首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Edwardsiella tarda has a type III secretion system (T3SS) essential for pathogenesis. EseD, together with EseB and EseC, has been suggested to form a putative T3SS translocon complex, although its further function is unclear. To investigate the physiological role of EseD, a mutant strain of E. tarda was constructed with an in-frame deletion of the entire eseD gene. One finding was that the ?eseD mutant decreased the secretion levels of EseC and EseB proteins. Additionally, the ?eseD mutant showed attenuated swarming and contact-hemolysis abilities. However, the ?eseD mutant showed increased biofilm formation. Complementation of the mutant strain with eseD restored these phenotypes to those similar to the wild-type strain. Furthermore, infection experiments in fish showed that the ?eseD mutant exhibited slower proliferation and a tenfold decrease in virulence in fish. These results indicate a specific role of EseD in the pathogenesis of E. tarda. Finally, recombinant EseD protein elicited high antibody titers in immunized fish and various levels of protection against lethal challenge with the wild-type strain. These results indicate that EseD protein may be a candidate antigen for development of a subunit vaccine against Edwardsiellosis.  相似文献   

2.
Edwardsiella tarda is a severe aquaculture pathogen with a broad host range that includes humans, animal, and fish. A gene (degPEt) encoding a DegP homologue was cloned from TX01, a pathogenic E. tarda strain isolated from diseased fish. DegPEt shares high sequence identities with the DegP proteins of several bacterial species. Functional analyses showed that degPEt could complement the temperature-sensitive phenotype of an Escherichia coli degP null mutant. Expression of degPEt in TX01 was modulated by growth phase and temperature, the latter possibly through the action of the σE-like factor. Overexpression of degPEt (i) enhanced the ability of TX01 to disseminate in fish blood at the advanced stage of infection, (ii) heightened the activity of type 2 autoinducer, and (iii) increased the expression of luxS and the genes encoding components of the virulence-associated type III secretion system. Recombinant DegPEt purified from E. coli was a serine protease that exhibited maximum activity at 40 °C and pH8.0. The proteolytic activity of recombinant DegPEt depended on the catalytic triad and the PDZ domains. Immunoprotective analyses showed that purified recombinant DegPEt was a protective immunogen that could induce the production of specific serum antibodies and elicit strong protective immunity in fish vaccinated with DegPEt.  相似文献   

3.
toxR, a conserved virulence-associated gene in vibrios, is identified in Vibrio alginolyticus ZJ51-O, a pathogenic strain isolated from diseased fish. To reveal the role of ToxR in the pathogenicity of V. alginolyticus, a deletion mutant was constructed by allelic exchange. The mutant showed the same level of growth in trypticase soy broth (TSB) and iron-limiting condition, as the wild type strain. However, deletion of toxR severely reduced resistance against bile salts and the capability of biofilm formation. Outer-membrane protein (OMP) analysis showed that a 37-kD protein was absent and a 43-kD protein was decreased in the mutant. By MS/MS, the two proteins are identified as the homologues of OmpT and OmpN, respectively. These data suggest that ToxR might have enhanced the bile resistance and biofilm formation through modulating the production of OMP without affecting the ability of iron acquisition and the virulence to the fish via injection. These results indicate that ToxR may assist V. alginolyticus to colonize on the surface of the fish intestine which is crucial for the initiation of the infection, though it may not be involved in the proliferation of the bacteria in the host tissue.  相似文献   

4.
5.
6.
Shigella deliver a subset of effector proteins such as IpaA, IpaB and IpaC via the type III secretion system (TTSS) into host cells during the infection of colonic epithelial cells. Many bacterial effectors including some from Shigella require specific chaperones for protection from degradation and targeting to the TTSS. In this study, we have investigated the role of the icsB gene located upstream of the ipaBCDA operon in Shigella infection because the role of IcsB as a virulence factor remains unknown. Here, we found that the IcsB protein is secreted via the TTSS of Shigella in vitro and in vivo. We show that IpgA protein encoded by ipgA, the gene immediately downstream of icsB, serves as the chaperone required for the stabilization and secretion of IcsB. We have shown that IcsB binds to IpgA in bacterial cytosol and the binding site is in the middle of the IcsB protein. Intriguingly, although its significance in Shigella pathogenicity is as yet unclear, the icsB gene can be read-through into the ipgA gene to create a translational fusion protein. Furthermore, the contribution of IcsB to the pathogenicity of Shigella was demonstrated by plaque-forming assay and the Sereny test. The ability of the icsB mutant to form plaques was greatly reduced compared with that of the wild type in MDCK cell monolayers. Furthermore, when guinea pig eyes were infected with a non-polar icsB mutant, the bacteria failed to provoke keratoconjunctivitis. These results suggest that IcsB is secreted via the TTSS, chaperoned by IpgA, and required at the post-invasion stage of Shigella pathogenicity  相似文献   

7.
Salmonella enterica encodes a type III secretion system (TTSS) within a pathogenicity island located at centisome 63 (SPI-1), which is essential for its pathogenicity. This system mediates the transfer of a battery of bacterial proteins into the host cell with the capacity to modulate cellular functions. The transfer process is dependent on the function of protein translocases SipB, SipC, and SipD. We report here that Salmonella protein InvE, which is also encoded within SPI-1, is essential for the translocation of bacterial proteins into host cells. An S. enterica serovar Typhimurium mutant carrying a loss-of-function mutation in invE shows reduced secretion of SipB, SipC, and SipD while exhibiting increased secretion of other TTSS effector proteins. We also demonstrate that InvE interacts with a protein complex formed by SipB, SipC, and their cognate chaperone, SicA. We propose that InvE controls protein translocation by regulating the function of the Sip protein translocases.  相似文献   

8.
Magnaporthe oryzae has been used as a model fungal pathogen to study the molecular basis of plant–fungus interactions due to its economic and genetic importance. In this study, we identified a novel gene, Moplaa, which is the homologue of Homo sapiens PLAA encoding a phospholipase A2-activating protein. Moplaa is conserved in some eukaryotic organisms by multiple alignment analysis. The function of the Moplaa gene was studied using the gene target replacement method. The Moplaa deletion mutant exhibited retarded growth and conidial germination, reduced conidiation, appressorial turgor pressure and pathogenicity to rice CO-39. Reintroduction of the gene restored defects of the Moplaa deletion mutant.  相似文献   

9.
Aims: The aim of this study was to investigate the role of membrane‐bound lytic murein transglycosylase A (MltA) in a bacterial fish pathogen Edwardsiella tarda. Methods and Results: An mltA in‐frame deletion mutant (ΔmltA) and an mltA overexpression strain (mltA+) of Edw. tarda were constructed through double‐crossover allelic exchange and by transformation of a low‐copy plasmid carrying the intact mltA into the ΔmltA mutant, respectively. Either inactivation or overexpression of MltA in Edw. tarda resulted in elevated sensitivity to β‐lactam antibiotics and lower viability in oligotrophic or high osmotic environment than wild‐type strain. Autolysis induced by EDTA was reduced in ΔmltA strain, while mltA+ strain was virtually flimsy, indicating that MltA is responsible for the lysis effect. Moreover, mltA+ strain exhibited significant increases in lipopolysaccharide (LPS) biosynthesis and virulence to zebra fish compared with wild‐type strain. Conclusions: The results indicated that MltA plays essential roles in β‐lactam antibiotics and environmental stresses resistance, autolysis, LPS biosynthesis and pathogenicity of Edw. tarda. This is the first report that MltA has a virulence‐related function in Edw. tarda. Significance and Impact of the Study: This study provided useful information for further studies on pathogenesis of Edw. tarda.  相似文献   

10.
Bacterial twin-arginine translocation (Tat) system contributes to translocate folded proteins to the periplasm and plays pleiotropic roles in physiological fitness. Here, we showed that the fish pathogen Edwardsiella tarda Tat pathway was functional and was essential for H2S production and hemolytic activity. E. tarda Tat mutant was more susceptible to diverse stresses such as high temperature, SDS, ethanol, and high-salt conditions. However, E. tarda Tat mutant displayed marginal in vivo virulence attenuation in fish models. Comparative proteomics analysis using two-dimensional gel electrophoresis (2-DGE) and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry were performed to identify proteins undergoing changes in expression levels under high-salt conditons when the Tat pathway was mutilated. Of the 96 differently expressed proteins on the 2-DGE map, 15 proteins were successfully identified with a MASCOT score >45 (p?<?0.05) and fold change higher than 2. These significantly differentially expressed proteins were functionally related to basal metabolism and the biosynthesis of proteins and macromolecules. The results of plate counting further confirmed that the Tat mutant was high-salt-sensitive, indicating that Tat mutant merits as a novel salt-sensitive biological containment system for live attenuated vaccine (LAV) in marine fish vaccinology. To test this, we deleted the type III secretion system genes and cured endogenous plasmid pEIB202 to construct a LAV candidate in the context of Tat abrogation in E. tarda. The results indicated that the LAV candidate was highly attenuated when injected intraperitoneally and elicited significant protection against challenge of wild-type E. tarda in turbot while being rapidly eliminated in seawater.  相似文献   

11.
Xu L  Wang Q  Xiao J  Liu Q  Wang X  Chen T  Zhang Y 《Archives of microbiology》2010,192(12):1039-1047
Edwardsiella tarda is the causative agent of edwardsiellosis in fish. The genome sequence of a virulent strain EIB202 has been determined. According to the genome sequence, the lipopolysaccharide (LPS) synthesis cluster containing a putative O-antigen ligase gene waaL was identified. Here, the in-frame deletion mutant ΔwaaL was constructed to analyze the function of WaaL in E. tarda EIB202. The ΔwaaL mutant displayed absence in O-antigen side chains in the LPS production. The ΔwaaL mutant exhibited an increased sensitivity to hydrogen peroxide indicating that the LPS was involved in the endurance to the oxidative stress in hosts during infection. In addition, the resistance of ΔwaaL to serum and polymyxin B decreased remarkably. The ΔwaaL mutant was also attenuated in virulence, showed an impaired ability in internalization of epithelioma papulosum cyprinid (EPC) cells and a comparatively poor ability of proliferation in vivo, which was in line with the increased LD50 value. These results indicated that waaL gene was a functional member of the gene cluster involved in LPS synthesis and highlighted the importance of the O-antigen side chains to stress adaption and virulence in E. tarda, signifying the gene as a potential target for live attenuated vaccine against this bacterium.  相似文献   

12.
Type III secretion systems (TTSS) are virulence-associated components of many gram-negative bacteria that translocate bacterial proteins directly from the bacterial cytoplasm into the host cell. The Salmonella translocated effector protein SopE has no consensus cleavable amino-terminal secretion sequence, and the mechanism leading to its secretion through the Salmonella pathogenicity island 1 (SPI-1) TTSS is still not fully understood. There is evidence from other bacteria which suggests that the TTSS signal may reside within the 5' untranslated region (UTR) of the mRNA of secreted effectors. We investigated the role of the 5' UTR in the SPI-1 TTSS-mediated secretion of SopE using promoter fusions and obtained data indicating that the mRNA sequence is not involved in the secretion process. To clarify the proteinaceous versus RNA nature of the signal, we constructed frameshift mutations in the amino-terminal region of SopE of Salmonella enterica serovar Typhimurium SL1344. Only constructs with the native amino acid sequence were secreted, highlighting the importance of the amino acid sequence versus the mRNA sequence for secretion. Additionally, we obtained frameshift mutation data suggesting that the first 15 amino acids are important for secretion of SopE independent of the presence of the chaperone binding site. These data shed light on the nature of the signal for SopE secretion and highlight the importance of the amino-terminal amino acids for correct targeting and secretion of SopE via the SPI-1-encoded TTSS during host cell invasion.  相似文献   

13.
14.

Aims

The aim of this study was to investigate the role of invasin in a bacterial fish pathogen Edwardsiella tarda.

Methods and Results

In this study, an in‐frame deletion mutant of invasin (Δinv) in Edw. tarda H1 was constructed through double crossover allelic exchange to explore the function of invasin in virulence to fish. Meanwhile, an invasin overexpression strain (inv+) was obtained by electrotransformation of a low‐copy plasmid pACYC184 carrying the intact invasin into the Δinv mutant. Several virulence‐associated characters of the mutants and wild‐type strain were tested. Compared with the wild‐type H1, haemolytic activity and biofilm formation were decreased in Δinv, while increased significantly in inv+. In addition, the invasin overexpressing strain inv+ exhibited increased internalization into Epithelioma Papulosum Cyprini (EPC) cells. Moreover, in zebrafish model, Δinv showed decreased virulence compared with H1, while inv+ restored the virulence of wild type completely.

Conclusions

The results demonstrated that invasin of Edw. tarda plays essential roles in haemolytic activity, biofilm formation, adherence, internalization and pathogenicity of this bacterium.

Significance and Impact of the Study

This study revealed the role of invasin in Edw. tarda infection and provided useful information for further unveiling the pathogenesis of Edw. tarda.  相似文献   

15.
Invasin is an outer membrane protein that is known to mediate entry of enteric bacteria into mammalian cells. In this study, we analyzed the function and immunoprotective potential of the invasin Inv1 from Edwardsiella tarda, a serious fish pathogen that can also infect humans. In silico analysis indicated that Inv1 possesses a conserved N-terminal DUF3442 domain and a C-terminal group 1 bacterial Ig-like domain. Subcellular localization analysis showed that Inv1 is exposed on cell surface and could be recognized by specific antibodies. Mutation of inv1 had no effect on bacterial growth but attenuates overall bacterial virulence and impaired the ability of E. tarda to attach and invade into host cells. Consistent with these observations, antibody blocking of Inv1 inhibited E. tarda infection of host cells. To examine the immunoprotective potential of Inv1, recombinant Inv1 (rInv1) corresponding to the DUF3442 domain was purified and used to vaccinate Japanese flounder (Paralichthys olivaceus). The results showed that rInv1 induced strong protection against lethal-dose challenge of E. tarda. ELISA analysis showed that rInv1-vaccinated fish produced specific serum antibodies that could enhance the serum bactericidal activity against E. tarda. Taken together, these results indicate that Inv1 is a surface-localized virulence factor that is involved in host infection and can induce effective immunoprotection when used as a subunit vaccine.  相似文献   

16.
Salmonella enterica utilizes a type III secretion system (TTSS) encoded in its pathogenicity island 1 to mediate its initial interactions with intestinal epithelial cells, which are characterized by the stimulation of actin cytoskeleton reorganization and a profound reprogramming of gene expression. These responses result from the stimulation of Rho-family GTPases and downstream signaling pathways by specific effector proteins delivered by this TTSS. We show here that AvrA, an effector protein of this TTSS, specifically inhibits the Salmonella-induced activation of the JNK pathway through its interaction with MKK7, although it does not interfere with the bacterial infection-induced NF-κB activation. We also show that AvrA is phosphorylated at evolutionary conserved residues by a TTSS-effector-activated ERK pathway. This interplay between effector proteins delivered by the same TTSS highlights the remarkable complexity of these systems.  相似文献   

17.
18.

Background

Edwardsiella tarda is the etiologic agent of edwardsiellosis, a devastating fish disease prevailing in worldwide aquaculture industries. Here we describe the complete genome of E. tarda, EIB202, a highly virulent and multi-drug resistant isolate in China.

Methodology/Principal Findings

E. tarda EIB202 possesses a single chromosome of 3,760,463 base pairs containing 3,486 predicted protein coding sequences, 8 ribosomal rRNA operons, and 95 tRNA genes, and a 43,703 bp conjugative plasmid harboring multi-drug resistant determinants and encoding type IV A secretion system components. We identified a full spectrum of genetic properties related to its genome plasticity such as repeated sequences, insertion sequences, phage-like proteins, integrases, recombinases and genomic islands. In addition, analysis also indicated that a substantial proportion of the E. tarda genome might be devoted to the growth and survival under diverse conditions including intracellular niches, with a large number of aerobic or anaerobic respiration-associated proteins, signal transduction proteins as well as proteins involved in various stress adaptations. A pool of genes for secretion systems, pili formation, nonfimbrial adhesions, invasions and hemagglutinins, chondroitinases, hemolysins, iron scavenging systems as well as the incomplete flagellar biogenesis might feature its surface structures and pathogenesis in a fish body.

Conclusion/Significance

Genomic analysis of the bacterium offered insights into the phylogeny, metabolism, drug-resistance, stress adaptation, and virulence characteristics of this versatile pathogen, which constitutes an important first step in understanding the pathogenesis of E. tarda to facilitate construction of a practical effective vaccine used for combating fish edwardsiellosis.  相似文献   

19.
In this study, rpoS gene was identified from Edwardsiella tarda EIB202 and its functional role was analyzed by using an in-frame deletion mutant ∆rpoS and the complemental strain rpoS +. Compared with the wild type and rpoS +, ∆rpoS was impaired in terms of the ability to survive under oxidative stress and nutrient starvation, as well as the resistance to 50% serum of Scophthalmus maximus in 3 h, demonstrating essential roles of RpoS in stress adaptation. The rpoS mutant also displayed markedly increased chondroitinase activity and biofilm formation. Real-time polymerase chain reaction revealed that the expression level of quorum sensing autoinducer synthetase genes luxS and edwI was increased by 3.7- and 2.5-fold in the rpoS mutant strain. Those results suggested that rpoS might be involved in the negative or positive regulation of chondroitinase and biofilm formation, or quorum sensing networks in E. tarda, respectively. Although there were no obvious differences between the wild-type and the rpoS mutant in adherence of epithelioma papulosum cyprini (EPC) cell and in the lethality on fish model, rpoS deletion leads to the drastically reduced capacity for E. tarda to internalize in EPC cells, indicating that RpoS was, while not the main, the factor required for the virulence network of E. tarda.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号