首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scientists studying how languages change over time often make an analogy between biological and cultural evolution, with words or grammars behaving like traits subject to natural selection. Recent work has exploited this analogy by using models of biological evolution to explain the properties of languages and other cultural artefacts. However, the mechanisms of biological and cultural evolution are very different: biological traits are passed between generations by genes, while languages and concepts are transmitted through learning. Here we show that these different mechanisms can have the same results, demonstrating that the transmission of frequency distributions over variants of linguistic forms by Bayesian learners is equivalent to the Wright–Fisher model of genetic drift. This simple learning mechanism thus provides a justification for the use of models of genetic drift in studying language evolution. In addition to providing an explicit connection between biological and cultural evolution, this allows us to define a ‘neutral’ model that indicates how languages can change in the absence of selection at the level of linguistic variants. We demonstrate that this neutral model can account for three phenomena: the s-shaped curve of language change, the distribution of word frequencies, and the relationship between word frequencies and extinction rates.  相似文献   

2.
Morphological evolution is accelerated among island mammals   总被引:4,自引:4,他引:0       下载免费PDF全文
Millien V 《PLoS biology》2006,4(10):e321
Dramatic evolutionary changes occur in species isolated on islands, but it is not known if the rate of evolution is accelerated on islands relative to the mainland. Based on an extensive review of the literature, I used the fossil record combined with data from living species to test the hypothesis of an accelerated morphological evolution among island mammals. I demonstrate that rates of morphological evolution are significantly greater—up to a factor of 3.1—for islands than for mainland mammal populations. The tendency for faster evolution on islands holds over relatively short time scales—from a few decades up to several thousands of years—but not over larger ones—up to 12 million y. These analyses form the first empirical test of the long held supposition of accelerated evolution among island mammals. Moreover, this result shows that mammal species have the intrinsic capacity to evolve faster when confronted with a rapid change in their environment. This finding is relevant to our understanding of species' responses to isolation and destruction of natural habitats within the current context of rapid climate warming.  相似文献   

3.
Our species exhibits spectacular success due to cumulative culture. While cognitive evolution of social learning mechanisms may be partially responsible for adaptive human culture, features of early human social structure may also play a role by increasing the number potential models from which to learn innovations. We present interview data on interactions between same-sex adult dyads of Ache and Hadza hunter-gatherers living in multiple distinct residential bands (20 Ache bands; 42 Hadza bands; 1201 dyads) throughout a tribal home range. Results show high probabilities (5%–29% per year) of cultural and cooperative interactions between randomly chosen adults. Multiple regression suggests that ritual relationships increase interaction rates more than kinship, and that affinal kin interact more often than dyads with no relationship. These may be important features of human sociality. Finally, yearly interaction rates along with survival data allow us to estimate expected lifetime partners for a variety of social activities, and compare those to chimpanzees. Hadza and Ache men are estimated to observe over 300 men making tools in a lifetime, whereas male chimpanzees interact with only about 20 other males in a lifetime. High intergroup interaction rates in ancestral humans may have promoted the evolution of cumulative culture.  相似文献   

4.
The claim that human culture evolves through the differential adoption of cultural variants, in a manner analogous to the evolution of biological species, has been greeted with much resistance and confusion. Here we demonstrate that as compelling a case can now be made that cultural evolution has key Darwinian properties, as Darwin himself presented for biological evolution in The Origin of Species. Culture is shown to exhibit variation, competition, inheritance, and the accumulation of successive cultural modifications over time. Adaptation, convergence, and the loss or change of function can also be identified in culture. Just as Darwin knew nothing of genes or particulate inheritance, a case for Darwinian cultural evolution can be made irrespective of whether unitary cultural replicators exist or whether cultural transmission mechanisms are well understood.  相似文献   

5.
The comparatively good fossil record of post-Palaeozoic echinoids allows rates of morphological change to be estimated over the past 260 million years and compared with rates of molecular evolution. Parsimony analysis of morphological data, based predominantly on skeletal characteristics, and parsimony, distance and maximum likelihood analyses of molecular data, from the first 380 bases from the 5' end of the 28S rRNA molecule, for 10 species of echinoid produce congruent phylogenies. The molecular sequence chosen is demonstrably far from saturation and sister groups have divergence times ranging from about 15 to 260 Ma. Parsimony analysis allows the great majority of molecular and morphological apomorphies to be placed in one of 18 independent geological time intervals, providing a direct measure of rates of evolution for periods in the geological past. Because most molecular fixed point mutations in our sequences cannot be polarized unambiguously by outgroup comparison (making the outgroup states effectively random), distance and parsimony analyses both tend spuriously to root the echinoid tree on the longest internal branch. A topology identical to that derived from morphological data is, however, obtained using Maximum Likelihood and also parsimony analysis where outgroup rooting is restricted to more conserved regions. This is taken as the correct topology for assessing rates of evolution. Overall, both morphological and molecular changes show a moderately strong correlation with time elapsed, but a weaker correlation with one another. Statistically significant differences in evolutionary rate are found between some, but not all, pair-wise comparisons of sister lineages for both molecular and morphological data. The molecular clock rate for echinaceans is three times faster than that for cidaroids and irregular echinoids. Spearman's rank correlation test, which requires only relative magnitude of changes to be known, suggests that morphological change has a slightly better correlation with time than does molecular change, averaged over all ten species. However, when just echinaceans are considered an extremely good correlation is found between the number of molecular changes and time elapsed, whereas morphological change remains poorly correlated. Thus, molecular rates approximate to a clocklike model within restricted echinoid clades, but vary significantly between clades. Averaging results over all echinoids produces a correlation that is no better than the correlation between morphological change and time elapsed.  相似文献   

6.
Extinctions of megafauna species during the Late Quaternary dramatically reduced the global diversity of mammals. There is intense debate over the causes of these extinctions, especially regarding the extent to which humans were involved. Most previous analyses of this question have focused on chronologies of extinction and on the archaeological evidence for human-megafauna interaction. Here, I take an alternative approach: comparison of the biological traits of extinct species with those of survivors. I use this to demonstrate two general features of the selectivity of Late Quaternary mammal extinctions in Australia, Eurasia, the Americas and Madagascar. First, large size was not directly related to risk of extinction; rather, species with slow reproductive rates were at high risk regardless of their body size. This finding rejects the 'blitzkrieg' model of overkill, in which extinctions were completed during brief intervals of selective hunting of large-bodied prey. Second, species that survived despite having low reproductive rates typically occurred in closed habitats and many were arboreal or nocturnal. Such traits would have reduced their exposure to direct interaction with people. Therefore, although this analysis rejects blitzkrieg as a general scenario for the mammal megafauna extinctions, it is consistent with extinctions being due to interaction with human populations.  相似文献   

7.
Domestication involves both culture and biology. The cultural process of domestication begins when animals are incorporated into the social structure of a human community and become objects of ownership, inheritance, purchase and exchange. The morphological changes that occur in domestic animals come second to this integration into human society. The biological process resembles evolution and begins when a small number of parent animals are separated from the wild species and are habituated to humans. These animals form a founder group, which is changed over successive generations, in response to natural selection under the new regime imposed by the human community and its environment, and also by artificial selection for economic, cultural, or aesthetic reasons. In the wild, the evolution of a subspecies occurs when a segment of a species becomes reproductively isolated by a geographical barrier. With domestic animals, this separation leads to the development of different breeds.  相似文献   

8.
Races may exist in humans in a cultural sense, but biological concepts of race are needed to access their reality in a non-species-specific manner and to see if cultural categories correspond to biological categories within humans. Modern biological concepts of race can be implemented objectively with molecular genetic data through hypothesis-testing. Genetic data sets are used to see if biological races exist in humans and in our closest evolutionary relative, the chimpanzee. Using the two most commonly used biological concepts of race, chimpanzees are indeed subdivided into races but humans are not. Adaptive traits, such as skin color, have frequently been used to define races in humans, but such adaptive traits reflect the underlying environmental factor to which they are adaptive and not overall genetic differentiation, and different adaptive traits define discordant groups. There are no objective criteria for choosing one adaptive trait over another to define race. As a consequence, adaptive traits do not define races in humans. Much of the recent scientific literature on human evolution portrays human populations as separate branches on an evolutionary tree. A tree-like structure among humans has been falsified whenever tested, so this practice is scientifically indefensible. It is also socially irresponsible as these pictorial representations of human evolution have more impact on the general public than nuanced phrases in the text of a scientific paper. Humans have much genetic diversity, but the vast majority of this diversity reflects individual uniqueness and not race.  相似文献   

9.
The Fundamental Constraint on the evolution of culture   总被引:1,自引:0,他引:1  
This paper argues that there is a general constraint on the evolution of culture. This constraint – what I am calling the Fundamental Constraint – must be satisfied in order for a cultural system to be adaptive. The Fundamental Constraint is this: for culture to be adaptive there must be a positive correlation between the fitness of cultural variants and their fitness impact on the organisms adopting those variants. Two ways of satisfying the Fundamental Constraint are introduced, structural solutions and evaluative solutions. Because of the limitations on these solutions, this constraint helps explain why there is not more culture in nature, why the culture that does exist has the form it has, and why complex, cumulative culture is restricted to the human species.  相似文献   

10.
Recombination varies greatly among species, as illustrated by the poor conservation of the recombination landscape between humans and chimpanzees. Thus, shorter evolutionary time frames are needed to understand the evolution of recombination. Here, we analyze its recent evolution in humans. We calculated the recombination rates between adjacent pairs of 636,933 common single-nucleotide polymorphism loci in 28 worldwide human populations and analyzed them in relation to genetic distances between populations. We found a strong and highly significant correlation between similarity in the recombination rates corrected for effective population size and genetic differentiation between populations. This correlation is observed at the genome-wide level, but also for each chromosome and when genetic distances and recombination similarities are calculated independently from different parts of the genome. Moreover, and more relevant, this relationship is robustly maintained when considering presence/absence of recombination hotspots. Simulations show that this correlation cannot be explained by biases in the inference of recombination rates caused by haplotype sharing among similar populations. This result indicates a rapid pace of evolution of recombination, within the time span of differentiation of modern humans.  相似文献   

11.
Organisms frequently choose, regulate, construct and destroy important components of their environments, in the process changing the selection pressures to which they and other organisms are exposed. We refer to these processes as niche construction. In humans, culture has greatly amplified our capacity for niche construction and our ability to modify selection pressures. We use gene‐culture coevolutionary models to explore the evolutionary consequences of culturally generated niche construction through human evolution. Our analysis suggests that where cultural traits are transmitted in an unbiased fashion from parent to offspring, cultural niche construction will have a similar effect to gene‐based niche construction. However, cultural transmission biases favouring particular cultural traits may either increase or reduce the range of parameter space over which niche construction has an impact, which means that niche construction with biased transmission will either have a much smaller or a much bigger effect than gene‐based niche construction. The analysis also reveals circumstances under which cultural transmission can overwhelm natural selection, accelerate the rate at which a favoured gene spreads, initiate novel evolutionary events and trigger hominid speciation. Because cultural processes typically operate faster than natural selection, cultural niche construction probably has more profound consequences than gene‐based niche construction, and is likely to have played an important role in human evolution.  相似文献   

12.
The rate of DNA mutation and divergence is highly variable across the tree of life. However, the reasons underlying this variation are not well understood. Comparing the rates of genetic changes between hosts and parasite lineages that diverged at the same time is one way to begin to understand differences in genetic mutation and substitution rates. Such studies have indicated that the rate of genetic divergence in parasites is often faster than that of their hosts when comparing single genes. However, the variation in this relative rate of molecular evolution across different genes in the genome is unknown. We compared the rate of DNA sequence divergence between humans, chimpanzees and their ectoparasitic lice for 1534 protein-coding genes across their genomes. The rate of DNA substitution in these orthologous genes was on average 14 times faster for lice than for humans and chimpanzees. In addition, these rates were positively correlated across genes. Because this correlation only occurred for substitutions that changed the amino acid, this pattern is probably produced by similar functional constraints across the same genes in humans, chimpanzees and their ectoparasites.  相似文献   

13.
Heterogeneous DNA substitution rates were found in the 18S-26S nuclear ribosomal DNA internal transcribed spacer (ITS) and external transcribed spacer (ETS) regions of Sidalcea (Malvaceae), a putatively young genus of annuals and perennials. The majority of comparisons revealed that the annual species had significantly higher molecular evolutionary rates than the perennials, whereas rates were consistently homogenous between obligate annual species. These findings led us to conclude that generation time or possibly another biological factor distinguishing annuals and perennials has influenced rates of molecular evolution in SIDALCEA: The congruence of relative-rate test results across both spacer regions reinforced the association between life history and rate of rDNA evolution across lineages of checker mallows. Evolutionary rate variation within perennials mainly involved three basally divergent lineages. The faster rate in one lineage, Sidalcea stipularis, compared with other perennials may be the result of genetic drift in the only known, small, population. The other two basally divergent lineages had slower evolutionary rates compared with the remaining perennials; possible explanations for these differences include rate-reducing effects of a suffrutescent (rather than herbaceous) habit and seed dormancy.  相似文献   

14.
The last two decades have seen an explosion in research analysing cultural change as a Darwinian evolutionary process. Here I provide an overview of the theory of cultural evolution, including its intellectual history, major theoretical tenets and methods, key findings, and prominent criticisms and controversies. ‘Culture’ is defined as socially transmitted information. Cultural evolution is the theory that this socially transmitted information evolves in the manner laid out by Darwin in The Origin of Species, i.e. it comprises a system of variation, differential fitness and inheritance. Cultural evolution is not, however, neo-Darwinian, in that many of the details of genetic evolution may not apply, such as particulate inheritance and random mutation. Following a brief history of this idea, I review theoretical and empirical studies of cultural microevolution, which entails both selection-like processes wherein some cultural variants are more likely to be acquired and transmitted than others, plus transformative processes that alter cultural information during transmission. I also review how phylogenetic methods have been used to reconstruct cultural macroevolution, including the evolution of languages, technology and social organisation. Finally, I discuss recent controversies and debates, including the extent to which culture is proximate or ultimate, the relative role of selective and transformative processes in cultural evolution, the basis of cumulative cultural evolution, the evolution of large-scale human cooperation, and whether social learning is learned or innate. I conclude by highlighting the value of using evolutionary methods to study culture for both the social and biological sciences.  相似文献   

15.
More studies have focused on aspects of chimpanzee behaviour and cognition relevant to the evolution of culture than on any other species except our own. Accordingly, analysis of the features shared by chimpanzees and humans is here used to infer the scope of cultural phenomena in our last common ancestor, at the same time clarifying the nature of the special characteristics that advanced further in the hominin line. To do this, culture is broken down into three major aspects: the large scale, population-level patterning of traditions; social learning mechanisms; and the behavioural and cognitive contents of culture. Each of these is further dissected into subcomponents. Shared features, as well as differences, are identified in as many as a dozen of these, offering a case study for the comparative analysis of culture across animal taxa and a deeper understanding of the roots of our own cultural capacities.  相似文献   

16.
I consider a simple model for the evolution of a quantitative character is structured populations when an offspring's phenotype is determined partly by his or her genetic constitution and partly by cultural transmission of the parental phenotype. Analysis of the model indicates that when individual and group selection are in the same direction, phenotypic evolution always proceeds faster under gene-culture vs. purely genetic transmission. When individual and group selection are countervailing, altruistic characters evolve faster under gene-culture transmission when individual selection is weak and migration among groups is limited, with increased individual selection and migration tending to decrease the advantage of gene-culture transmission over purely genetic transmission. Given the prevalence of cultural transmission in higher species, these results suggest that contrary to what is often assumed, group selection may indeed by a potent evolutionary force in the evolution of altruistic characters.  相似文献   

17.
This and the next issue of Evolutionary Anthropology are devoted to presenting the most recent advances in our understanding of the evolution of culture in non‐human primates and humans. This effort was stimulated in part by the recent explosion of comparative evidence for extensive communicative and material culture in two great apes, chimpanzees 1 and orangutans. 2 Before this evidence accumulated, it was easy for anthropologists to maintain that examples of non‐human primate culture were little more impressive than those put forward for many other non‐human species, and thus they could leave intact the seemingly huge gap between animal and human culture. The overall purpose of this special pair of issues of Evolutionary Anthropology is to ask how and why culture has changed over evolutionary time from non‐primates to non‐human primates to early hominins to modern humans.  相似文献   

18.
Cumulative culture, generally known as the increasing complexity or efficiency of cultural behaviors additively transmitted over successive generations, has been emphasized as a hallmark of human evolution. Recently, reviews of candidates for cumulative culture in nonhuman species have claimed that only humans have cumulative culture. Here, we aim to scrutinize this claim, using current criteria for cumulative culture to re-evaluate overlooked qualitative but longitudinal data from a nonhuman primate, the Japanese monkey (Macaca fuscata). We review over 60 years of Japanese ethnography of Koshima monkeys, which indicate that food-washing behaviors (e.g., of sweet potato tubers and wheat grains) seem to have increased in complexity and efficiency over time. Our reassessment of the Koshima ethnography is preliminary and nonquantitative, but it raises the possibility that cumulative culture, at least in a simple form, occurs spontaneously and adaptively in other primates and nonhumans in nature.  相似文献   

19.
Culture, in the most basic sense of “tradition,” has been shown to exist in many species. There is more to the phenomenon of culture in humans, however, than the mere existence of traditions. Thus, rather than expecting that culture can be assigned to living or ancestral species in an all‐or‐none fashion, reconstruction of the evolution of this uniquely complex phenomenon is likely to depend on successfully teasing apart its components, which may have evolved in a somewhat mosaic fashion. In this paper, we dissect ten different aspects of human culture and offer evidence that most of them are manifested in chimpanzees, even if in limited ways, permitting inferences about the cultural profile of our common ancestor. The aspects of culture examined include large‐scale patterns of behavioral variation across populations, the mechanisms available for social transmission, and cultural contents. The contrasts thus drawn for humans and chimpanzees offer a framework for cultural comparisons between other taxa from the past and present.  相似文献   

20.
Cultural evolution has predominated over biological evolution in modern man (Homo sapiens sapiens). Cultural evolution differs from biological evolution not only by inheritance of acquired characteristics but also, as is proposed in the present essay, by another kind of selection mechanism. Whereas selection in biological evolution is executed according to a criterion of reproductive success (the natural selection), selection in cultural evolution appears to be carried out according to human and humanistic criteria (success or fitness in meeting human needs, interests and humanistic values--"humanistic selection"). Many humanistic needs or values do not seem to be prerequisite for reproductive success, yet some of them (e.g. a need for freedom) seem to be inborn. Innateness, humanistic selection (decisive at a community level) and hierarchy of some human needs, interests and values appear to give cultural evolution a generally upward trend although long periods of stagnation or even regression may occur. Modern humans appear to be still at the early stage of their cultural evolution. A further cultural evolution of man appears to be, in contrast to biological evolution, predictable (with an optimistic outlook) and testable. The problem is that the hopeful result of this test will probably be known only in the fairly remote future provided that this species will not become extinct before that.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号