首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to investigate the hypothesis that a single, extended session of heavy exercise would be effective in inducing adaptations in energy metabolism during exercise in the absence of increases in oxidative potential. Ten healthy males [maximal aerobic power (VO(2 peak)) = 43.4 +/- 2.2 (SE) ml x kg(-1) x min(-1)] participated in a 16-h training session involving cycling for 6 min each hour at approximately 90% of maximal oxygen consumption. Measurements of metabolic changes were made on tissue extracted from the vastus lateralis during a two-stage standardized submaximal cycle protocol before (Pre) and 36-48 h after (Post) the training session. At Pre, creatine phosphate (PCr) declined (P < 0.05) by 32% from 0 to 3 min and then remained stable until 20 min of exercise at 60% VO(2 peak) before declining (P < 0.05) by a further 35% during 20 min of exercise at 75% VO(2 peak). Muscle lactate (mmol/kg dry wt) progressively increased (P < 0.05) from 4.59 +/- 0.64 at 0 min to 17.8 +/- 2.7 and 30.9 +/- 5.3 at 3 and 40 min, respectively, whereas muscle glycogen (mmol glucosyl units/kg dry wt) declined (P < 0.05) from a rest value of 360 +/- 24 to 276 +/- 31 and 178 +/- 36 at similar time points. During exercise after the training session, PCr and glycogen were not as depressed (P < 0.05), and increases in muscle lactate were blunted (P < 0.05). All of these changes occurred in the absence of increases in oxidative potential as measured by the maximal activities of citrate synthase and malate dehydrogenase. These findings are consistent with other studies, namely, that muscle metabolic adaptations to regular exercise are an early adaptive event that occurs before increases in oxidative potential.  相似文献   

2.
We performed two studies to determine the effect of a resistive training program comprised of fast vs. slow isokinetic lengthening contractions on muscle fiber hypertrophy. In study I, we investigated the effect of fast (3.66 rad/s; Fast) or slow (0.35 rad/s; Slow) isokinetic high-resistance muscle lengthening contractions on muscle fiber and whole muscle cross-sectional area (CSA) of the elbow flexors was investigated in young men. Twelve subjects (23.8 +/- 2.4 yr; means +/- SD) performed maximal resistive lengthening isokinetic exercise with both arms for 8 wk (3 days/wk), during which they trained one arm at a Fast velocity while the contralateral arm performed an equivalent number of contractions at a Slow velocity. Before (Pre) and after (Post) the training, percutaneous muscle biopsies were taken from the midbelly of the biceps brachii and analyzed for fiber type and CSA. Type I muscle fiber size increased Pre to Post (P < 0.05) in both Fast and Slow arms. Type IIa and IIx muscle fiber CSA increased in both arms, but the increases were greater in the Fast- vs. the Slow-trained arm (P < 0.05). Elbow flexor CSA increased in Fast and Slow arms, with the increase in the Fast arm showing a trend toward being greater (P = 0.06). Maximum torque-generating capacity also increased to a greater degree (P < 0.05) in the Fast arm, regardless of testing velocity. In study II, we attempted to provide some explanation of the greater hypertrophy observed in study I by examining an indicator of protein remodeling (Z-line streaming), which we hypothesized would be greater in the Fast condition. Nine men (21.7 +/- 2.4 yr) performed an acute bout (n = 30, 3 sets x 10 repetitions/set) of maximal lengthening contractions at Fast and Slow velocities used in the training study. Biopsies revealed that Fast lengthening contractions resulted in more (185 +/- 1 7%; P < 0.01) Z-band streaming per millimeter squared muscle vs. the Slow arm. In conclusion, training using Fast (3.66 rad/s) lengthening contractions leads to greater hypertrophy and strength gains than Slow (0.35 rad/s) lengthening contractions. The greater hypertrophy seen in the Fast-trained arm (study I) may be related to a greater amount of protein remodeling (Z-band streaming; study II).  相似文献   

3.
Skeletal muscle primarily relies on carbohydrate (CHO) for energy provision during high-intensity exercise. We hypothesized that sprint interval training (SIT), or repeated sessions of high-intensity exercise, would induce rapid changes in transport proteins associated with CHO metabolism, whereas changes in skeletal muscle fatty acid transporters would occur more slowly. Eight active men (22 +/- 1 yr; peak oxygen uptake = 50 +/- 2 ml.kg(-1).min(-1)) performed 4-6 x 30 s all-out cycling efforts with 4-min recovery, 3 days/wk for 6 wk. Needle muscle biopsy samples (vastus lateralis) were obtained before training (Pre), after 1 and 6 wk of SIT, and after 1 and 6 wk of detraining. Muscle oxidative capacity, as reflected by the protein content of cytochrome c oxidase subunit 4 (COX4), increased by approximately 35% after 1 wk of SIT and remained higher compared with Pre, even after 6 wk of detraining (P < 0.05). Muscle GLUT4 content increased after 1 wk of SIT and remained approximately 20% higher compared with baseline during detraining (P < 0.05). The monocarboxylate tranporter (MCT) 4 was higher after 1 and 6 wk of SIT compared with Pre, whereas MCT1 increased after 6 wk of training and remained higher after 1 wk of detraining (P < 0.05). There was no effect of training or detraining on the muscle content of fatty acid translocase (FAT/CD36) or plasma membrane associated fatty acid binding protein (FABPpm) (P > 0.05). We conclude that short-term SIT induces rapid increases in skeletal muscle oxidative capacity but has divergent effects on proteins associated with glucose, lactate, and fatty acid transport.  相似文献   

4.
Insulin and muscle contractions are major stimuli for glucose uptake in skeletal muscle and have in young healthy people been shown to be additive. We studied the effect of superimposed exercise during a maximal insulin stimulus on glucose uptake and clearance in trained (T) (1-legged bicycle training, 30 min/day, 6 days/wk for 10 wk at approximately 70% of maximal O(2) uptake) and untrained (UT) legs of healthy men (H) [n = 6, age 60 +/- 2 (SE) yr] and patients with Type 2 diabetes mellitus (DM) (n = 4, age 56 +/- 3 yr) during a hyperinsulinemic ( approximately 16,000 pmol/l), isoglycemic clamp with a final 30 min of superimposed two-legged exercise at 70% of individual maximal heart rate. With superimposed exercise, leg glucose extraction decreased (P < 0.05), and leg blood flow and leg glucose clearance increased (P < 0.05), compared with hyperinsulinemia alone. During exercise, leg blood flow was similar in both groups of subjects and between T and UT legs, whereas glucose extraction was always higher (P < 0.05) in T compared with UT legs (15.8 +/- 1.2 vs. 14.6 +/- 1.8 and 11.9 +/- 0.8 vs. 8.8 +/- 1.8% for H and DM, respectively) and leg glucose clearance was higher in T (H: 73 +/- 8, DM: 70 +/- 10 ml. min(-1). kg leg(-1)) compared with UT (H: 63 +/- 8, DM: 45 +/- 7 ml. min(-1). kg leg(-1)) but not different between groups (P > 0.05). From these results it can be concluded that, in both diabetic and healthy aged muscle, exercise adds to a maximally insulin-stimulated glucose clearance and that glucose extraction and clearance are both enhanced by training.  相似文献   

5.
The purpose of this study was to examine the effect of intense interval training on erythrocyte 2,3-diphosphoglycerate (2,3-DPG) levels at rest and after maximal exercise. Eight normal men, mean +/- SE = 24.2 +/- 4.3 years, trained 4 days X week-1 for a period of 8 weeks. Each training session consisted of eight maximal 30-s rides on a cycle ergometer, with 4 min active rest between rides . Prior to and after training the subjects performed a maximal 45-s ride on an isokinetic cycle ergometer at 90 rev X min-1 and a graded leg exercise test ( GLET ) to exhaustion on a cycle ergometer. Blood samples were obtained from an antecubital vein before, during and after the GLET only. Training elicited significant increases in the amount of work done during the 45-s ride (P less than 0.05), and also in maximal oxygen uptake (VO2 max: Pre = 4.01 +/- 0.13; Post = 4.29 +/- 0.07 1 X min-1; P less than 0.05) during exercise and total recovery VO2 (Pre = 19.14 +/- 0.09; Post = 21.45 +/- 0.10 1 X 30 min-1; P less than 0.05) after the GLET . After training blood lactate was higher, base excess lower and pH lower during and following the GLET (P less than 0.05 for all variables).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
This study assessed muscle-specific force in vivo following strength training in old age. Subjects were assigned to training (n = 9, age 74.3 +/- 3.5 yr; mean +/- SD) and control (n = 9, age 67.1 +/- 2 yr) groups. Leg-extension and leg-press exercises (2 sets of 10 repetitions at 80% of the 5 repetition maximum) were performed three times/wk for 14 wk. Vastus lateralis (VL) muscle fascicle force was calculated from maximal isometric voluntary knee extensor torque with superimposed stimuli, accounting for the patella tendon moment arm length, ultrasound-based measurements of muscle architecture, and antagonist cocontraction estimated from electromyographic activity. Physiological cross-sectional area (PCSA) was calculated from the ratio of muscle volume to fascicle length. Specific force was calculated by dividing fascicle force by PCSA. Fascicle force increased by 11%, from 847.9 +/- 365.3 N before to 939.3 +/- 347.8 N after training (P < 0.05). Due to a relatively greater increase in fascicle length (11%) than muscle volume (6%), PCSA remained unchanged (pretraining: 30.4 +/- 8.9 cm(2); posttraining: 29.1 +/- 8.4 cm(2); P > 0.05). Activation capacity and VL muscle root mean square electromyographic activity increased by 5 and 40%, respectively, after training (P < 0.05), indicating increased agonist neural drive, whereas antagonist cocontraction remained unchanged (P > 0.05). The VL muscle-specific force increased by 19%, from 27 +/- 6.3 N/cm(2) before to 32.1 +/- 7.4 N/cm(2) after training (P < 0.01), highlighting the effectiveness of strength training for increasing the intrinsic force-producing capacity of skeletal muscle in old age.  相似文献   

7.
Borst SE  Snellen HG 《Life sciences》2001,69(13):1497-1507
We assessed the effects of combined metformin treatment and exercise training on body composition, on insulin concentration following glucose loading, on insulin-stimulated glucose transport in skeletal muscle, and on muscle glycogen content. Male Sprague-Dawley rats were treated for 35 days with or without metformin (320 mg/kg/day) and/or treadmill exercise training (20 min at 20 m/min, 5 days/wk). Because metformin reduces food intake, pair-fed controls were included. Metformin, training, and pair-feeding all decreased food intake, body weight, and insulin concentration following glucose loading. Metformin and training reduced intra-abdominal fat, but pair feeding did not. In isolated strips derived from soleus, epitrochlearis and extensor carpi ulnaris muscles, metformin increased insulin-stimulated transport of [3H]-2-deoxyglucose by 90%, 89% and 125%, respectively (P < 0.02) and training increased [3H]-2-deoxyglucose transport in the extensor carpi ulnaris muscle only (66%, P < 0.05). Pair-feeding did not alter [3H]-2-deoxyglucose transport. Training increased gastrocnemius muscle glycogen by 100% (P < 0.001). Metformin and pair-feeding did not alter muscle glycogen. We conclude that metformin reverses the maturation-induced impairment of insulin responsiveness in Sprague-Dawley rats by increasing insulin-stimulated glucose transport in skeletal muscle and that this effect is not secondary to reduced food intake. We also conclude that metformin and exercise training may increase insulin sensitivity by different mechanisms, with training causing increased glucose transport only in some muscles and also causing increased muscle glycogen storage.  相似文献   

8.
Training with limited carbohydrate availability can stimulate adaptations in muscle cells to facilitate energy production via fat oxidation. Here we investigated the effect of consistent training in the fasted state, vs. training in the fed state, on muscle metabolism and substrate selection during fasted exercise. Twenty young male volunteers participated in a 6-wk endurance training program (1-1.5 h cycling at ~70% Vo(?max), 4 days/wk) while receiving isocaloric carbohydrate-rich diets. Half of the subjects trained in the fasted state (F; n = 10), while the others ingested ample carbohydrates before (~160 g) and during (1 g·kg body wt?1·h?1) the training sessions (CHO; n = 10). The training similarly increased Vo(?max) (+9%) and performance in a 60-min simulated time trial (+8%) in both groups (P < 0.01). Metabolic measurements were made during a 2-h constant-load exercise bout in the fasted state at ~65% pretraining Vo(?max). In F, exercise-induced intramyocellular lipid (IMCL) breakdown was enhanced in type I fibers (P < 0.05) and tended to be increased in type IIa fibers (P = 0.07). Training did not affect IMCL breakdown in CHO. In addition, F (+21%) increased the exercise intensity corresponding to the maximal rate of fat oxidation more than did CHO (+6%) (P < 0.05). Furthermore, maximal citrate synthase (+47%) and β-hydroxyacyl coenzyme A dehydrogenase (+34%) activity was significantly upregulated in F (P < 0.05) but not in CHO. Also, only F prevented the development exercise-induced drop in blood glucose concentration (P < 0.05). In conclusion, F is more effective than CHO to increase muscular oxidative capacity and at the same time enhances exercise-induced net IMCL degradation. In addition, F but not CHO prevented drop of blood glucose concentration during fasting exercise.  相似文献   

9.
The aim of the present study was to test the hypotheses that exercise is associated with generation of peroxisome proliferator-activated receptor-γ (PPARγ) ligands in the plasma and that this may activate PPARγ signaling within circulating monocytes, thus providing a mechanism to underpin the exercise-induced antiatherogenic benefits observed in previous studies. A cohort of healthy individuals undertook an 8-wk exercise-training program; samples were obtained before (Pre) and after (Post) standardized submaximal exercise bouts (45 min of cycling at 70% of maximal O(2) uptake, determined at baseline) at weeks 0, 4, and 8. Addition of plasma samples to PPARγ response element (PPRE)-luciferase reporter gene assays showed increased PPARγ activity following standardized exercise bouts (Post/Pre = 1.23 ± 0.10 at week 0, P < 0.05), suggesting that PPARγ ligands were generated during exercise. However, increases in PPARγ/PPRE-luciferase activity in response to the same standardized exercise bout were blunted during the training program (Post/Pre = 1.18 ± 0.14 and 1.10 ± 0.10 at weeks 4 and 8, respectively, P > 0.05 for both), suggesting that the relative intensity of the exercise may affect PPARγ ligand generation. In untrained individuals, specific transient increases in monocyte expression of PPARγ-regulated genes were observed within 1.5-3 h of exercise (1.7 ± 0.4, 2.6 ± 0.4, and 1.4 ± 0.1 fold for CD36, liver X receptor-α, and ATP-binding cassette subfamily A member 1, respectively, P < 0.05), with expression returning to basal levels within 24 h. In contrast, by the end of the exercise program, expression at the protein level of PPARγ target genes had undergone sustained increases that were not associated with an individual exercise bout (e.g., week 8 Pre/week 0 Pre = 2.79 ± 0.61 for CD36, P < 0.05). Exercise is known to upregulate PPARγ-controlled genes to induce beneficial effects in skeletal muscle (e.g., mitochondrial biogenesis and aerobic respiration). We suggest that parallel exercise-induced benefits may occur in monocytes, as monocyte PPARγ activation has been linked to beneficial antidiabetic effects (e.g., exercise-induced upregulation of monocytic PPARγ-controlled genes is associated with reverse cholesterol transport and anti-inflammatory effects). Thus, exercise-triggered monocyte PPARγ activation may constitute an additional rationale for prescribing exercise to type 2 diabetes patients.  相似文献   

10.
Muscle fatty acid (FA) metabolism is impaired in obesity and insulin resistance, reflected by reduced rates of FA oxidation and accumulation of lipids. It has been suggested that interventions that increase FA oxidation may enhance insulin action by reducing these lipid pools. Here, we examined the effect of endurance training on rates of mitochondrial FA oxidation, the activity of carnitine palmitoyltransferase I (CPT I), and the lipid content in muscle of obese individuals and related these to measures of glucose tolerance. Nine obese subjects completed 8 wk of moderate-intensity endurance training, and muscle biopsies were obtained before and after training. Training significantly improved glucose tolerance, with a reduction in the area under the curve for glucose (P < 0.05) and insulin (P = 0.01) during an oral glucose tolerance test. CPT I activity increased 250% (P = 0.001) with training and became less sensitive to inhibition by malonyl-CoA. This was associated with an increase in mitochondrial FA oxidation (+120%, P < 0.001). Training had no effect on muscle triacylglycerol content; however, there was a trend for training to reduce both the total diacylglcyerol (DAG) content (-15%, P = 0.06) and the saturated DAG-FA species (-27%, P = 0.06). Training reduced both total ceramide content (-42%, P = 0.01) and the saturated ceramide species (-32%, P < 0.05). These findings suggest that the improved capacity for mitochondrial FA uptake and oxidation leads not only to a reduction in muscle lipid content but also a to change in the saturation status of lipids, which may, at least in part, provide a mechanism for the enhanced insulin action observed with endurance training in obese individuals.  相似文献   

11.
Leptin acutely stimulates skeletal muscle fatty acid (FA) metabolism in lean rodents and humans. This stimulatory effect is eliminated following the feeding of high-fat diets in rodents as well as in obese humans. The mechanism(s) responsible for the development of skeletal muscle leptin resistance is unknown; however, a role for increased suppressor of cytokine signaling-3 (SOCS3) inhibition of the leptin receptor has been demonstrated in other rodent tissues. Furthermore, whether exercise intervention is an effective strategy to prevent or attenuate the development of skeletal muscle leptin resistance has not been investigated. Toward this end, 48 Sprague-Dawley rats (175-190 g; approximately 2-3 mo of age) were fed control or high-fat (60% kcal) diets for 4 wk and either remained sedentary or were treadmill trained. In control diet-fed animals that remained sedentary (CS) or were endurance trained (CT), leptin stimulated FA oxidation (CS +32 +/- 15%, CT +30 +/- 17%; P < 0.05), suppressed triacylglycerol (TAG) esterification (CS -17 +/- 7%, CT -24 +/- 8%; P < 0.05), and reduced the esterification-to-oxidation ratio (CS -19 +/- 13%, CT -29 +/- 10%; P < 0.001) in soleus muscle. High-fat feeding induced leptin resistance in the soleus of sedentary rats (FS), whereas endurance exercise training (FT) restored the ability of leptin to suppress TAG esterification (-19 +/- 9%, P = 0.038). Training did not completely restore the ability of leptin to stimulate FA oxidation. High-fat diets stimulated SOCS3 mRNA expression irrespective of training status (FS +451 +/- 120%, P = 0.024; FT +381 +/- 141%, P = 0.023). Thus the development of skeletal muscle leptin resistance appears to involve an increase in SOCS3 mRNA expression. Endurance training was generally effective in preventing the development of leptin resistance, although this did not appear to require a decrease in SOCS3 expression. Future studies should examine changes in the actual protein content of SOCS3 in muscle and establish whether aerobic exercise is also effective in treating leptin resistance in humans.  相似文献   

12.
We combined tracer and arteriovenous (a-v) balance techniques to evaluate the effects of exercise and endurance training on leg triacylglyceride turnover as assessed by glycerol exchange. Measurements on an exercising leg were taken to be a surrogate for working skeletal muscle. Eight men completed 9 wk of endurance training [5 days/wk, 1 h/day, 75% peak oxygen consumption (Vo(2peak))], with leg glycerol turnover determined during two pretraining trials [45 and 65% Vo(2peak) (45% Pre and 65% Pre, respectively)] and two posttraining trials [65% of pretraining Vo(2peak) (ABT) and 65% of posttraining Vo(2peak) (RLT)] using [(2)H(5)]glycerol infusion, femoral a-v sampling, and measurement of leg blood flow. Endurance training increased Vo(2peak) by 15% (45.2 +/- 1.2 to 52.0 +/- 1.8 mlxkg(-1)xmin(-1), P < 0.05). At rest, there was tracer-measured leg glycerol uptake (41 +/- 8 and 52 +/- 15 micromol/min for pre- and posttraining, respectively) even in the presence of small, but significant, net leg glycerol release (-68 +/- 19 and -50 +/- 13 micromol/min, respectively; P < 0.05 vs. zero). Furthermore, while there was no significant net leg glycerol exchange during any of the exercise bouts, there was substantial tracer-measured leg glycerol turnover during exercise (i.e., simultaneous leg muscle uptake and leg release) (uptake, release: 45% Pre, 194 +/- 41, 214 +/- 33; 65% Pre, 217 +/- 79, 201 +/- 84; ABT, 275 +/- 76, 312 +/- 87; RLT, 282 +/- 83, 424 +/- 75 micromol/min; all P < 0.05 vs. corresponding rest). Leg glycerol turnover was unaffected by exercise intensity or endurance training. In summary, simultaneous leg glycerol uptake and release (indicative of leg triacylglyceride turnover) occurs despite small or negligible net leg glycerol exchange, and furthermore, leg glycerol turnover can be substantially augmented during exercise.  相似文献   

13.
To investigate the effects of training in normoxia vs. training in normobaric hypoxia (fraction of inspired O2 = 20.9 vs. 13.5%, respectively) on the regulation of Na+-K+-ATPase pump concentration in skeletal muscle (vastus lateralis), 9 untrained men, ranging in age from 19 to 25 yr, underwent 8 wk of cycle training. The training consisted of both prolonged and intermittent single leg exercise for both normoxia (N) and hypoxia (H) during a single session (a similar work output for each leg) and was performed 3 times/wk. Na+-K+-ATPase concentration was 326 +/- 17 (SE) pmol/g wet wt before training (Control), increased by 14% with N (371 +/- 18 pmol/g wet wt; P < 0.05), and decreased by 14% with H (282 +/- 20 pmol/g wet wt; P < 0.05). The maximal activity of citrate synthase, selected as a measure of mitochondrial potential, showed greater increases (P < 0.05) with H (1.22 +/- 0.10 mmol x h-1 x g wet wt-1; 70%; P < 0.05) than with N (0.99 +/- 0.10 mmol x h-1 x g wet wt-1; 51%; P < 0.05) compared with pretraining (0.658 +/- 0.09 mmol x h-1 x g wet wt-1). These results demonstrate that normobaric hypoxia induced during exercise training represents a potent stimulus for the upregulation in mitochondrial potential while at the same time promoting a downregulation in Na+-K+-ATPase pump expression. In contrast, normoxic training stimulates increases in both mitochondrial potential and Na+-K+-ATPase concentration.  相似文献   

14.
Previous studies of endurance exercise training in older men and women generally have found only minimal skeletal muscle adaptations to training. To evaluate the possibility that this may have been due to an inadequate training stimulus, we studied 23 healthy older (64 +/- 3 yr) men and women before and after they had trained by walking/jogging at 80% of maximal heart rate for 45 min/day 4 days/wk for 9-12 mo. This training program resulted in a 23% increase in maximal O2 consumption. Needle biopsy samples of the lateral gastrocnemius muscle were obtained before and after training and analyzed for selected histochemical and enzymatic characteristics. The percentage of type I muscle fibers did not change with training. The percentage of type IIb fibers, however, decreased from 19.1 +/- 9.1 to 15.1 +/- 8.1% (P less than 0.001), whereas the percentage of type IIa fibers increased from 22.1 +/- 7.7 to 29.6 +/- 9.1% (P less than 0.05). Training also induced increases in the cross-sectional area of both type I (12%; P less than 0.001) and type IIa fibers (10%; P less than 0.05). Capillary density increased from 257 +/- 43 capillaries/mm2 before training to 310 +/- 48 capillaries/mm2 after training (P less than 0.001) because of increases in the capillary-to-fiber ratio and in the number of capillaries in contact with each fiber. Lactate dehydrogenase activity decreased by 21% (P less than 0.001), whereas the activities of the mitochondrial enzymes succinate dehydrogenase, citrate synthase, and beta-hydroxyacyl-CoA dehydrogenase increased by 24-55% in response to training (P less than 0.001-0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The purpose of this study was to investigate whole muscle and single muscle fiber adaptations in very old men in response to progressive resistance training (PRT). Six healthy independently living old men (82 +/- 1 yr; range 80-86 yr, 74 +/- 4 kg) resistance-trained the knee extensors (3 sets, 10 repetitions) at approximately 70% one repetition maximum 3 days/wk for 12 wk. Whole thigh muscle cross-sectional area (CSA) was assessed before and after PRT using computed tomography (CT). Muscle biopsies were obtained from the vastus lateralis before and after the PRT program. Isolated myosin heavy chain (MHC) I and IIa single muscle fibers (n = 267; 142 pre; 125 post) were studied for diameter, peak tension, shortening velocity, and power. An additional set of isolated single muscle fibers (n = 2,215; 1,202 pre; 1,013 post) was used to identify MHC distribution. One repetition maximum knee extensor strength increased (P < 0.05) 23 +/- 4 kg (56 +/- 4 to 79 +/- 7 kg; 41%). Muscle CSA increased (P < 0.05) 3 +/- 1 cm2 (120 +/- 7 to 123 +/- 7 cm2; 2.5%). Single muscle fiber contractile function and MHC distribution were unaltered with PRT. These data indicate limited muscle plasticity at the single-muscle fiber level with a resistance-training program among the very old. The minor increases in whole muscle CSA coupled with the static nature of the myocellular profile indicate that the strength gains were primarily neurological. These data contrast typical muscle responses to resistance training in young ( approximately 20 yr) and old ( approximately 70 yr) humans and indicate that the physiological regulation of muscle remodeling is adversely modified in the oldest old.  相似文献   

16.
Animal studies suggest that acute and chronic aldosterone administration impairs baroreceptor/baroreflex responses. We tested the hypothesis that aldosterone impairs baroreflex control of cardiac period [cardiovagal baroreflex sensitivity (BRS)] and muscle sympathetic nerve activity (MSNA, sympathetic BRS) in humans. Twenty-six young (25 +/- 1 yr old, mean +/- SE) adults were examined in this study. BRS was determined by using the modified Oxford technique (bolus infusion of nitroprusside, followed 60 s later by bolus infusion of phenylephrine) in triplicate before (Pre) and 30-min after (Post) beginning aldosterone (experimental, 12 pmol.kg(-1).min(-1); n = 10 subjects) or saline infusion (control; n = 10). BRS was quantified from the R-R interval-systolic blood pressure (BP) (cardiovagal BRS) and MSNA-diastolic BP (sympathetic BRS) relations. Aldosterone infusion increased serum aldosterone levels approximately fourfold (P < 0.05) and decreased (P < 0.05) cardiovagal (19.0 +/- 2.3 vs. 15.6 +/- 1.7 ms/mmHg Pre and Post, respectively) and sympathetic BRS [-4.4 +/- 0.4 vs. -3.0 +/- 0.4 arbitrary units (AU).beat(-1).mmHg(-1)]. In contrast, neither cardiovagal (19.3 +/- 3.3 vs. 20.2 +/- 3.3 ms/mmHg) nor sympathetic BRS (-3.8 +/- 0.5 vs. -3.6 +/- 0.5 AU.beat(-1).mmHg(-1)) were altered (Pre vs. Post) in the control group. BP, heart rate, and MSNA at rest were similar in experimental and control subjects before and after the intervention. Additionally, neural and cardiovascular responses to a cold pressor test and isometric handgrip to fatigue were unaffected by aldosterone infusion (n = 6 subjects). These data provide direct experimental support for the concept that aldosterone impairs baroreflex function (cardiovagal and sympathetic BRS) in humans. Therefore, aldosterone may be an important determinant/modulator of baroreflex function in humans.  相似文献   

17.
To evaluate the contribution of working muscle to whole body lipid oxidation, we examined the effects of exercise intensity and endurance training (9 wk, 5 days/wk, 1 h, 75% Vo(2 peak)) on whole body and leg free fatty acid (FFA) kinetics in eight male subjects (26 +/- 1 yr, means +/- SE). Two pretraining trials [45 and 65% Vo(2 max) (45UT, 65UT)] and two posttraining trials [65% of pretraining Vo(2 peak) (ABT), and 65% of posttraining Vo(2 peak) (RLT)] were performed using [1-(13)C]palmitate infusion and femoral arteriovenous sampling. Training increased Vo(2 peak) by 15% (45.2 +/- 1.2 to 52.0 +/- 1.8 ml.kg(-1).min(-1), P < 0.05). Muscle FFA fractional extraction was lower during exercise (EX) compared with rest regardless of workload or training status ( approximately 20 vs. 48%, P < 0.05). Two-leg net FFA balance increased from net release at rest ( approximately -36 micromol/min) to net uptake during EX for 45UT (179 +/- 75), ABT (236 +/- 63), and RLT (136 +/- 110) (P < 0.05), but not 65UT (51 +/- 127). Leg FFA tracer measured uptake was higher during EX than rest for all trials and greater during posttraining in RLT (716 +/- 173 micromol/min) compared with pretraining (45UT 450 +/- 80, 65UT 461 +/- 72, P < 0.05). Leg muscle lipid oxidation increased with training in ABT (730 +/- 163 micromol/min) vs. 65UT (187 +/- 94, P < 0.05). Leg muscle lipid oxidation represented approximately 62 and 30% of whole body lipid oxidation at lower and higher relative intensities, respectively. In summary, training can increase working muscle tracer measured FFA uptake and lipid oxidation for a given power output, but both before and after training the association between whole body and leg lipid metabolism is reduced as exercise intensity increases.  相似文献   

18.
The purpose of this study was to compare the effects of short-term exercise training on insulin-responsive glucose transporter (GLUT-4) concentration and insulin sensitivity in young and older individuals. Young and older women [22.4 +/- 0.8 (SE) yr, n = 9; and 60.9 +/- 1. 0 yr, n = 10] and men (20.9 +/- 0.9, n = 9; 56.5 +/- 1.9 yr, n = 8), respectively, were studied before and after 7 consecutive days of exercise training (1 h/day, approximately 75% maximal oxygen uptake). The older groups had more adipose tissue, increased central adiposity, and a lower maximal oxygen uptake. Despite these differences, increases in whole body insulin action (insulin sensitivity index, determined with an intravenous glucose tolerance test and minimal-model analysis) with training were similar regardless of age, in both the women and men (mean increase of 2.2 +/- 0.3-fold). This was accompanied by similar relative increases in muscle (vastus lateralis) GLUT-4 protein concentration, irrespective of age (mean increase of 3.1 +/- 0.7-fold). Body mass did not change with training in any of the groups. These data suggest that older human skeletal muscle retains the ability to rapidly increase muscle GLUT-4 and improve insulin action with endurance training.  相似文献   

19.
Exercise improves glucose metabolism and delays the onset and/or reverses insulin resistance in the elderly by an unknown mechanism. In the present study, we examined the effects of exercise training on glucose metabolism, abdominal adiposity, and adipocytokines in obese elderly. Sixteen obese men and women (age = 63 +/- 1 yr, body mass index = 33.2 +/- 1.4 kg/m2) participated in a 12-wk supervised exercise program (5 days/wk, 60 min/day, treadmill/cycle ergometry at 85% of heart rate maximum). Visceral fat (VF), subcutaneous fat, and total abdominal fat were measured by computed tomography. Fat mass and fat-free mass were assessed by hydrostatic weighing. An oral glucose tolerance test was used to determine changes in insulin resistance. Exercise training increased maximal oxygen consumption (21.3 +/- 0.8 vs. 24.3 +/- 1.0 ml.kg(-1).min(-1), P < 0.0001), decreased body weight (P < 0.0001) and fat mass (P < 0.001), while fat-free mass was not altered (P > 0.05). VF (176 +/- 20 vs. 136 +/- 17 cm2, P < 0.0001), subcutaneous fat (351 +/- 34 vs. 305 +/- 28 cm2, P < 0.03), and total abdominal fat (525 +/- 40 vs. 443 +/- 34 cm2, P < 0.003) were reduced through training. Circulating leptin was lower (P < 0.003) after training, but total adiponectin and tumor necrosis factor-alpha remained unchanged. Insulin resistance was reversed by exercise (40.1 +/- 7.7 vs. 27.6 +/- 5.6 units, P < 0.01) and correlated with changes in VF (r = 0.66, P < 0.01) and maximal oxygen consumption (r = -0.48, P < 0.05) but not adipocytokines. VF loss after aerobic exercise training improves glucose metabolism and is associated with the reversal of insulin resistance in older obese men and women.  相似文献   

20.
For 5 days, eight well-trained cyclists consumed a random order of a high-carbohydrate (CHO) diet (9.6 g. kg(-1). day(-1) CHO, 0.7 g. kg(-1). day(-1) fat; HCHO) or an isoenergetic high-fat diet (2.4 g. kg(-1). day(-1) CHO, 4 g. kg(-1). day(-1) fat; Fat-adapt) while undertaking supervised training. On day 6, subjects ingested high CHO and rested before performance testing on day 7 [2 h cycling at 70% maximal O(2) consumption (SS) + 7 kJ/kg time trial (TT)]. With Fat-adapt, 5 days of high-fat diet reduced respiratory exchange ratio (RER) during cycling at 70% maximal O(2) consumption; this was partially restored by 1 day of high CHO [0.90 +/- 0.01 vs. 0.82 +/- 0.01 (P < 0.05) vs. 0.87 +/- 0.01 (P < 0.05), for day 1, day 6, and day 7, respectively]. Corresponding RER values on HCHO trial were [0. 91 +/- 0.01 vs. 0.88 +/- 0.01 (P < 0.05) vs. 0.93 +/- 0.01 (P < 0.05)]. During SS, estimated fat oxidation increased [94 +/- 6 vs. 61 +/- 5 g (P < 0.05)], whereas CHO oxidation decreased [271 +/- 16 vs. 342 +/- 14 g (P < 0.05)] for Fat-adapt compared with HCHO. Tracer-derived estimates of plasma glucose uptake revealed no differences between treatments, suggesting muscle glycogen sparing accounted for reduced CHO oxidation. Direct assessment of muscle glycogen utilization showed a similar order of sparing (260 +/- 26 vs. 360 +/- 43 mmol/kg dry wt; P = 0.06). TT performance was 30.73 +/- 1.12 vs. 34.17 +/- 2.48 min for Fat-adapt and HCHO (P = 0.21). These data show significant metabolic adaptations with a brief period of high-fat intake, which persist even after restoration of CHO availability. However, there was no evidence of a clear benefit of fat adaptation to cycling performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号