首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ascorbate peroxidase is one of the major enzymes regulating the levels of H2O2 in plants and plays a crucial role in maintaining root nodule redox status. We used fully developed and mature nitrogen fixing root nodules from soybean plants to analyze the effect of exogenously applied nitric oxide, generated from the nitric oxide donor 2,2′-(hydroxynitrosohydrazono)bis-ethanimine, on the enzymatic activity of soybean root nodule ascorbate peroxidase. Nitric oxide caused an increase in the total enzymatic activity of ascorbate peroxidase. The nitric oxide-induced changes in ascorbate peroxidase enzymatic activity were coupled to altered nodule H2O2 content. Further analysis of ascorbate peroxidase enzymatic activity identified three ascorbate peroxidase isoforms for which augmented enzymatic activity occurred in response to nitric oxide. Our results demonstrate that nitric oxide regulates soybean root nodule ascorbate peroxidase activity. We propose a role of nitric oxide in regulating ascorbate-dependent redox status in soybean root nodule tissue.Key words: antioxidant enzymes, ascorbate peroxidase, nitric oxide, oxidative stress, reactive oxygen species, redox homeostasis, soybean root nodules  相似文献   

2.
The response of two maize (Zea mays L.) genotypes, named GR (salt-tolerant) and SK (salt-sensitive), to salt stress (150 mM NaCl) was investigated under controlled environmental growth conditions. Genotype SK experienced more oxidative damage than the GR genotype when subjected to salt stress, which corresponded to higher O2 ? production rate and H2O2 content in the SK genotype than the GR genotype. Induction of caspase-like activity in response to salt stress was stronger in the SK genotype than in the GR genotype. On the other hand, induction of antioxidant enzyme activity to scavenge O2 ? and H2O2 in response to salt stress was weaker in the SK genotype than in the GR genotype. Consequently, the higher level of oxidative damage in the SK genotype in response to salt stress was manifested as more extensive cell death and biomass reduction in the SK genotype than it was in the GR genotype. Our results suggest that a direct relationship exists between salt stress-induced oxidative damage and cell death-inducing caspase-like activity, with tolerance to the salt stress being controlled by the efficiency of the plant antioxidant enzymes in limiting salt stress-induced oxidative damage and thus limiting cell death-inducing caspase-like activity.  相似文献   

3.
  • Ammonium gluconate (AG) provides both an organic carbon source and a nitrogen source, which can positively improve soil fertility and delay soil degradation.
  • We investigated the underlying mechanisms of both NH4+‐ and C6H11O7?‐mediated resistance to high salt concentrations in maize (Zea mays L.), and how they relate to antioxidant cellular machinery, root system architecture, root activity and lignin content in roots.
  • Seedlings treated with AG maintained lower Na+ content, higher chlorophyll content, higher CAT and POD activity, compared with those without AG and ammonium carbonate (AC). The total size of the root system, primary root length and number of lateral roots detected on the primary root treated with AG decreased compared with those not treated with AG at the same NaCl concentration. However, average root diameter and root activity when treated with AG were significantly higher than roots without AG at the same NaCl concentration. Furthermore, total size of the root system, primary root length and number of lateral roots detected on primary rootsof seedlings treated with AG were higher than those treated with AC at the same NaCl concentration.
  • These results suggested that AG may be a good organic fertiliser under salt stress by decreasing Na+ content and increasing chlorophyll content, activity of antioxidant enzymes, root diameter and root activity in maize seedlings.
  相似文献   

4.
Glycinebetaine is one of the most competitive compounds which play an important role in salt stress in plants. In this study, the enhanced salt tolerance in soybean (Glycine max L.) by exogenous application of glycinebetaine was evaluated. To improve salt tolerance at the seedling stage, GB was applied in four different concentrations (0, 5, 25 and 50 mM) as a pre-sowing seed treatment. Salinity stress in the form of a final concentration of 150 mM sodium chloride (NaCl) over a 15 day period drastically affected the plants as indicated by increased proline, MDA and Na+ content of soybean plants. In contrast, supplementation with 50 mM GB improved growth of soybean plants under NaCl as evidenced by a decrease in proline, MDA and Na+ content of soybean plants. Further analysis showed that treatments with GB, resulted in increasing of CAT and SOD activity of soybean seedlings in salt stress. We propose that the role of GB in increasing tolerance to salinity stress in soybean may result from either its antioxidant capacity by direct scavenging of H2O2 or its role in activating CAT activity which is mandatory in scavenging H2O2.  相似文献   

5.
The adverse effects of arsenic (As) toxicity on seedling growth, root and shoot anatomy, chlorophyll and carotenoid contents, root oxidizability (RO), antioxidant enzyme activities, H2O2 content, lipid peroxidation and electrolyte leakage (EL%) in common bean (Phaseolus vulgaris L.) were investigated. The role of exogenous nitric oxide (NO) in amelioration of As-induced inhibitory effect was also evaluated using sodium nitroprusside (100 μM SNP) as NO donor and 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (200 μM PTIO) as NO scavenger in different combinations with 50 μM As. As-induced growth inhibition was associated with marked anomalies in anatomical features, reduction in pigment composition, increased RO and severe perturbations in antioxidant enzyme activities. While activity of superoxide dismutase and catalase increased, levels of ascorbate peroxidase, dehydroascorbate reductase and glutathione reductase decreased significantly and guaiacol peroxidase remained normal. The over-accumulation of H2O2 content along with high level of lipid peroxidation and electrolyte leakage indicates As-induced oxidative damage in P. vulgaris seedlings with more pronounced effect on the roots than the shoots. Exogenous addition of NO significantly reversed the As-induced oxidative stress, maintaining H2O2 in a certain level through balanced alterations of antioxidant enzyme activities. The role of NO in the process of amelioration has ultimately been manifested by significant reduction of membrane damage and improvement of growth performance in plants grown on As + SNP media. Onset of oxidative stress was more severe after addition of PTIO, which confirms the protective role of NO against As-induced oxidative damage in P. vulgaris seedlings.  相似文献   

6.
In the current work, we investigated the effects of dopamine, an neurotransmitter found in several plant species on antioxidant enzyme activities and ROS in soybean (Glycine max L. Merrill) roots. The effects of dopamine on SOD, CAT and POD activities, as well as H2O2, O2•−, melanin contents and lipid peroxidation were evaluated. Three-day-old seedlings were cultivated in half-strength Hoagland nutrient solution (pH 6.0), without or with 0.1 to 1.0 mM dopamine, in a growth chamber (25°C, 12 h photoperiod, irradiance of 280 μmol m−2 s−1) for 24 h. Significant increases in melanin content were observed. The levels of ROS and lipid peroxidation decreased at all concentrations of dopamine tested. The SOD activity increased significantly under the action of dopamine, while CT activity was inhibited and POD activity was unaffected. The results suggest a close relationship between a possible antioxidant activity of dopamine and melanin and activation of SOD, reducing the levels of ROS and damage on membranes of soybean roots.  相似文献   

7.
Background and Aims The development of seedlings involves many morphological, physiological and biochemical processes, which are controlled by many factors. Some reactive oxygen and nitrogen species (ROS and RNS, respectively) are implicated as signal molecules in physiological and phytopathological processes. Pepper (Capsicum annuum) is a very important crop and the goal of this work was to provide a framework of the behaviour of the key elements in the metabolism of ROS and RNS in the main organs of pepper during its development.Methods The main seedling organs (roots, hypocotyls and green cotyledons) of pepper seedlings were analysed 7, 10 and 14 d after germination. Activity and gene expression of the main enzymatic antioxidants (catalase, ascorbate–glutathione cycle enzymes), NADP-generating dehydrogenases and S-nitrosoglutathione reductase were determined. Cellular distribution of nitric oxide (·NO), superoxide radical (O2·–) and peroxynitrite (ONOO) was investigated using confocal laser scanning microscopy.Key Results The metabolism of ROS and RNS during pepper seedling development was highly regulated and showed significant plasticity, which was co-ordinated among the main seedling organs, resulting in correct development. Catalase showed higher activity in the aerial parts of the seedling (hypocotyls and green cotyledons) whereas roots of 7-d-old seedlings contained higher activity of the enzymatic components of the ascorbate glutathione cycle, NADP-isocitrate dehydrogenase and NADP-malic enzyme.Conclusions There is differential regulation of the metabolism of ROS, nitric oxide and NADP dehydrogenases in the different plant organs during seedling development in pepper in the absence of stress. The metabolism of ROS and RNS seems to contribute significantly to plant development since their components are involved directly or indirectly in many metabolic pathways. Thus, specific molecules such as H2O2 and NO have implications for signalling, and their temporal and spatial regulation contributes to the success of seedling establishment.  相似文献   

8.
The contamination of soils with dry olive-mill residue can represent a serious problem as being an environmental stressor in plants. It has been demonstrated that inoculation of aqueous extract of olive oil-mill residue (ADOR) with saprobe fungi removes some phenolic compounds. In this paper we studied the effect of ADOR uninoculated or inoculated with saprobe fungi in sunflower seedling roots. The germination and root growth, O2·- generation, superoxide dismutase (SOD) and extracellular peroxidases (EC-POXs) activities, and the content of some metabolites involved in the tolerance of stress were tested. The roots germinated in ADOR uninoculated show a decrease in meristem size, resulting in a reduction of the root length and fresh weight, and in the number of layers forming the cortex, but did not alter the dry weight, protein and soluble amino acid content. ADOR caused the decreases in O2·- generation and EC-POX′s activities and protein oxidation, but enhanced SOD activity, lipid peroxidation and proline content. Fluorescence imaging showed that ADOR induced O2·- and H2O2 accumulation in the roots. The increase in SOD and the decrease in EC-POX′s activities might be involved in the enhancement of H2O2 content and lipid peroxidation. Control roots treated with ADOR for 10 min show an oxidative burst. Roots germinated in ADOR inoculated with saprobe fungi partially recovered normal levels of ROS, morphological characteristics and antioxidant activities. These results suggested that treatment with ADOR caused a phytotoxic effect during germination inducing an oxidative stress. The inoculation of ADOR with saprobe fungi limited the stress.  相似文献   

9.
10.
As a result of our previous research focussed on benzimidazoles, herein we present design, synthesis, QSAR analysis and biological activity of novel N-substituted benzimidazole derived carboxamides. Carboxamides were designed to study the influence of the number of methoxy groups, the type of the substituent placed at the benzimidazole core on biological activity. Pronounced antioxidative activity displayed unsubstituted 28 (IC50 ≈ 3.78 mM, 538.81 mmolFe2+/mmolC) and dimethoxy substituted derivative 34 (IC50 ≈ 5.68 mM, 618.10 mmolFe2+/mmolC). Trimethoxy substituted 43 and unsubstituted compound 40 with isobutyl side chain at N atom showed strong activity against HCT116 (IC50 ≈ 0.6 µM, both) and H 460 cells (IC50 ≈ 2.5 µM; 0.4 µM), being less cytotoxic towards non-tumour cell. Antioxidative activity in cell generally confirmed relatively modest antioxidant capacity obtained in DPPH/FRAP assays of derivatives 34 and 40. The 3D-QSAR models were generated to explore molecular properties that have the highest influence on antioxidative activity.  相似文献   

11.

Background

Unstable generation of free radicals in the body are responsible for many degenerative diseases. A bloom forming algae Euglena tuba growing abundantly in the aquatic habitats of Cachar district in the state of Assam in North-East India was analysed for its phytochemical contents, antioxidant activity as well as free radical scavenging potentials.

Results

Based on the ability of the extract in ABTS•+ radical cation inhibition and Fe3+ reducing power, the obtained results revealed the prominent antioxidant activity of the algae, with high correlation coefficient of its TEAC values to the respective phenolic and flavonoid contents. The extract had shown its scavenging activity for different free radicals and 41.89 ± 0.41 μg/ml, 5.83 ± 0.07 μg/ml, 278.46 ± 15.02 μg/ml and 223.25 ± 4.19 μg/ml were determined as the IC50 values for hydroxyl, superoxide, nitric oxide and hypochlorous acid respectively, which are lower than that of the corresponding reference standards. The phytochemical analysis also revealed that the phenolics, flavonoids, alkaloids, tannins and carbohydrates are present in adequate amount in the extract which was confirmed by HPLC analysis.

Conclusions

The results showed that 70% methanol extract of the algae possesses excellent antioxidant and free radical scavenging properties.  相似文献   

12.
Effect of heat shock on the metabolism of glutathione in maize roots   总被引:11,自引:3,他引:8       下载免费PDF全文
High performance liquid chromatography analyses revealed that glutathione (GSH) and cysteine are two of the major low molecular weight thiol compounds in maize root extracts. Treatment of maize roots to heat shock temperatures of 40°C resulted in a decrease of cysteine levels and an increase of GSH levels. Pulse labeling of maize roots with [35S]cysteine showed that the rate of incorporation of 35S into GSH or glutathione disulfide (GSSG) in heat shocked tissues was twice that in nonheat shocked tissues. In addition, extracts from heat shocked maize, barley, and soybean tissues contained an unidentified low molecular weight compound that increased from 1.2- to 8-fold within 2 hours of heat shock treatment depending on the tissue and plant involved. Our results indicate that during heat shock there is an increase in the activity of the GSH synthetizing capacity in maize root cells. The elevated synthesis of GSH may be related to the cells capacity to cope with heat stress conditions.  相似文献   

13.
Nitric oxide is a small gaseous signaling molecule which functions in the regulation of plant development and responses to biotic and abiotic stresses. Recently, we have shown that nitric oxide is required for development of functional nodules. Here, we show that inhibition of nitric oxide synthase enzymatic activity (using Nω-nitro-L-arginine) reduces nitric oxide content in soybean root nodules and this is coupled by reduction of endogenous cyclic guanosine monophosphate content in the nodules. We postulate that the regulation of soybean nodule development by nitric oxide is transduced via cyclic guanosine monophosphate through activation of nitric oxide-responsive soluble guanylate cyclase. Furthermore, we hypothesize that this signaling cascade is mediated via modulation of the activities of antioxidant metabolic pathways.Key words: cyclic guanosine monophosphate, nitric oxide synthase, nitric oxide, nitrogen fixation, nodulation efficiency, nodule functioning, reactive oxygen species  相似文献   

14.
The Andean tree Schinus areira L. has multiple traditional uses, from the treatment of bronchitis and rheumatic diseases to menstrual cycle regulation and wound healing. With reported hypotensive, analgesic, antitumoral and anti-inflammatory properties, it acts predominantly against diseases related to oxidative stress. This study focuses on the antioxidant activity and phytochemical profile of the extracts of Schinus areira L.Serial extraction of the fruits was performed both by maceration and by Soxhlet. Total phenols and flavonoids were measured using the Folin-Ciocalteu method and AlCl3, respectively. In vitro antioxidant activity was determined by FRAP and DPPH.Results were similar for both extraction methods. Primary metabolites detected included carbohydrates, proteins and amino acids; secondary metabolites included tannins, flavonoids, saponins, steroids and triterpenes. Antioxidant activity was confirmed for ethyl acetate, methanolic and aqueous extracts. The methanolic extract had both the highest polyphenol content (>195 mg GAE/ g dry weight) and the highest antioxidant activity [EC50 > 476 μg/mL; >273 mg AA/g dry weight (DPPH); >301 mg AA/ g dry weight (FRAP)]. The extract does not produce macrophage cytotoxicity in RAW 264.7, which is indicated by an average cytotoxicity of 2% over 24 h.Our study serves as a starting point for future research on the pharmacological properties of Schinus areira L.  相似文献   

15.
Salacia oblonga, an inhabitant of tropical regions has been used in traditional Indian medicinal systems. Phytochemicals were extracted in methanol from the plant and analyzed for various biological activities. The results of biochemical tests for total phenolics (297 ± 0.005 and 275 ± 0.006) and flavonoids (95 ± 0.004 and 61.6 ± 0.004) in the aerial and root parts were indicated as Gallic acid and quercetin equivalents respectively. The Aerial and root extracts showed strong reducing ability based on reducing power and FRAP assays. The extracts exhibited significant IC50 values in DPPH, super oxide and nitric oxide radical scavenging assays. The extracts displayed low IC50 values (<50 μg/ml) when assessed for antiproliferative activity against breast cancer cell lines using the MTT assay. GC-MS analysis of methanolic extracts have revealed the presence of compounds viz. n-Hexadecanoic acid, N-Methoxy-N-methylacetamide, Ursa-9(11), 12-dien-3-ol, Gamma-sitosterol etc., that might be potential candidates for the biological activity exhibited by the extract.

Electronic supplementary material

The online version of this article (doi:10.1007/s12298-015-0317-z) contains supplementary material, which is available to authorized users.Keyword: Salacia oblonga, Antioxidant activity, Free radical scavenging activity, Reactive oxygen species, Antiproliferative activity  相似文献   

16.

Background and Aims

Peroxisomes are subcellular compartments involved in multiple cellular metabolic pathways. Peroxynitrite (ONOO) is a nitric oxide-derived molecule which is a nitrating species that causes nitration of proteins. This study used cell biology techniques to explore the potential presence of peroxynitrite in peroxisomes and evaluated its content under stress conditions (excess cadmium).

Methods

Peroxynitrite, nitric oxide and superoxide anion were studied using cell-permeable specific fluorescent probes by confocal laser scanning microscopy in Arabidopsis thaliana transgenic plants expressing cyan fluorescent protein through the addition of peroxisomal targeting signal 1 (PTS1), which enables peroxisomes to be visualized in vivo.

Key Results

When no stress was applied, peroxynitrite was clearly localized in the peroxisomes of roots and stomatal guard cells. Under cadmium (150 μm) stress, the generation of peroxynitrite, nitric oxide and the superoxide anion (O2·–) increased and was localized in peroxisomes and the cytosol, participating in the generation of nitro-oxidative stress.

Conclusions

The results show that peroxisomes are an endogenous source of peroxynitrite, which is over-produced under cadmium stress, suggesting that the metabolism of reactive nitrogen species in peroxisomes could participate in the mechanism of the response to this heavy metal.  相似文献   

17.
In traditional systems of medicine, fruits, leaves, and stems of Actinidia arguta (Sieb. et Zucc.) Planch. ex Miq. have been used to treat various inflammatory diseases. The present study determined the proximate composition, antioxidant, anti-inflammatory, and hypoglycemic potential of A. arguta stem. Phenolic composition of hot water extract and its sub-fractions was determined by Folin–Ciocalteu’s reagent method. In vitro antioxidant activities of the samples were evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging assays. Anti-inflammatory activity of different fractions was investigated through the inhibition of nitric oxide (NO) production in lipopolysaccharide (1 μg/ml) stimulated RAW 264.7 cells. In addition, inhibition of α-glucosidase activity of hot water extract was determined using p-nitrophenyl-α-d-glucopyranoside (pNPG) as a substrate. Ethyl acetate (557.23 mg GAE/g) fraction contains higher level of total phenolic content. The antioxidant activity evaluated by DPPH radical scavenging assay showed a strong activity for ethyl acetate (IC50 of 14.28 μg/ml) and n-butanol fractions (IC50 of 48.27 μg/ml). Further, ethyl acetate fraction effectively inhibited NO production in RAW 264.7 cells induced by lipopolysaccharide (LPS) than other fractions (nitrite level to 32.14 μM at 200 μg/ml). In addition, hot water extract of A. arguta stem exhibited appreciable inhibitory activity against α-glucosidase enzyme with IC50 of 1.71 mg/ml. The obtained results have important consequence of using A. arguta stem toward the development of effective anti-inflammatory drugs.  相似文献   

18.
The aim of this study was to investigate the effects of methionine on cell proliferation, antioxidant activity, apoptosis, the expression levels of related genes (HSF-1, HSP70, Bax and Bcl-2) and the expression levels of protein (HSP70) in mammary epithelial cells, after heat treatment. Methionine (60 mg/L) increased the viability and attenuated morphological damage in hyperthermia-treated bovine mammary epithelial cells (BMECs). Additionally, methionine significantly reduced lactate dehydrogenase leakage, malondialdehyde formation, nitric oxide, and nitric oxide synthase activity. Superoxide dismutase, catalase, and glutathione peroxidase enzymatic activity was increased significantly in the presence of methionine. Bovine mammary epithelial cells also exhibited a certain amount of HSP70 reserve after methionine pretreatment for 24 h, and the expression level of the HSP70 gene and protein further increased with incubation at 42 °C for 30 min. Compared to the control, the expression of HSF-1 mRNA increased, and there was a significantly reduced expression of Bax/Bcl-2 mRNA and a reduced activity of caspase-3 against heat stress. Methionine also increased survival and decreased early apoptosis of hyperthermia-treated BMECs. Thus, methionine has cytoprotective effects on hyperthermia-induced damage in BMECs.  相似文献   

19.
20.
The effects of CO2-limited photosynthesis on 15NO3 uptake and reduction by maize (Zea mays, DeKalb XL-45) seedlings were examined in relation to concurrent effects of CO2 stress on carbohydrate levels and in vitro nitrate reductase activities. During a 10-hour period in CO2-depleted air (30 microliters of CO2/ per liter), cumulative 15NO3 uptake and reduction were restricted 22 and 82%, respectively, relative to control seedlings exposed to ambient air containing 450 microliters of CO2 per liter. The comparable values for roots of decapitated maize seedlings, the shoots of which had previously been subjected to CO2 stress, were 30 and 42%. The results demonstrate that reduction of entering nitrate by roots as well as shoots was regulated by concurrent photosynthesis. Although in vitro nitrate reductase activity of both tissues declined by 60% during a 10-hour period of CO2 stress, the remaining activity was greatly in excess of that required to catalyze the measured rate of 15NO3 reduction. Root respiration and soluble carbohydrate levels in root tissue were also decreased by CO2 stress. Collectively, the results indicate that nitrate uptake and reduction were regulated by the supply of energy and carbon skeletons required to support these processes, rather than by the potential enzymatic capacity to catalyze nitrate reduction, as measured by in vitro nitrate reductase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号