首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 696 毫秒
1.
We evaluated the efficacy of CS2022 (the Lon protease-deficient mutant strain of Salmonella enterica serovar Typhimurium) as a candidate live oral vaccine strain against subsequent oral challenge with a virulent strain administered to BALB/c and C57BL/6 mice. CS2022 persistently resided in the spleen, mesenteric lymph nodes, Peyer's patches, and cecum of both strains of mice after a single oral inoculation with 1 x 10(8) colony-forming units. Finally, CS2022 almost disappeared from each tissue sample by week 12 in BALB/c mice, whereas CS2022 still resided in each tissue type at week 12 after inoculation of C57BL/6 mice. A significant increase in the serovar Typhimurium lipopolysaccharide-specific secretory immunoglobulin A (s-IgA), as measured for one of the mucosal immune responses, was detected in bile and intestinal samples of both strains of immunized mice at week 4 after immunization. In addition, the expression of gamma interferon mRNA in the spleens of both strains of immunized mice, especially those of C57BL/6 mice, was significantly increased at week 4 after immunization and was boosted during the following 5 days after the challenge was administered to the mice. Furthermore, peritoneal macrophages isolated from immunized mice at week 4 after immunization exhibited an increase in intracellular killing activity against both virulent and avirulent Salmonella. The present results suggested that salmonellae-specific s-IgA on the mucosal surfaces induced by immunization with CS2022 generally prevented mice from succumbing to an oral challenge with a virulent strain. Simultaneously, CS2022 promoted the protective immunity associated with macrophages in both strains of mice.  相似文献   

2.
A single oral immunization with the Lon-protease-deficient Salmonella enterica serovar Typhimurium (strain CS2022) induced protective immunity in mice against a subcutaneous challenge with virulent Listeria monocytogenes as well as virulent Salmonella serovar Typhimurium. The populations of cell surface Toll-like receptor 4 (TLR4) and TLR2 on peritoneal macrophages decreased at week 6 after immunization. This population decrease was not reversed after a challenge with either Salmonella or Listeria. These results suggest that oral immunization with CS2022 induced immune tolerance correlated with the down-regulation of cell surface TLR expression. This down-regulation may in part account for the development of cross-protection against a Listeria challenge by immunization with CS2022.  相似文献   

3.
Although oral dendritic cells (DCs) were shown to induce cell-mediated immunity, the identity and function of the various oral DC subsets involved in this process is unclear. In this study, we examined the mechanisms used by DCs of the buccal mucosa and of the lining mucosa to elicit immunity. After plasmid DNA immunization, buccally immunized mice generated robust local and systemic CD8(+) T cell responses, whereas lower responses were seen by lining immunization. A delayed Ag presentation was monitored in vivo in both groups; yet, a more efficient presentation was mediated by buccal-derived DCs. Restricting transgene expression to CD11c(+) cells resulted in diminished CD8(+) T cell responses in both oral tissues, suggesting that immune induction is mediated mainly by cross-presentation. We then identified, in addition to the previously characterized Langerhans cells (LCs) and interstitial dendritic cells (iDCs), a third DC subset expressing the CD103(+) molecule, which represents an uncharacterized subset of oral iDCs expressing the langerin receptor (Ln(+)iDCs). Using Langerin-DTR mice, we demonstrated that whereas LCs and Ln(+)iDCs were dispensable for T cell induction in lining-immunized mice, LCs were essential for optimal CD8(+) T cell priming in the buccal mucosa. Buccal LCs, however, failed to directly present Ag to CD8(+) T cells, an activity that was mediated by buccal iDCs and Ln(+)iDCs. Taken together, our findings suggest that the mechanisms engaged by oral DCs to prime T cells vary between oral mucosal tissues, thus emphasizing the complexity of the oral immune network. Furthermore, we found a novel regulatory role for buccal LCs in potentiating CD8(+) T cell responses.  相似文献   

4.
Immunotherapy using dendritic cells (DCs) has the potential to activate both T cells and NK cells. We previously demonstrated the long-lasting antitumor responses by NK cells following immunization with bone marrow-derived DCs. In the current study, we demonstrate that long-term antitumor NK responses require endogenous DCs and a subset of effector memory CD4(+) T (CD4(+) T(EM)) cells. One month after DC immunization, injection of a tumor into DC-immunized mice leads to an increase in the expression of CXCL10 by endogenous DCs, thus directing NK cells into the white pulp where the endogenous DCs bridged CD4(+) T(EM) cells and NK cells. In this interaction, CD4(+) T(EM) cells express CD40L, which matures the endogenous DCs, and produce cytokines, such as IL-2, which activates NK cells. These findings suggest that DC vaccination can sustain long-term innate NK cell immunity but requires the participation of the adaptive immune system.  相似文献   

5.
Dendritic cells (DCs) are potent APCs for naive CD8(+) T cells and are being investigated as vaccine delivery vehicles. In this study, we examine the CD8(+) T cell response to defined peptides from Listeria monocytogenes (LM), lymphocytic choriomeningitis virus, and murine CMV coated singly and in combination onto mature bone marrow-derived DCs (BMDCs). We show that immunization of mice with 2 x 10(5) mature BMDCs coated with multiple MHC class I peptides generates a significant Ag-specific CD8(+) T cell response in both the spleen and nonlymphoid organs. This immunization resulted in a peptide-specific hierarchy in the magnitude of CD8(+) T cell priming and noncoordinate kinetics in response to different peptide epitopes. Kinetics were not exclusively due to specific characteristics of the MHC class I molecule, and were not altered in an Ag-independent manner by concurrent LM infection. Mice immunized with listeriolysin O 91-99-coated BMDCs are protected against high dose challenge with virulent LM. This protection was enhanced by diversifying the memory CD8(+) T cell compartment, even in the absence of a large increase in Ag-specific CD8(+) memory T cells.  相似文献   

6.
Cao Q  Wang L  Du F  Sheng H  Zhang Y  Wu J  Shen B  Shen T  Zhang J  Li D  Li N 《Cell research》2007,17(7):627-637
Regulatory T cells (Treg) play important roles in immune system homeostasis, and may also be involved in tumor immunotolerance by suppressing Th1 immune response which is involved in anti-tumor immunity. We have previously reported that immunization with attenuated activated autologous T cells leads to enhanced anti-tumor immunity and upregulated Thl responses in vivo. However, the underlying molecular mechanisms are not well understood. Here we show that Treg function was significantly downregulated in mice that received immunization of attenuated activated autologous T cells. We found that Foxp3 expression decreased in CD4+CD25+ T cells from the immunized mice. Moreover, CD4+CD25+Foxp3+ Treg obtained from immunized mice exhibited diminished immunosuppression ability compared to those from naive mice. Further analysis showed that the serum of immunized mice contains a high level ofanti-CD25 antibody (about 30 ng/ml, p〈0.01 vs controls). Consistent with a role ofanti-CD25 response in the downregulation of Treg, adoptive transfer of serum from immunized mice to naive mice led to a significant decrease in Treg population and function in recipient mice. The triggering of anti-CD25 response in immunized mice can be explained by the fact that CD25 was induced to a high level in the ConA activated autologous T cells used for immunization. Our results demonstrate for the first time that immunization with attenuated activated autologous T cells evokes anti-CD25 antibody production, which leads to impeded CD4+CD25+Foxp3+ Treg expansion and function in vivo. We suggest that dampened Treg function likely contributes to enhanced Thl response in immunized mice and is at least part of the mechanism underlying the boosted anti-tumor immunity.  相似文献   

7.
The expansion of CD8(+) T cells in response to Ag can be characterized as either dependent or independent of CD4(+) T cells. The factors that influence this dichotomy are poorly understood but may be dependent upon the degree of inflammation associated with the Ag. Using dendritic cells derived from MHC class II-deficient mice to avoid interaction with CD4(+) T cells in vivo, we have compared the immunogenicity of peptide-pulsed dendritic cells stimulated with molecules associated with infection to those stimulated via CD40. In the absence of CD4(+) T cell help, the expansion of primary CD8(+) T cells after immunization with TNF-alpha- or poly(I:C)-stimulated dendritic cells was minimal. In comparison, LPS- or CpG-stimulated dendritic cells elicited substantial primary CD8(+) T cell responses, though not to the same magnitude generated by immunization with CD40L-stimulated dendritic cells. Remarkably, mice immunized with any stimulated dendritic cell population generated fully functional recall CD8(+) T cells without the aid of CD4(+) T cell help. The observed hierarchy of immunogenicity was closely correlated with the expression of CD70 (CD27L) on the stimulated dendritic cells, and Ab-mediated blockade of CD70 substantially prevented the CD4(+) T cell-independent expansion of primary CD8(+) T cells. These results indicate that the expression of CD70 on dendritic cells is an important determinant for helper-dependence of primary CD8(+) T cell expansion and provide an explanation for the ability of a variety of pathogens to stimulate primary CD8(+) T cell responses in the absence of CD4(+) T cells.  相似文献   

8.
Peptide vaccination is an immunotherapeutic strategy being pursued as a method of enhancing Ag-specific antitumor responses. To date, most studies have focused on the use of MHC class I-restricted peptides, and have not shown a correlation between Ag-specific CD8(+) T cell expansion and the generation of protective immune responses. We investigated the effects of CD4-directed peptide vaccination on the ability of CD8(+) T cells to mount protective antitumor responses in the DUC18/CMS5 tumor model system. To accomplish this, we extended the amino acid sequence of the known MHC class I-restricted DUC18 rejection epitope from CMS5 to allow binding to MHC class II molecules. Immunization with this peptide (tumor-derived extracellular signal-regulated kinase-II (tERK-II)) induced Ag-specific CD4(+) T cell effector function, but did not directly prime CD8(+) T cells. Approximately 31% of BALB/c mice immunized with tERK-II were protected from subsequent tumor challenge in a CD40-dependent manner. Priming of endogenous CD8(+) T cells in immunized mice was detected only after CMS5 challenge. Heightened CD4(+) Th cell function in response to tERK II vaccination allowed a 12-fold reduction in the number of adoptively transferred CD8(+) DUC18 T cells needed to protect recipients against tumor challenge as compared with previous studies using unimmunized mice. Furthermore, tERK-II immunization led to a more rapid and transient expansion of transferred DUC18 T cells than was seen in unimmunized mice. These findings illustrate that CD4-directed peptide vaccination augments antitumor immunity, but that the number of tumor-specific precursor CD8(+) T cells will ultimately dictate the success of immunotherapy.  相似文献   

9.
The central role of T cells in the induction of immunological tolerance against i.v. Ags has been well documented. However, the role of dendritic cells (DCs), the most potent APCs, in this process is not clear. In the present study, we addressed this issue by examining the involvement of two different DC subsets, CD11c(+)CD11b(+) and CD11c(+)CD8(+) DCs, in the induction of i.v. tolerance. We found that mice injected i.v. with an autoantigen peptide of myelin oligodendrocyte glycoprotein (MOG) developed less severe experimental autoimmune encephalomyelitis (EAE) following immunization with MOG peptide but presented with more CD11c(+)CD11b(+) DCs in the CNS and spleen. Upon coculturing with T cells or LPS, these DCs exhibited immunoregulatory characteristics, including increased production of IL-10 and TGF-beta but reduced IL-12 and NO; they were also capable of inhibiting the proliferation of MOG-specific T cells and enhancing the generation of Th2 cells and CD4(+)CD25(+)Foxp3(+) regulatory T cells. Furthermore, these DCs significantly suppressed ongoing EAE upon adoptive transfer. These results indicate that CD11c(+)CD11b(+) DCs, which are abundant in the CNS of tolerized animals, play a crucial role in i.v. tolerance and EAE and may be a candidate cell population for immunotherapy of autoimmune diseases.  相似文献   

10.
Toka FN  Suvas S  Rouse BT 《Journal of virology》2004,78(23):13082-13089
It has become evident that naturally occurring CD25(+) regulatory T cells (T(reg) cells) not only influence self-antigen specific immune response but also dampen foreign antigen specific immunity. This report extends our previous findings by demonstrating that immunity to certain herpes simplex virus (HSV) vaccines is significantly elevated and more effective if T(reg) cell response is curtailed during either primary or recall immunization. The data presented here show that removal of CD25(+) T(reg) cells prior to SSIEFARL-CpG or gB-DNA immunization significantly enhanced the resultant CD8(+) T-cell response to the immunodominant SSIEFARL peptide. The enhanced CD8(+) T-cell reactivity in T(reg) cell-depleted animals was between two- and threefold and evident in both acute and memory stages. Interestingly, removal of CD25(+) T(reg) cells during the memory recall response to plasmid immunization resulted in a twofold increase in CD8(+) T-cell memory pool. Moreover, in the challenge experiments, memory CD8(+) T cells generated with plasmid DNA in the absence of T(reg) cells cleared the virus more effectively compared with control groups. We conclude that CD25(+) T(reg) cells quantitatively as well as qualitatively affect the memory CD8(+) T-cell response generated by gB-DNA vaccination against HSV. However, it remains to be seen if all types of vaccines against HSV are similarly affected by CD25(+) T(reg) cells and if it is possible to devise means of limiting T(reg) cell activity to enhance vaccine efficacy.  相似文献   

11.
The activation, proliferation, differentiation, and trafficking of CD4 T cells is central to the development of type I immune responses. MHC class II (MHCII)-bearing dendritic cells (DCs) initiate CD4(+) T cell priming, but the relative contributions of other MHCII(+) APCs to the complete Th1 immune response is less clear. To address this question, we examined Th1 immunity in a mouse model in which I-A(beta)(b) expression was targeted specifically to the DCs of I-A(beta)b-/- mice. MHCII expression is reconstituted in CD11b(+) and CD8alpha(+) DCs, but other DC subtypes, macrophages, B cells, and parenchymal cells lack of expression of the I-A(beta)(b) chain. Presentation of both peptide and protein Ags by these DC subsets is sufficient for Th1 differentiation of Ag-specific CD4(+) T cells in vivo. Thus, Ag-specific CD4(+) T cells are primed to produce Th1 cytokines IL-2 and IFN-gamma. Additionally, proliferation, migration out of lymphoid organs, and the number of effector CD4(+) T cells are appropriately regulated. However, class II-negative B cells cannot receive help and Ag-specific IgG is not produced, confirming the critical MHCII requirement at this stage. These findings indicate that DCs are not only key initiators of the primary response, but provide all of the necessary cognate interactions to control CD4(+) T cell fate during the primary immune response.  相似文献   

12.
Dendritic cells (DCs) are potent APCs and attractive vectors for cancer immunotherapy. Using the B16 melanoma, a poorly immunogenic experimental tumor that expresses low levels of MHC class I products, we investigated whether DCs loaded ex vivo with apoptotic tumor cells could elicit combined CD4(+) and CD8(+) T cell dependent, long term immunity following injection into mice. The bone marrow-derived DCs underwent maturation during overnight coculture with apoptotic melanoma cells. Following injection, DCs migrated to the draining lymph nodes comparably to control DCs at a level corresponding to approximately 0.5% of the injected inoculum. Mice vaccinated with tumor-loaded DCs were protected against an intracutaneous challenge with B16, with 80% of the mice remaining tumor-free 12 wk after challenge. CD4(+) and CD8(+) T cells were efficiently primed in vaccinated animals, as evidenced by IFN-gamma secretion after in vitro stimulation with DCs loaded with apoptotic B16 or DCs pulsed with the naturally expressed melanoma Ag, tyrosinase-related protein 2. In addition, B16 melanoma cells were recognized by immune CD8(+) T cells in vitro, and cytolytic activity against tyrosinase-related protein 2(180-188)-pulsed target cells was observed in vivo. When either CD4(+) or CD8(+) T cells were depleted at the time of challenge, the protection was completely abrogated. Mice receiving a tumor challenge 10 wk after vaccination were also protected, consistent with the induction of tumor-specific memory. Therefore, DCs loaded with cells undergoing apoptotic death can prime melanoma-specific helper and CTLs and provide long term protection against a poorly immunogenic tumor in mice.  相似文献   

13.
Cytoplasmic delivery and cross-presentation of proteins and peptides is necessary for processing and presentation of antigens for the generation of cytotoxic T cells. We previously described the use of the 16 amino acid peptide penetratin from the Drosophila Antennapedia homeodomain (penetratin, Antp) to transport cytotoxic T lymphocyte epitopes derived from ovalbumin (OVA) or the Mucin-1 tumor-associated antigen into cells. We have now shown that penetratin covalently conjugated to OVA protein and linked in tandem to CD4(+) and/or CD8(+) T-cell epitopes from OVA-stimulated T cells in vitro (B3Z T-cell hybridoma and OT-I and OT-II T cells). The induction of these responses was directly mediated by the penetratin peptide as linking a nonspecific 16-mer peptide to OVA or mixing did not induce CD8(+) or CD4(+) T-cell responses in vitro. Furthermore, interferon (IFN)-γ-secreting CD4(+) and CD8(+) T cells were induced which suppressed B16.OVA tumor growth in C57BL/6 mice. Tumor protection was mediated by a CD8(+) T-cell-dependent mechanism and did not require CD4(+) help to protect mice 7 days after a boost immunization. Alternatively, 40 days after a boost immunization, the presence of CD4(+) help enhanced antigen-specific IFN-γ-secreting CD8(+) T cells and tumor protection in mice challenged with B16.OVA. Long-term CD8 responses were equally enhanced by antigen-specific and universal CD4 help. In addition, immunization with AntpOVA significantly delayed growth of B16.OVA tumors in mice in a tumor therapy model.  相似文献   

14.
As we have shown previously that protein antigen applied epicutaneously (EC) in mice inhibits TNP-specific Th1-mediated contact sensitivity (CS), we postulated that the maneuver of EC immunization might also suppress Tc1-dependent CS response. Here we showed that EC immunization of normal mice with 2,4-dinitrophenylated bovine serum albumin (DNP-BSA) applied on the skin in the form of a patch induces a state of subsequent unresponsiveness due to regulatory T cells (Treg) that inhibited sensitization and elicitation of effector T-cell responses. Suppression is transferable in vivo by TCRαβ(+) CD4(+) CD25(+) lymphocytes harvested from lymph nodes (LNs) of skin-patched animals. Flow cytometry revealed that EC immunization with DNP-BSA increased TCRαβ(+) CD4(+) CD25(+) FoxP3(+) lymphocytes in subcutaneous LNs, suggesting that observed suppression was mediated by Treg cells. Further, in vitro experiments showed that EC immunization with DNP-BSA prior to 1-fluoro-2,4-dinitrobenzen sensitization suppressed LN cell proliferation and inhibited production of TNF-α, IL-12 and IFN-γ. Using a transwell system or anti-CTLA-4 mAb, we found that EC induced suppression required direct Treg-effector cell contact and is CTLA-4-dependent.  相似文献   

15.
We evaluated the effect of immunization with dendritic cells (DCs) pulsed with alpha-galactosylceramide (alphaGalCer) and listeriolysin O (LLO) 91-99 peptide, a dominant cytotoxic T lymphocyte (CTL) epitope of Listeria monocytogenes by observing the responses of specific CD8(+) T cells and in vivo CTL activity. DCs were pulsed with various combinations of alphaGalCer and LLO91-99 peptide and administered to BALB/c mice. Immunization with DCs pulsed with alphaGalCer and LLO91-99 at priming phase and with DCs pulsed with LLO91-99 alone at boosting phase induced stronger in vivo CTL activity, reduced the bacterial load in spleens of Listeria-challenged mice and augmented CD62L(+) CD8(+) central memory T cells compared with other immunization protocols. The blockade of interferon-gamma (IFN-gamma) at boosting phase reversed the induction of CD8(+) central memory T cells and reduced the bacterial load in spleens of Listeria-challenged mice immunized with DCs pulsed with alphaGalCer and LLO91-99 at both phases, suggesting that alphaGalCer at boosting phase has deleterious effects through IFN-gamma production. These results indicate that immunization with DCs pulsed with CTL epitope peptide together with alphaGalCer at priming phase, but not at boosting phase, is feasible for eliciting a specific CTL activity and protective immunity against infection of intracellular bacteria.  相似文献   

16.
Peyer's patch (PP) dendritic cells (DCs) have been shown to exhibit a distinct capacity to induce cytokine secretion from CD4(+) T cells compared with DCs in other lymphoid organs such as the spleen (SP). In this study, we investigated whether PP DCs are functionally different from DCs in the SP in their ability to induce Ab production from B cells. Compared with SP DCs, freshly isolated PP DCs induced higher levels of IgA secretion from naive B cells in DC-T cell-B cell coculture system in vitro. The IgA production induced by PP DCs was attenuated by neutralization of IL-6. In addition, the induction of IgA secretion by SP DCs, but not PP DCs, was further enhanced by the addition of exogenous IL-6. Finally, we demonstrated that only PP CD11b(+) DC subset secreted higher levels of IL-6 compared with other DC subsets in the PP and all SP DC populations, and that PP CD11b(+) DC induced naive B cells to produce higher levels of IgA compared with SP CD11b(+) DC. These results suggest a unique role of PP CD11b(+) DCs in enhancing IgA production from B cells via secretion of IL-6.  相似文献   

17.
T-cell based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. Moreover, polyfunctional and long-lived specific memory T cells have been associated to vaccine-induced protection. CD4(+) T cells are important for the generation and maintenance of functional CD8(+) cytotoxic T cells. We have recently developed a DNA vaccine encoding 18 conserved multiple HLA-DR-binding HIV-1 CD4 epitopes (HIVBr18), capable of eliciting broad CD4(+) T cell responses in multiple HLA class II transgenic mice. Here, we evaluated the breadth and functional profile of HIVBr18-induced immune responses in BALB/c mice. Immunized mice displayed high-magnitude, broad CD4(+)/CD8(+) T cell responses, and 8/18 vaccine-encoded peptides were recognized. In addition, HIVBr18 immunization was able to induce polyfunctional CD4(+) and CD8(+) T cells that proliferate and produce any two cytokines (IFNγ/TNFα, IFNγ/IL-2 or TNFα/IL-2) simultaneously in response to HIV-1 peptides. For CD4(+) T cells exclusively, we also detected cells that proliferate and produce all three tested cytokines simultaneously (IFNγ/TNFα/IL-2). The vaccine also generated long-lived central and effector memory CD4(+) T cells, a desirable feature for T-cell based vaccines. By virtue of inducing broad, polyfunctional and long-lived T cell responses against conserved CD4(+) T cell epitopes, combined administration of this vaccine concept may provide sustained help for CD8(+) T cells and antibody responses- elicited by other HIV immunogens.  相似文献   

18.
The Salmonella type III secretion system (T3SS) efficiently translocates heterologous proteins into the cytosol of eukaryotic cells. This leads to an antigen-specific CD8 T-cell induction in mice orally immunized with recombinant Salmonella. Recently, we have used Salmonella's T3SS as a prophylactic and therapeutic intervention against a murine fibrosarcoma. In this study, we constructed a recombinant Salmonella strain translocating the immunogenic H-2D(b)-specific CD8 T-cell epitope VILTNPISM (KDR2) from the murine vascular endothelial growth factor receptor 2 (VEGFR2). VEGFR2 is a member of the tyrosine protein kinase family and is upregulated on proliferating endothelial cells of the tumor vasculature. After single orogastric vaccination, we detected significant numbers of KDR2-tetramer-positive CD8 T cells in the spleens of immunized mice. The efficacy of these cytotoxic T cells was evaluated in a prophylactic setting to protect mice from challenges with B16F10 melanoma cells in a flank tumor model, and to reduce dissemination of spontaneous pulmonary melanoma metastases. Vaccinated mice revealed a reduction of angiogenesis by 62% in the solid tumor and consequently a significant decrease of tumor growth as compared to non-immunized mice. Moreover, in the lung metastasis model, immunization with recombinant Salmonella resulted in a reduction of the metastatic melanoma burden by approximately 60%.  相似文献   

19.
Whether IFN-gamma contributes to the per-cell protective capacity of memory CD8(+) T cells against Listeria monocytogenes (LM) has not been formally tested. In this study, we generated LM Ag-specific memory CD8(+) T cells via immunization of wild-type (WT) and IFN-gamma-deficient (gamma knockout (GKO)) mice with LM peptide-coated dendritic cells and compared them phenotypically and functionally. Immunization of WT and GKO mice resulted in memory CD8(+) T cells that were similar in number, functional avidity, TCR repertoire use, and memory phenotype. The protective capacity of memory CD8(+) T cells from immunized WT and GKO mice was evaluated after adoptive transfer of equal numbers of WT or GKO cells into naive BALB/c mice followed by LM challenge. The adoptively transferred CD8(+) T cells from GKO donors exhibited a decreased ability to reduce bacterial numbers in the organs of recipient mice when compared with an equivalent number of Ag-matched WT CD8(+) T cells. This deficiency was most evident early (day 3) after infection if a relatively low infectious dose was used; however, transferring fewer memory CD8(+) T cells or increasing the LM challenge dose revealed a more pronounced defect in protective immunity mediated by the CD8(+) T cells from GKO mice. Our studies identified a decrease in Ag-specific target cell lysis in vivo by CD8(+) T cells from GKO mice as the mechanism for the decreased protective immunity after LM challenge. Further studies suggest that the lack of IFN-gamma production by the Ag-specific CD8 T cells themselves diminishes target cell sensitivity to cytolysis, thereby reducing the lytic potency of IFN-gamma-deficient LM-specific memory CD8(+) T cells.  相似文献   

20.
Dendritic cells (DCs) are well known as professional antigen-presenting cells (APC) able to initiate specific T-cell responses to pathogens in lymph nodes (LN) draining the site of infection. However, the respective contribution of migratory and LN-resident DCs in this process remains unclear. As DC subsets represent important targets for vaccination strategies, more precise knowledge of DC subsets able to present vaccine antigens to T cells efficiently is required. To investigate the capacities of DCs migrating in the lymph (L-DCs) to initiate a specific T-cell response, we used physiologically generated DCs collected from a pseudoafferent lymphatic cannulation model in sheep. The CD1b+ L-DCs were assessed for presenting antigens from the vaccine attenuated strain of Salmonella enterica serovar Abortusovis. CD1b+ L-DCs were able to phagocytose, process and to present efficiently Salmonella antigens to effector/memory T cells in vitro. They were shown to be efficient APC for the priming of allogeneic naive T cells associated with inducing both IFN-γ and IL-4 responses. They were also efficient in presenting Salmonella antigens to autologous naive T cells associated with inducing both IFN-γ and IL-10 responses. The capacities of L-DCs to process and present Salmonella antigens to T cells were investigated in vivo after conjunctival inoculation of Salmonella. The CD1b+ L-DCs collected after inoculation were able to induce the proliferative response of CD4+ T cells suggesting the in vivo capture of Salmonella antigens by the CD1b+ L-DCs, and their potential to present them directly to CD4+ T cells. In this study, CD1b+ L-DCs present potential characteristics of APC to initiate by themselves T cell priming in the LN. They could be used as target cells for driving immune activation in vaccinal strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号