首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT. We have determined the complete nucleotide sequence of the coding region of the small subunit rRNA gene of the hypotrichous ciliate Euplotes aediculatus. It is 1882 nucleotides long and contains several inserts not present in the small subunit rRNA genes of the hypotrichs Oxytricha nova and Stylonychia pustulata. A comparison of the sequences suggests that E. aediculatus is much less closely related to these other two hypotrichs than they are to each other. Although the gene sequence of E. aediculatus is drifting more rapidly than those of these other two species, its faster evolutionary clock is not enough to account for the degree of difference between them.  相似文献   

2.
We carried out a comprehensive survey of small subunit ribosomal RNA sequences from archaeal, bacterial, and eukaryotic lineages in order to understand the general patterns of thermal adaptation in the rRNA genes. Within each lineage, we compared sequences from mesophilic, moderately thermophilic, and hyperthermophilic species. We carried out a more detailed study of the archaea, because of the wide range of growth temperatures within this group. Our results confirmed that there is a clear correlation between the GC content of the paired stem regions of the 16S rRNA genes and the optimal growth temperature, and we show that this correlation cannot be explained simply by phylogenetic relatedness among the thermophilic archaeal species. In addition, we found a significant, positive relationship between rRNA stem length and growth temperature. These correlations are found in both bacterial and archaeal rRNA genes. Finally, we compared rRNA sequences from warm-blooded and cold-blooded vertebrates. We found that, while rRNA sequences from the warm-blooded vertebrates have a higher overall GC content than those from the cold-blooded vertebrates, this difference is not concentrated in the paired regions of the molecule, suggesting that thermal adaptation is not the cause of the nucleotide differences between the vertebrate lineages. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Nicolas Galtier]  相似文献   

3.
L. Vawter  W. M. Brown 《Genetics》1993,134(2):597-608
The small subunit ribosomal RNA gene (srDNA) has been used extensively for phylogenetic analyses. One common assumption in these analyses is that substitution rates are biased toward transitions. We have developed a simple method for estimating relative rates of base change that does not assume rate constancy and takes into account base composition biases in different structures and taxa. We have applied this method to srDNA sequences from taxa with a noncontroversial phylogeny to measure relative rates of evolution in various structural regions of srRNA and relative rates of the different transitions and transversions. We find that: (1) the long single-stranded regions of the RNA molecule evolve slowest, (2) biases in base composition associated with structure and phylogenetic position exist, and (3) the srDNAs studied lack a consistent transition/transversion bias. We have made suggestions based on these findings for refinement of phylogenetic analyses using srDNA data.  相似文献   

4.
5.
Because of an increased number of Acanthamoeba keratitis (AK) along with associated disease burdens, medical professionals have become more aware of this pathogen in recent years. In this study, by analyzing both the nuclear 18S small subunit ribosomal RNA (18S rRNA) and mitochondrial 16S rRNA gene loci, 27 clinical Acanthamoeba strains that caused AK in Japan were classified into 3 genotypes, T3 (3 strains), T4 (23 strains), and T5 (one strain). Most haplotypes were identical to the reference haplotypes reported from all over the world, and thus no specificity of the haplotype distribution in Japan was found. The T4 sub-genotype analysis using the 16S rRNA gene locus also revealed a clear sub-conformation within the T4 cluster, and lead to the recognition of a new sub-genotype T4i, in addition to the previously reported sub-genotypes T4a-T4h. Furthermore, 9 out of 23 strains in the T4 genotype were identified to a specific haplotype (AF479533), which seems to be a causal haplotype of AK. While heterozygous nuclear haplotypes were observed from 2 strains, the mitochondrial haplotypes were homozygous as T4 genotype in the both strains, and suggested a possibility of nuclear hybridization (mating reproduction) between different strains in Acanthamoeba. The nuclear 18S rRNA gene and mitochondrial 16S rRNA gene loci of Acanthamoeba spp. possess different unique characteristics usable for the genotyping analyses, and those specific features could contribute to the establishment of molecular taxonomy for the species complex of Acanthamoeba.  相似文献   

6.
Nanoplanktonic protists are comprised of a diverse assemblage of species which are responsible for a variety of trophic processes in marine and freshwater ecosystems. Current methods for identifying small protists by electron microscopy do not readily permit both identification and enumeration of nanoplanktonic protists in field samples. Thus, one major goal in the application of molecular approaches in protistan ecology has been the detection and quantification of individual species in natural water samples. Sequences of small subunit ribosomal RNA (SSU rRNA) genes have proven to be useful towards achieving this goal. Comparison of sequences from clone libraries of protistan SSU rRNA genes amplified from natural assemblages of protists by the polymerase chain reaction (PCR) can be used to examine protistan diversity. Furthermore, oligonucleotide probes complementary to short sequence regions unique to species of small protists can be designed by comparative analysis of rRNA gene sequences. These probes may be used to either detect the RNA of particular species of protists in total nucleic acid extracts immobilized on membranes, or the presence of target species in water samples via in situ hybridization of whole cells. Oligonucleotide probes may also serve as primers for the selective amplification of target sequences from total population DNA by PCR. Thus, molecular sequence information is becoming increasingly useful for identifying and enumerating protists, and for studying their spatial and temporal distribution in nature. Knowledge of protistan species composition, abundance and variability in an environment can ultimately be used to relate community structure to various aspects of community function and biogeochemical activity.  相似文献   

7.
Sequence analysis and riboprinting of the small subunit ribosomal RNA genes were used to characterize two morphologically different Perkinsus species isolates from the gill (G117) and the hemolymph (H49) of the softshell clam, Mya arenaria. Sequence data of the polymerase chain reaction amplified ribosomal RNA loci of G117 and H49 indicated that these genes are 1803 and 1806 base-pair long, respectively. A sequence similarity of > 98.9% was calculated among ribosomal RNA sequences of the two isolates of this study and the published sequences of Perkinsus marinus from the American eastern oyster, Crassostrea virginica, and Perkinsus sp. from the blood cockle of the Australian mollusc, Anadara trapezia. From a phylogenetic tree obtained from Jukes-Cantor distances of the aligned ribosomal RNA gene sequences of 13 eukaryotic taxa using the Neighbor-Joining method, we showed that G117 and H49 clustered within the genus Perkinsus. Guided by the sequence data of Perkinsus marinus (accession # X75762) and Perkinsus sp. (accession # L07375), restriction endonucleases were selected for restriction fragment analysis of polymerase chain reaction products of the small subunit ribosomal RNA genes (riboprinting). Riboprinting was used to distinguish the four members of the genus Perkinsus from each other.  相似文献   

8.
Tintinnida is a diverse taxon that accommodates over 1,500 morphospecies, which is an important component of marine planktonic food webs. However, evolutionary relationships of tintinnids are poorly known because molecular data of most groups within this order are lacking. In our study, the small subunit (SSU) rRNA genes representing 10 genera, 5 families of Tintinnida were sequenced, including the first SSU rRNA gene sequences for Coxliella, Dadayiella, Epiplocyloides, and Protorhabdonella, and phylogenetic trees were constructed to assess their intergeneric relationships. Phylogenies inferred from different methods showed that (1) Three newly sequenced Eutintinnus species fell into Eutintinnus clade forming a sister group to the clade containing Amphorides, Steenstrupiella, Amphorellopsis, and Salpingella; (2) Surprisingly, the genetic distances between Amphorides amphora and Amphorellopsis acuta population 1 was even smaller than that between the two populations of Amphorellopsis acuta, casting doubt on the validity of Amphorides and Amphorellopsis as presently defined; (3) The SSU rRNA sequences of Dadayiella ganymedes and Parundella aculeata were almost identical. Therefore, Parundella ganymedes novel combination is proposed; (4) Coxliella, which is currently assigned within Metacylididae, branched instead with some Tintinnopsis species. Furthermore, the validation of Coxliella, which was considered to be a “questionable” genus, was confirmed based on evidences from morphology, ecology, and molecular data; (5) Protorhabdonella and Rhabdonella showed rather low intergeneric distance and grouped together with strong support suggesting that Rhabdonellidae is a well‐defined taxon; and (6) Epiplocyloides branched with species in Cyttarocylididae indicating their close relationship.  相似文献   

9.
ABSTRACT. We have determined the complete nucleotide sequence of the coding region of the small subunit rRNA gene expressed by bloodstream stages of the apicomplexan Plasmodium berghei. It is 2059 nucleotides long. Elements contributing to its relatively large size are all concentrated in regions known to be variable in length among eukaryotes. In a phylogenetic tree constructed from pairwise comparisons of eukaryotic small subunit rRNA sequences, the apicomplexan line branches at a rather early point in eukaryotic evolution before any multicellular kingdoms had yet appeared.  相似文献   

10.
ABSTRACT The diversity of symbiotic dinoflagellates (SD) from seven coral species ( Fungia scutaria, Fungia paumotensis, Lep-tastrea transversa, Pavona cactus, Pocillopora verrucosa, Montastrea curia , and Acropora fonnosa ) was studied in a restricted geographical area, the Lagoon of Arue on the island of Tahiti. Their diversity was explored by small subunit ribosomal RNA gene (SSU rDNA) restriction fragment length polymorphism (RFLP). After a nested amplification with SD specific primers, RFLP analyses were performed directly and after a cloning step. The diversity of these different SSU rDNA was estimated in respect to possible technical artifacts. In an axenic culture of SD from the coral Galaxea fascicularis , both heterogeneous SSU rDNAs and artifact molecules were observed as in our SD samples. According to the number of patterns observed, corals Fungia paumotensis, Leptastrea transversa. Pavona cactus, Montastrea curia, and Acropora fonnosa contained one class of SD SSU rDNAs. whereas Fungia scutaria and Pocillopora verrucosa contained three and two classes of SD SSU rDNAs respectively. In the limited geographic area studied. SD from different coral species shared the same pattern, except SD from Montastrea curta , which showed a unique pattern. In addition to the possibility of SD flux among different coral species, specific mechanisms could also be involved in the establishment of a symbiosis.  相似文献   

11.
Parasites identified as Perkinsus atlanticus have been reported infecting carpet shell clams in Galicia (northwest Spain). We have sequenced the 18S ribosomal RNA gene of in vitro cultured Perkinsus atlanticus-like or hypnospores from diseased clams, and compared it with the same genomic region from P. marinus and Perkinsus sp. We have also compared the sequence of internal transcribed spacer (ITS) 1, ITS 2, and 5.8S rRNA from our isolate with the P. atlanticus GenBank sequence. The phylogenetic analysis of our cultured parasite based on the 18S gene led us to conclude that this isolate is not related to the genus Perkinsus but to the protists Anurofeca, Ichthyophonus, and Psorospermium, located near the animal-fungal divergence. These last two genera have been included, together with Dermocystidium, in the newly described DRIPs (Dermocystidium, rossete agent, Ichthyophonus, and Psorospermium) clade, recently named Mesomycetozoa. Received October 25, 1999; accepted February 11, 2000.  相似文献   

12.
Using the polymerase chain reaction (PCR) and two primers for conserved regions of the small subunit ribosomal RNA (SSU-rRNA.) of Microsporidia, a DNA segment about 1,195 base pairs long was amplified from a DNA template prepared from purified spores of the microsporidian species Pleistophora anguillarum. These spores had been isolated from adult eels ( Anguilla japonica ) with "Beko Disease." A comparison of sequence data from other microsporidian species showed P. anguillarum SSU-rRNA to be most similar to Vavraia oncoperae. When juvenile eels were artificially infected with P. anguillarum , enzyme-linked immunosorbent assay could detect a positive infection only 12 days post-infection. However, when suitable PCR primers were used, a DNA fragment of about 0.8 kb was detected from these juvenile eels after only 3 days post-infection. No PCR product was obtained with templates prepared from clinically healthy control animals.  相似文献   

13.
Haptophyta encompasses more than 300 species of mostly marine pico‐ and nanoplanktonic flagellates. Our aims were to investigate the Oslofjorden haptophyte diversity and vertical distribution by metabarcoding, and to improve the approach to study haptophyte community composition, richness and proportional abundance by comparing two rRNA markers and scanning electron microscopy (SEM). Samples were collected in August 2013 at the Outer Oslofjorden, Norway. Total RNA/cDNA was amplified by haptophyte‐specific primers targeting the V4 region of the 18S, and the D1‐D2 region of the 28S rRNA. Taxonomy was assigned using curated haptophyte reference databases and phylogenetic analyses. Both marker genes showed Chrysochromulinaceae and Prymnesiaceae to be the families with highest number of Operational Taxonomic Units (OTUs), as well as proportional abundance. The 18S rRNA data set also contained OTUs assigned to eight supported and defined clades consisting of environmental sequences only, possibly representing novel lineages from family to class. We also recorded new species for the area. Comparing coccolithophores by SEM with metabarcoding shows a good correspondence with the 18S rRNA gene proportional abundances. Our results contribute to link morphological and molecular data and 28S to 18S rRNA gene sequences of haptophytes without cultured representatives, and to improve metabarcoding methodology.  相似文献   

14.
The aim of this study was to compare the usefulness of complete small and large subunit rRNA, and a combination of both molecules, for reconstructing stramenopile evolution. To this end, phylogenies from species of which both sequences are known Acre constructed with the neighbor-joining, maximum parsimony, and maximum likelihood methods. Also the use of structural features of the rRNAs was evaluated. The large subunit rRNA from the diatom Skeletonema pseudocostatum was sequenced in order to have a more complete taxon sampling, and a group I intron was identified. Our results indicated that heterokont algae are monophyletic, with diatoms diverging first. However, as the analysis was restricted to a particular data set containing merely six taxa, the outcome has limited value for elucidating stramenopile relationships. On the other hand, this approach permits comparison of the performance of both rRNA molecules without interference from other factors, such as a different species selection for each molecule. For the taxa used, the large subunit rRNA clearly contained more phylogenetic information than the small subunit rRNA. Although this result can definitely not be generalized and depends on the phvlogeny to be studied, in some cases determining complete large subunit rRNA sequences certainly seems worthwhile.  相似文献   

15.
16.
R. Sweeney  C. H. Yao    M. C. Yao 《Genetics》1991,127(2):327-334
Anisomycin, an antibiotic that specifically inhibits the peptidyl transfer function of eukaryotic ribosomes, has been used to select resistant mutants in Tetrahymena thermophila. A mutation conferring anisomycin resistance (an-r) has been localized to a 1.2-kb fragment of the large subunit ribosomal RNA (rRNA) gene by transformation via microinjection. A single base pair change was detected within this region. Nine independently isolated an-r mutants had the same base pair change. T. thermophila strains that are homozygous for this mutation are cold sensitive, unable to mate and grossly abnormal in cell morphology.  相似文献   

17.
Staphylococcus aureus is the most predominant and important pathogen in clinical microbiology. A DNA amplification assay using the polymerase chain reaction (PCR) was designed to identify S. aureus through a single-base-pair mismatch in the sequences of staphylococcal 16S ribosomal RNA (16S rRNA) genes. It was able to detect and identify S. aureus without requiring additional analytical techniques. Twenty-eight staphylococcal and non-staphylococcal strains were tested to verify the specificity of the assay, and only S. aureus strains gave a positive reaction. It may be possible to provide immediate and exact information for the identification of S. aureus.  相似文献   

18.
ABSTRACT. The small subunit ribosomal RNA genes of nine species belonging to six genera of litostome ciliates, namely Amphileptus aeschtae, Chaenea teres, Chaenea vorax, Lacrymaria marina, Litonotus paracygnus, Loxophyllum sp.‐GD‐070419, Loxophyllum jini, Loxophyllum rostratum, and Phialina salinarum, were sequenced for the first time. Phylogenetic trees were constructed using different methods to assess the inter‐ and intra‐generic relationships of haptorians, of which Chaenea, Lacrymaria, Litonotus, and Phialina were analyzed for the first time based on molecular data. Monophyly of the order Pleurostomatida was strongly confirmed, and the two existing families of pleurostomatids, created on the basis of morphology, were confirmed by molecular evidence. Within the Pleurostomatida, Siroloxophyllum utriculariae occupied a well‐supported position basal to the Loxophyllum clade, supporting the separation of these genera from one another. Both the subclass Haptoria and the order Haptorida were partially unresolved, possibly paraphyletic assemblages of taxa in all analyses, creating doubts about the traditional placement of some haptorid taxa. The existing sequence of L. rostratum in GenBank (DQ411864) was conspicuously different from that of the isolate from Qingdao, China sequenced in the present work, indicating that they are different species. The isolate from Qingdao was verified as L. rostratum by morphological analysis, and the published morphology of existing GenBank record of L. rostratum is different from it. Based on both morphological and molecular evidence, the latter may be congeneric with an undescribed species of Loxophyllum from Guangdong Province, China.  相似文献   

19.
ABSTRACT. Three complete 18S ribosomal RNA gene sequences from the rumen ciliates, Entodinium coudatum (1,639 bp), Epidinium caudarum (1,638 bp), and Polyplastron multivesiculatum (1,640 bp) were determined and confrimed in the opposite direction. Trees produced using maximum parsimony and distance-matrix methods (lest squares and neighbour-joining). with strong bootstrap support, depict the rumen ciliates as a monophyletic group, Entodinium caudatum is the earliest branching rumen ciliate. However, Entodiniwn simplex does not pair with En. caudatum , but rather with Polyplastron multivesiculatum. Signature sequences for these rumen ciliates reveal that the published SSrRNA gene sequence from En. simplex is in fact a Polyoplastron species. The free-living haptorian ciliates, Loxophyllum, Homalozoon and Spathidium (Subclass Hoptoria), are monophyletic and are the sister group to the rumen cilates. The litostomes (class Litostomatea), consisting of the haptorians and the rumen ciliates, are also a monophyletic group.  相似文献   

20.
The Rhizopoda comprise a diverse assemblage of protists which depend on lobose or filose pseudopodia for locomotion. The biochemical and morphological diversity of rhizopods has led to an uncertain taxonomy. Ribosomal RNA sequence comparisons offer a measure of evolutionary relatedness that is independent of morphology and has been used to demonstrate a polyphyletic origin of the Lobosea. We sequenced complete small subunit ribosomal RNA coding regions from the filose amoebae, Euglypha rotunda and Paulinella chromatophora (Euglyphina) to position these taxa in the eukaryote phylogeny. The neighbor-joining analyses show that E. rotunda and P. chromatophora share a monophyletic origin and are not closely related to any lobose amoebae in our analyses. Instead, the Euglyphina form a robust sister group to the Chlorarachniophyta. These results provide further evidence for the polyphyly of the Rhizopoda and support the creation of a new amoeboid lineage which includes the Euglyphina and the chlorarachniophyte algae; taxa with tubular mitochondrial cristae and filose or reticulate pseudopodia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号