce the conformational change. 相似文献
12.
Sugiyama H Nakatsubo R Yamaguchi S Ogura T Shinzawa-Itoh K Yoshikawa S 《Journal of bioenergetics and biomembranes》2007,39(2):145-148
The resonance Raman spectra of FMN of the bovine heart NADH: ubiquinone oxidoreductase with the molecular mass of approximately
one million dalton were determined by using highly improved enzyme preparation and resonance Raman apparatus. The band positions
and the H2O/D2O exchange effect suggest that the N(3)−H group in the ring III of the isoalloxazine moiety is buried inside the protein to
increase the vibrational coupling to the C(2)−N(3)-C(4) stretching mode and that the ring I is exposed to the aqueous phase. 相似文献
13.
The NADH:ubiquinone oxidoreductase or complex I of the mitochondrial respiratory chain is an intricate enzyme with a vital role in energy metabolism. Mutations affecting complex I can affect at least three processes; they can impair the oxidation of NADH, reduce the enzyme's ability to pump protons for the generation of a mitochondrial membrane potential and increase the production of damaging reactive oxygen species. We have previously developed a nematode model of complex I-associated mitochondrial dysfunction that features hallmark characteristics of mitochondrial disease, such as lactic acidosis and decreased respiration. We have expressed the Saccharomyces cerevisiae NDI1 gene, which encodes a single subunit NADH dehydrogenase, in a strain of Caenorhabditis elegans with an impaired complex I. Expression of Ndi1p produces marked improvements in animal fitness and reproduction, increases respiration rates and restores mitochondrial membrane potential to wild type levels. Ndi1p functionally integrates into the nematode respiratory chain and mitigates the deleterious effects of a complex I deficit. However, we have also shown that Ndi1p cannot substitute for the absence of complex I. Nevertheless, the yeast Ndi1p should be considered as a candidate for gene therapy in human diseases involving complex I. 相似文献
14.
Hideo Fukuda Masaya Takahashi Takao Fujii Masato Tazaki Takahira Ogawa 《FEMS microbiology letters》1989,60(1):107-112
An ethylene-forming enzyme which forms ethylene from 2-oxo-4-methylthiobutyric acid (KMBA) was purified to an electrophoretically homogeneous state from a cell-free extract of Cryptococcus albidus IFP 0939. The presence of KMBA, NADH, Fe(III) chelated to EDTA and oxygen were essential for the formation of ethylene. When ferric ions, as Fe(III)EDTA, in the reaction mixture were replaced by Fe(II)EDTA under aerobic conditions, the non-enzymatic formation of ethylene was observed. Under anaerobic conditions in the presence of Fe(III)EDTA and NADH, the enzyme reduced 2 mol of Fe(III) with 1 mol of NADH to give 2 mol of Fe(II) and 1 mol NAD+, indicating that the ethylene-forming enzyme is an NADH-Fe(III)EDTA oxidoreductase. The role of NADH:Fe(III)EDTA oxidoreductase activity in the formation in vivo ethylene from KMBA is discussed. 相似文献
15.
Simon de Vries 《Journal of bioenergetics and biomembranes》1986,18(3):195-224
The experimental data currently available suggest that QH2: cytochromec oxidoreductase functions according to a Q-cycle type of mechanism. The molecular weight of the enzyme in a natural or artificial phospholipid bilayer or in solution corresponds to that of a dimer. The pre-steady state kinetics of reduction of the prosthetic groups indicate that the enzyme is functionally dimeric. A double Q cycle is proposed, describing the pathway of electron transfer in the dimeric QH2: cytochromec oxidoreductase. According to this scheme, the two monomeric halves of the enzyme act in a cooperative fashion to complete the catalytic cycle. It is proposed that high-potential cytochromeb-562 and low-potential cytochromeb-562 act cooperatively, viz. as a functional pair, in the antimycin-sensitive reduction of ubiquinone to ubiquinol. 相似文献
16.
The Na+-dependent respiratory chain NADH: quinone oxidoreductase of the marine bacterium, Vibrio alginolyticus, was extracted from membrane by a detergent, Liponox DCH, and was purified by chromatography on QAE-Sephadex and Bio-Gel HTP. The activity of NADH oxidation was separated into two fractions. The one fraction could react with several artificial electron acceptors including Q-1, but could not reduce ubiquinone and menaquinone such as Q-5 and menaquinone-4, which was called NADH dehydrogenase. The other fraction could reduce Q-5 and menaquinone-4 in addition to the NADH dehydrogenase activity, which was called quinone reductase. The purified NADH dehydrogenase consumed NADH in excess of the amount of Q-1 and the reduced Q-1 (quinol) was not produced at all due to an oxidation-reduction cycle of semiquinone radicals. The quinone reductase, however, consumed NADH with the quantitative formation of quinol on account of a dismutation reaction of semiquinone radicals. Identical to the membrane-bound NADH: quinone oxidoreductase, the quinone reductase specifically required Na+ for the activity and was inhibited by 2-heptyl-4-hydroxyquinoline N-oxide. The electron transfer in the quinone reductase was formulated in a form of quinone cycle and the dismutation reaction of semiquinone radicals was assigned to be coupled to the Na+ pump in the respiratory chain of this organism. 相似文献
17.
Kinetic evidence for the re-definition of electron transfer pathways from cytochrome c to O2 within cytochrome oxidase 总被引:1,自引:0,他引:1
The reaction with O2 of equimolar mixtures of cytochrome c and cytochrome c oxidase in high and low ionic strength buffers has been examined by flow-flash spectrophotometry at room temperature. In low ionic strength media where cytochrome c and the oxidase are bound in an electrostatic, 1:1 complex some of the cytochrome c is oxidised at a faster rate than a metal centre of the oxidase. In contrast, when cytochrome c and cytochrome c oxidase are predominantly dissociated at high ionic strength cytochrome c oxidation occurs only slowly (t1/2 = 5 s) following the complete oxidation of the oxidase. These results demonstrate that maximal rates of electron transfer from cytochrome c to O2 occur when both substrates are present on the enzyme. The heterogeneous oxidation of cytochrome c observed in the complex implies more than one route for electron transfer within the enzyme. Possibilities for new electron transfer pathways from cytochrome c to O2 are proposed. 相似文献
18.
Electron transport has been studied by flash absorption and EPR spectroscopies at 10–30 K in Photosystem I particles prepared with digitonin under different redox conditions. In the presence of ascorbate, an irreversible charge separation is progressively induced at 10 K between P-700 and iron-sulfur center A by successive laser flashes, up to a maximum which corresponds to about two-thirds of the reaction centers. In these centers, heterogeneity of the rate for center A reduction is also shown. In the other third of reaction centers, the charge separation is reversible and relaxes with a t1/2 ≈ 120 μs. When the iron-sulfur centers A and B are prereduced, the 120 μs relaxation becomes the dominant process (70–80% of the reaction centers), while a slow component (t1/2 = 50–400 ms) reflecting the recombination between P-700+ and center X− occurs in a minority of reaction centers (10–15%). Flash absorption and EPR experiments show that the partner of P-700+ in the 120 μs recombination is neither X nor a chlorophyll but more probably the acceptor A−1 as defined by Bonnerjea and Evans (Bonnerjea, J. and Evans, M.C.W. (1982) FEBS Lett. 148, 313–316). The role of center X in low-temperature electron flow is also discussed. 相似文献
19.
20.
Mitochondrial NADH:ubiquinone-reductase (Complex I) catalyzes proton translocation into inside-out submitochondrial particles. Here we describe a method for determining the stoichiometric ratio
(n) for the coupled reaction of NADH oxidation by the quinone acceptors. Comparison of the initial rates of NADH oxidation and alkalinization of the surrounding medium after addition of small amounts of NADH to coupled particles in the presence of Q1 gives the value of n = 4. Thermally induced deactivation of Complex I [1,2] results in complete inhibition of the NADH oxidase reaction but only partial inhibition of the NADH:Q1-reductase reaction. N-Ethylmaleimide (NEM) prevents reactivation and thus completely blocks the thermally deactivated enzyme. The residual NADH:Q1-reductase activity of the deactivated, NEM-treated enzyme is shown to be coupled with the transmembraneous proton translocation (n = 4). Thus, thermally induced deactivation of Complex I as well as specific inhibitors of the endogenous ubiquinone reduction (rotenone, piericidin A) do not inhibit the proton translocating activity of the enzyme. 相似文献