首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We characterized type 3 ryanodine receptor (RyR3) purified from rabbit diaphragm by immunoaffinity chromatography using a specific antibody. The purified receptor was free from 12-kDa FK506-binding protein, although it retained the ability to bind 12-kDa FK506-binding protein. Negatively stained images of RyR3 show a characteristic rectangular structure that was indistinguishable from RyR1. The location of the D2 segment, which exists uniquely in the RyR1 isoform, was determined as the region around domain 9 close to the corner of the square-shaped assembly, with use of D2-directed antibody as a probe. The RyR3 homotetramer had a single class of high affinity [3H]ryanodine-binding sites with a stoichiometry of 1 mol/mol. In planar lipid bilayers, RyR3 displayed cation channel activity that was modulated by several ligands including Ca2+, Mg2+, caffeine, and ATP, which is consistent with [3H]ryanodine binding activity. RyR3 showed a slightly larger unit conductance and a longer mean open time than RyR1. Whereas RyR1 showed two classes of channel activity with distinct open probabilities (Po), RyR3 displayed a homogeneous and steeply Ca2+-dependent activity with Po approximately 1. RyR3 was more steeply affected in the channel activity by sulfhydryl-oxidizing and -reducing reagents than RyR1, suggesting that the channel activity of RyR3 may be transformed more precipitously by the redox state. This is also a likely explanation for the difference in the Ca2+ dependence of RyR3 between [3H]ryanodine binding and channel activity.  相似文献   

2.
Single-channel analysis of sarcoplasmic reticulum vesicles prepared from diaphragm muscle, which contains both RyR1 and RyR3 isoforms, revealed the presence of two functionally distinct ryanodine receptor calcium release channels. In addition to channels with properties typical of RyR1 channels, a second population of ryanodine-sensitive channels with properties distinct from those of RyR1 channels was observed. The novel channels displayed close-to-zero open-probability at nanomolar Ca2+ concentrations in the presence of 1 mM ATP, but were shifted to the open conformation by increasing Ca2+ to micromolar levels and were not inhibited at higher Ca2+ concentrations. These novel channels were sensitive to the stimulatory effects of cyclic adenosine 5'-diphosphoribose (cADPR). Detection of this second population of RyR channels in lipid bilayers was always associated with the presence of the RyR3 isoform in muscle preparations used for single-channel measurements and was abrogated by the knockout of the RyR3 gene in mice. Based on the above, we associated the novel population of channels with the RyR3 isoform of Ca2+ release channels. The functional properties of the RyR3 channels are in agreement with a potential qualitative contribution of this channel to Ca2+ release in skeletal muscle and in other tissues.  相似文献   

3.
To evaluate the role in synaptic plasticity of ryanodine receptor type 3 (RyR3), which is normally enriched in hippocampal area CA1, we generated RyR3-deficient mice. Mutant mice exhibited facilitated CA1 long-term potentiation (LTP) induced by short tetanus (100 Hz, 100 ms) stimulation. Unlike LTP in wild-type mice, this LTP was not blocked bythe NMDA receptor antagonist D-AP5 but was partially dependent on L-type voltage-dependent Ca2+ channels (VDCCs) and metabotropic glutamate receptors (mGluRs). Long-term depression (LTD) was not induced in RyR3-deficient mice. RyR3-deficient mice also exhibited improved spatial learning on a Morris water maze task. These results suggest that in wild-type mice, in contrast to the excitatory role of Ca2+ influx, RyR3-mediated intracellular Ca2+ ([Ca2+]i) release from endoplasmic reticulum (ER) may inhibit hippocampal LTP and spatial learning.  相似文献   

4.
Homer, a family of scaffolding proteins originally identified in neurons, is also expressed in skeletal muscle. Previous studies showed that splice variants of Homer 1 (H1) amplify the gain of the ryanodine receptor type 1 (RyR1) channel complex. Using [3H]ryanodine ([3H]Ry) to probe the conformational state of RyR1, the actions of long- and short-forms of H1 are examined singly and in combination. At < or =200 nM, H1 long-forms (H1b or H1c possessing coiled-coil (CC) domains) and short-forms (H1a or H1EVH1 lacking CC domains) enhance specific [3H]Ry binding to RyR1. However, at a concentration > 200 nM, either H1 form completely inhibited [3H]Ry binding. Importantly, the combinations of H1c+H1EVH1, or H1b+H1a acted in an additive manner to enhance or inhibit [3H]Ry-binding activity. H1a and H1c individually or in combination produced the same dynamic pattern in regulating purified RyR1 channels reconstituted in planar lipid bilayers. In combination, their net action on RyR1 channels depends on total concentrations of H1. These data provide a mechanism by which constitutively and transiently expressed H1 forms can tightly regulate RyR1 channel activity in response to changing levels of expression and degradation of H1 proteins.  相似文献   

5.
To clarify whether activity of the ryanodine receptor type 2 (RyR2) is reduced in the sarcoplasmic reticulum (SR) of cardiac muscle, as is the case with the ryanodine receptor type 1 (RyR1), Ca2+-dependent [3H]ryanodine binding, a biochemical measure of Ca2+-induced Ca2+ release (CICR), was determined using SR vesicle fractions isolated from rabbit and rat cardiac muscles. In the absence of an adenine nucleotide or caffeine, the rat SR showed a complicated Ca2+ dependence, instead of the well-documented biphasic dependence of the rabbit SR. In the rat SR, [3H]ryanodine binding initially increased as [Ca2+] increased, with a plateau in the range of 10–100 µM Ca2+, and thereafter further increased to an apparent peak around 1 mM Ca2+, followed by a decrease. In the presence of these modulators, this complicated dependence prevailed, irrespective of the source. Addition of 0.3–1 mM Mg2+ unexpectedly increased the binding two- to threefold and enhanced the affinity for [3H]ryanodine at 10–100 µM Ca2+, resulting in the well-known biphasic dependence. In other words, the partial suppression of RyR2 is relieved by Mg2+. Ca2+ could be a substitute for Mg2+. Mg2+ also amplifies the responses of RyR2 to inhibitory and stimulatory modulators. This stimulating effect of Mg2+ on RyR2 is entirely new, and is referred to as the third effect, in addition to the well-known dual inhibitory effects. This effect is critical to describe the role of RyR2 in excitation-contraction coupling of cardiac muscle, in view of the intracellular Mg2+ concentration. [3H]ryanodine binding; CICR; stimulation by physiological Mg2+, excitation-contraction coupling in the heart  相似文献   

6.
Neomycin is a large, positively charged, aminoglycoside antibiotic that has previously been shown to induce a voltage-dependent substate block in the cardiac isoform of the ryanodine receptor (RyR2). It was proposed that block involved an electrostatic interaction between neomycin and putative regions of negative charge in both the cytosolic and luminal mouths of the pore. In this study, we have attempted to screen charge by increasing potassium concentration in single-channel experiments. Neomycin block is apparent at both cytosolic and luminal faces of the channel in all K+ concentrations tested and alterations in K+ concentration have no effect on the amplitudes of the neomycin-induced substates. However, the kinetics of both cytosolic and luminal block are sensitive to changes in K+ concentration. In both cases increasing the K+ concentration leads to an increase in dissociation constant (KD). Underlying these changes are marked increases in rates of dissociation (k(off)), with little change in rates of association (k(on)). The increase in k(off) is more marked at the luminal face of the channel. Changes in K+ concentration also result in alterations in the voltage dependence of block. We have interpreted these data as supporting the proposal that neomycin block of RyR2 involves electrostatic interactions with the polycation forming a poorly fitting "plug" in the mouths of the conduction pathway. These observations emphasize the usefulness of neomycin as a probe for regions of charge in both the cytosolic and luminal mouths of the RyR2 pore.  相似文献   

7.
Rats learning the Morris water maze exhibit hippocampal changes in synaptic morphology and physiology that manifest as altered synaptic efficacy. Learning requires structural changes in the synapse, and multiple cell adhesion molecules appear to participate. The activity of these cell adhesion molecules is, in large part, dependent on their interaction with the extracellular matrix (ECM). Given that matrix metalloproteinases (MMPs) are responsible for transient alterations in the ECM, we predicted that MMP function is critical for hippocampal-dependent learning. In support of this, it was observed that hippocampal MMP-3 and -9 increased transiently during water maze acquisition as assessed by western blotting and mRNA analysis. The ability of the NMDA receptor channel blocker MK801 to attenuate these changes indicated that the transient MMP changes were in large part dependent upon NMDA receptor activation. Furthermore, inhibition of MMP activity with MMP-3 and -9 antisense oligonucleotides and/or MMP inhibitor FN-439 altered long-term potentiation and prevented acquisition in the Morris water maze. The learning-dependent MMP alterations were shown to modify the stability of the actin-binding protein cortactin, which plays an essential role in regulating the dendritic cytoskeleton and synaptic efficiency. Together these results indicate that changes in MMP function are critical to synaptic plasticity and hippocampal-dependent learning.  相似文献   

8.
The type 1 ryanodine receptor (RyR1) is a Ca(2+) release channel found in the sarcoplasmic reticulum of skeletal muscle and plays a pivotal role in excitation-contraction coupling. The RyR1 channel is activated by a conformational change of the dihydropyridine receptor upon depolarization of the transverse tubule, or by Ca(2+) itself, i.e. Ca(2+)-induced Ca(2+) release (CICR). The molecular events transmitting such signals to the ion gate of the channel are unknown. The S4-S5 linker, a cytosolic loop connecting the S4 and S5 transmembrane segments in six-transmembrane type channels, forms an α-helical structure and mediates signal transmission in a wide variety of channels. To address the role of the S4-S5 linker in RyR1 channel gating, we performed alanine substitution scan of N-terminal half of the putative S4-S5 linker (Thr(4825)-Ser(4829)) that exhibits high helix probability. The mutant RyR1 was expressed in HEK cells, and CICR activity was investigated by caffeine-induced Ca(2+) release, single-channel current recordings, and [(3)H]ryanodine binding. Four mutants (T4825A, I4826A, S4828A, and S4829A) had reduced CICR activity without changing Ca(2+) sensitivity, whereas the L4827A mutant formed a constitutive active channel. T4825I, a disease-associated mutation for malignant hyperthermia, exhibited enhanced CICR activity. An α-helical wheel representation of the N-terminal S4-S5 linker provides a rational explanation to the observed activities of the mutants. These results suggest that N-terminal half of the S4-S5 linker may form an α-helical structure and play an important role in RyR1 channel gating.  相似文献   

9.
10.
Junctophilin 1 (JP1), a 72-kDa protein localized at the skeletal muscle triad, is essential for stabilizing the close apposition of T-tubule and sarcoplasmic reticulum membranes to form junctions. In this study we report that rapid and selective labeling of hyper-reactive thiols found in both JP1 and ryanodine receptor type 1 (RyR1) with 7-diethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin, a fluorescent thiol-reactive probe, proceeded 12-fold faster under conditions that minimize RyR1 gating (e.g. 10 mM Mg2+) compared with conditions that promote high channel activity (e.g. 100 microM Ca2+, 10 mM caffeine, 5 mM ATP). The reactivity of these thiol groups was very sensitive to oxidation by naphthoquinone, H2O2, NO, or O2, all known modulators of the RyR1 channel complex. Using preparative SDS-PAGE, in-gel tryptic digestion, high pressure liquid chromatography, and mass spectrometry-based peptide sequencing, we identified 7-diethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin-thioether adducts on three cysteine residues of JP1 (101, 402, and 627); the remaining five cysteines of JP1 were unlabeled. Co-immunoprecipitation experiments demonstrated a physical interaction between JP1 and RyR1 that, like thiol reactivity, was sensitive to RyR1 conformation and chemical status of the hyper-reactive cysteines of JP1 and RyR1. These findings support a model in which JP1 interacts with the RyR1 channel complex in a conformationally sensitive manner and may contribute integral redox-sensing properties through reactive sulfhydryl chemistry.  相似文献   

11.
12.
13.
The expression pattern of the RyR3 isoform of Ca2+ release channels was analysed by Western blot in neonatal and adult rabbit skeletal muscles. The results obtained show that the expression of the RyR3 isoform is developmentally regulated. In fact, RyR3 expression was detected in all muscles analysed at 2 and 15 days after birth while, in adult animals, it was restricted to a subset of muscles that includes diaphragm, masseter, pterygoideus, digastricus, and tongue. Interestingly, all of these muscles share a common embryonic origin being derived from the somitomeres or from the cephalic region of the embryo. Immunofluorescence analysis of rabbit skeletal muscle cross-sections showed that RyR3 staining was detected in all fibers of neonatal muscles. In contrast, in those adult muscles expressing RyR3 only a fraction of fibers was labelled. Staining of these muscles with antibodies against fast and slow myosins revealed a close correlation between expression of RyR3 and fibers expressing slow myosin isoform.  相似文献   

14.
The ryanodine receptor type 1 (RyR1) is a homotetrameric Ca(2+) release channel located in the sarcoplasmic reticulum of skeletal muscle where it plays a role in the initiation of skeletal muscle contraction. A soluble, 6×-histidine affinity-tagged cytosolic fragment of RyR1 (amino acids 1-4243) was expressed in HEK-293 cells, and metal affinity chromatography under native conditions was used to purify the peptide together with interacting proteins. When analyzed by gel-free liquid chromatography mass spectrometry (LC-MS), 703 proteins were identified under all conditions. This group of proteins was filtered to identify putative RyR interacting proteins by removing those proteins found in only 1 RyR purification and proteins for which average spectral counts were enriched by less than 4-fold over control values. This resulted in 49 potential RyR1 interacting proteins, and 4 were selected for additional interaction studies: calcium homeostasis endoplasmic reticulum protein (CHERP), endoplasmic reticulum-Golgi intermediate compartment 53-kDa protein (LMAN1), T-complex protein, and phosphorylase kinase. Western blotting showed that only CHERP co-purified with affinity-tagged RyR1 and was eluted with imidazole. Immunofluorescence showed that endogenous CHERP co-localizes with endogenous RyR1 in the sarcoplasmic reticulum of rat soleus muscle. A combination of overexpression of RyR1 in HEK-293 cells with siRNA-mediated suppression of CHERP showed that CHERP affects Ca(2+) release from the ER via RyR1. Thus, we propose that CHERP is an RyR1 interacting protein that may be involved in the regulation of excitation-contraction coupling.  相似文献   

15.
The effect of imperatoxin A (IpTx(a)) on the ryanodine receptor type 3 (RyR3) was studied. IpTx(a) stimulates [(3)H]ryanodine binding to RyR3-containing microsomes, but this effect requires toxin concentrations higher than those required to stimulate RyR1 channels. The effect of IpTx(a) on RyR3 channels was observed at calcium concentrations in the range 0.1 microM to 10 mM. By contrast, RyR2 channels were not significantly affected by IpTx(a) in the same calcium ranges. Single channel current measurements indicated that IpTx(a) induced subconductance state in RyR3 channels that was similar to those observed with RyR1 and RyR2 channels. These results indicate that IpTx(a) is capable of inducing similar subconductance states in all three RyR isoforms, while stimulation of [(3)H]ryanodine binding by this toxin results in isoform-specific responses, with RyR1 being the most sensitive channel, RyR3 displaying an intermediate response and RyR2 the least responsive ones.  相似文献   

16.
In this study, we have investigated block of potassium (K(+)) current by neomycin, a large polycation, from the luminal face of the type 3 ryanodine receptor (RyR3). Previous studies have shown that neomycin is an open channel blocker of RyR2 that interacts with negatively charged residues in the mouth of the conduction pathway to partially occlude it. In the current study, we have used neomycin as a probe to investigate proposed negatively charged regions in the luminal pore mouth of RyR3. Luminal neomycin induces concentration- and voltage-dependent partial block to a subconductance state in RyR3. Blocking parameters calculated in this study show that neomycin has a higher affinity for RyR3 than RyR2, but block may occur at the same site within the pore mouth. The change in affinity may be due to altered negative charge density at the site of interaction.  相似文献   

17.
The focal adhesion kinase (FAK) is a non-receptor tyrosine kinase abundantly expressed in the mammalian brain and highly enriched in neuronal growth cones. Inhibitory and facilitatory activities of FAK on neuronal growth have been reported and its role in neuritic outgrowth remains controversial. Unlike other tyrosine kinases, such as the neurotrophin receptors regulating neuronal growth and plasticity, the relevance of FAK for learning and memory in vivo has not been clearly defined yet. A comprehensive study aimed at determining the role of FAK in neuronal growth, neurotransmitter release and synaptic plasticity in hippocampal neurons and in hippocampus-dependent learning and memory was therefore undertaken using the mouse model. Gain- and loss-of-function experiments indicated that FAK is a critical regulator of hippocampal cell morphology. FAK mediated neurotrophin-induced neuritic outgrowth and FAK inhibition affected both miniature excitatory postsynaptic potentials and activity-dependent hippocampal long-term potentiation prompting us to explore the possible role of FAK in spatial learning and memory in vivo. Our data indicate that FAK has a growth-promoting effect, is importantly involved in the regulation of the synaptic function and mediates in vivo hippocampus-dependent spatial learning and memory.  相似文献   

18.
Olfaction plays an essential role in many important insect behaviors such as feeding and reproduction. To detect olfactory stimuli, an odorant receptor co-receptor (Orco) is required. In this study, we deleted the Orco gene in the Lepidopteran model insect, Bombyx mori, using a binary transgene-based clustered regulatory interspaced short palindromic repeats (CRISPR)/Cas9 system. We initially generated somatic mutations in two targeted sites, from which we obtained homozygous mutants with deletion of a 866 base pair sequence. Because of the flight inability of B. mori, we developed a novel method to examine the adult mating behavior. Considering the specialization in larval feeding, we examined food selection behavior in Orco somatic mutants by the walking trail analysis of silkworm position over time. Single sensillum recordings indicated that the antenna of the homozygous mutant was unable to respond to either of the two sex pheromones, bombykol or bombykal. An adult mating behavior assay revealed that the Orco mutant displayed a significantly impaired mating selection behavior in response to natural pheromone released by a wild-type female moth as well as an 11:1 mixture of bombykol/bombykal. The mutants also exhibited a decreased response to bombykol and, similar to wild-type moths, they displayed no response to bombykal. A larval feeding behavior assay revealed that the Orco mutant displayed defective selection for mulberry leaves and different concentrations of the volatile compound cis-jasmone found in mulberry leaves. Deletion of BmOrco severely disrupts the olfactory system, suggesting that BmOrco is indispensable in the olfactory pathway. The approach used for generating somatic and homozygous mutations also highlights a novel method for mutagenesis. This study on BmOrco function provides insights into the insect olfactory system and also provides a paradigm for agroforestry pest control.  相似文献   

19.
The study of experience-dependent plasticity has been dominated by questions of how Hebbian plasticity mechanisms act during learning and development. This is unsurprising as Hebbian plasticity constitutes the most fully developed and influential model of how information is stored in neural circuits and how neural circuitry can develop without extensive genetic instructions. Yet Hebbian plasticity may not be sufficient for understanding either learning or development: the dramatic changes in synapse number and strength that can be produced by this kind of plasticity tend to threaten the stability of neural circuits. Recent work has suggested that, in addition to Hebbian plasticity, homeostatic regulatory mechanisms are active in a variety of preparations. These mechanisms alter both the synaptic connections between neurons and the intrinsic electrical properties of individual neurons, in such a way as to maintain some constancy in neuronal properties despite the changes wrought by Hebbian mechanisms. Here we review the evidence for homeostatic plasticity in the central nervous system, with special emphasis on results from cortical preparations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号