首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
3.
4.
Type 3 effector proteins secreted via the bacterial type 3 secretion system (T3SS) are not only virulence factors of pathogenic bacteria, but also influence symbiotic interactions between nitrogen-fixing nodule bacteria (rhizobia) and leguminous host plants. In this study, we characterized NopM (nodulation outer protein M) of Rhizobium sp. strain NGR234, which shows sequence similarities with novel E3 ubiquitin ligase (NEL) domain effectors from the human pathogens Shigella flexneri and Salomonella enterica. NopM expressed in Escherichia coli, but not the non-functional mutant protein NopM-C338A, showed E3 ubiquitin ligase activity in vitro. In vivo, NopM, but not inactive NopM-C338A, promoted nodulation of the host plant Lablab purpureus by NGR234. When NopM was expressed in yeast, it inhibited mating pheromone signaling, a mitogen-activated protein (MAP) kinase pathway. When expressed in the plant Nicotiana benthamiana, NopM inhibited one part of the plant''s defense response, as shown by a reduced production of reactive oxygen species (ROS) in response to the flagellin peptide flg22, whereas it stimulated another part, namely the induction of defense genes. In summary, our data indicate the potential for NopM as a functional NEL domain E3 ubiquitin ligase. Our findings that NopM dampened the flg22-induced ROS burst in N. benthamiana but promoted defense gene induction are consistent with the concept that pattern-triggered immunity is split in two separate signaling branches, one leading to ROS production and the other to defense gene induction.  相似文献   

5.
Systemic acquired resistance (SAR) is a plant immune response induced by local necrotizing pathogen infections. Expression of SAR in Arabidopsis (Arabidopsis thaliana) plants correlates with accumulation of salicylic acid (SA) and up-regulation of Pathogenesis-Related (PR) genes. SA is an essential and sufficient signal for SAR. In a genetic screen to search for negative regulators of PR gene expression and SAR, we found a new mutant that is hypersensitive to SA and exhibits enhanced induction of PR genes and resistance against the virulent oomycete Hyaloperonospora arabidopsidis Noco2. The enhanced pathogen resistance in the mutant is Nonexpressor of PR genes1 independent. The mutant gene was identified by map-based cloning, and it encodes a protein with high homology to Replication Factor C Subunit3 (RFC3) of yeast and other eukaryotes; thus, the mutant was named rfc3-1. rfc3-1 mutant plants are smaller than wild-type plants and have narrower leaves and petals. On the epidermis of true leaves, there are fewer cells in rfc3-1 compared with the wild type. Cell production rate is reduced in rfc3-1 mutant roots, indicating that the mutated RFC3 slows down cell proliferation. As Replication Factor C is involved in replication-coupled chromatin assembly, our data suggest that chromatin assembly and remodeling may play important roles in the negative control of PR gene expression and SAR.  相似文献   

6.
7.
8.
Root nodules are the symbiotic organ of legumes that house nitrogen-fixing bacteria. Many genes are specifically induced in nodules during the interactions between the host plant and symbiotic rhizobia. Information regarding the regulation of expression for most of these genes is lacking. One of the largest gene families expressed in the nodules of the model legume Medicago truncatula is the nodule cysteine-rich (NCR) group of defensin-like (DEFL) genes. We used a custom Affymetrix microarray to catalog the expression changes of 566 NCRs at different stages of nodule development. Additionally, bacterial mutants were used to understand the importance of the rhizobial partners in induction of NCRs. Expression of early NCRs was detected during the initial infection of rhizobia in nodules and expression continued as nodules became mature. Late NCRs were induced concomitantly with bacteroid development in the nodules. The induction of early and late NCRs was correlated with the number and morphology of rhizobia in the nodule. Conserved 41 to 50 bp motifs identified in the upstream 1,000 bp promoter regions of NCRs were required for promoter activity. These cis-element motifs were found to be unique to the NCR family among all annotated genes in the M. truncatula genome, although they contain sub-regions with clear similarity to known regulatory motifs involved in nodule-specific expression and temporal gene regulation.  相似文献   

9.
10.
Chen J  Zhang Y  Wang C  Lü W  Jin JB  Hua X 《Amino acids》2011,40(5):1473-1484
Although free proline accumulation is a well-documented phenomenon in many plants in response to a variety of environmental stresses, and is proposed to play protective roles, high intracellular proline content, by either exogenous application or endogenous over-production, in the absence of stresses, is found to be inhibitory to plant growth. We have shown here that exogenous application of proline significantly induced intracellular Ca2+ accumulation in tobacco and calcium-dependent ROS production in Arabidopsis seedlings, which subsequently enhanced salicylic acid (SA) synthesis and PR genes expression. This suggested that proline can promote a reaction similar to hypersensitive response during pathogen infection. Other amino acids, such as glutamate, but not arginine and phenylalanine, were also found to be capable of inducing PR gene expression. In addition, proline at concentration as low as 0.5 mM could induce PR gene expression. However, proline could not induce the expression of PDF1.2 gene, the marker gene for jasmonic acid signaling pathway. Furthermore, proline-induced SA production is mediated by NDR1-dependent signaling pathway, but not that mediated by PAD4. Our data provide evidences that exogenous proline, and probably some other amino acids can specifically induce SA signaling and defense response.  相似文献   

11.
The effect of cadmium (Cd) on the expression and activity of NADPH oxidase, peroxidase and oxalate oxidase as well as on the expression of aquaporins and dehydrins was studied in barley root tip. The root tip represented intact apical part of the barley root containing the root cap, meristems and elongation zone. Except stress induced by Cd, barley root tips were analysed after their exposure to phytotoxic concentration of mercury (Hg)-, hydrogen peroxide (H2O2)- or polyethylene glycol (PEG)-induced water stress in order to compare the Cd-induced changes with changes induced by these other stress factors. Cd, Hg, H2O2 and with some exceptions also PEG treatments caused similar alterations in the gene expression of reactive oxygen species (ROS)-generating and water deficiency-related genes, and in the activity of ROS-generating enzymes. These evidences support our opinion that ROS accumulation and water imbalance are the common symptoms of these stress factors and that the elevated production of H2O2 plays, probably as a signal molecule, a key role in the induction of plant responses to abiotic stresses in barley root tip. On the other hand, H2O2 at permanent high concentration is probably the main toxic factor during stress conditions.  相似文献   

12.
Using the example of N2-fixing legume-rhizobial symbiosis, we demonstrated that the origin and evolution of bacteria symbiotic for plants involve: (i) the formation of novel sym gene systems based on reorganizations of the bacterial genomes and on the gene transfer from the distant organisms; (ii) the loss of genes encoding for functions that are required for autonomous performance but interfere with symbiotic functions (negative regulators of symbiosis). Therefore, the construction of effective rhizobia strains should involve improvement of sym genes activities (for instance, nif, fix, and dct genes encoding for nitrogenase synthesis or for the energy supply of N2 fixation), as well as the inactivation of negative regulators of symbiosis identified in our lab (eff genes encoding for the transport of sugars and the production of polysaccharides and storage compounds, as well as for oxidative-reductive processes).  相似文献   

13.
Priming can improve plant innate capability to deal with the stresses caused by both biotic and abiotic factors. In this study, the effect of DL-β-amino-n-butyric acid (BABA) against Aphis glycines Matsumura, the soybean aphid (SA) was evaluated. We found that 25 mM BABA as a root drench had minimal adverse impact on plant growth and also efficiently protected soybean from SA infestation. In both choice and non-choice tests, SA number was significantly decreased to a low level in soybean seedlings drenched with 25 mM BABA compared to the control counterparts. BABA treatment resulted in a significant increase in the activities of several defense enzymes, such as phenylalanine ammonia-lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO), chitinase (CHI), and β-1, 3-glucanase (GLU) in soybean seedlings attacked by aphid. Meanwhile, the induction of 15 defense-related genes by aphid, such as AOS, CHS, MMP2, NPR1-1, NPR1-2, and PR genes, were significantly augmented in BABA-treated soybean seedlings. Our study suggest that BABA application is a promising way to enhance soybean resistance against SA.  相似文献   

14.
15.
16.
The development and regulation of aerenchyma in waterlogged conditions were studied in the seminal roots of wheat. Evans blue staining and the first cell death position indicated that the cortical cell death began at the root mid-cortex cells in flooding conditions. Continuous waterlogging treatment caused the spread of cell death from the mid-cortex to the neighboring cells and well-developed aerenchyma was formed after 72 h. Meanwhile, the formation of radial oxygen loss barrier was observed in the exodermis owing to the induction of Casparian bands and lignin deposition. Analysis of aerenchyma along the wheat root revealed that aerenchyma formed at 10 mm from the root tip, significantly increased toward the center of the roots, and decreased toward the basal region of the root. In situ detection of radial oxygen species (ROS) showed that ROS accumulation started in the mid-cortex cells, where cell death began indicating that cell death was probably accompanied by ROS production. Further waterlogging treatments resulted in the accumulation of ROS in the cortical cells, which were the zone for aerenchyma development. Accumulation and distribution of H2O2 at the subcellular level were revealed by ultracytochemical localization, which further verified the involvement of ROS in the cortical cell death process (i.e., aerenchyma formation). Furthermore, gene expression analysis indicated that ROS production might be the result of up-regulation of genes encoding for ROS-producing enzymes and the down-regulation of genes encoding for ROS-detoxifying enzymes. These results suggest that aerenchyma development in wheat roots starts in the mid-cortex cells and its formation is regulated by ROS.  相似文献   

17.
18.
19.
Non‐expresser of pathogenesis‐related genes 1 (NPR1) is the master regulator of salicylic acid‐mediated systemic acquired resistance. Over‐expression of Arabidopsis NPR1 and rice NH1 (NPR1 homolog1)/OsNPR1 in rice results in enhanced resistance. While there are four rice NPR1 paralogs in the rice genome, none have been demonstrated to function in disease resistance. To study rice NPR1 paralog 3, we introduced constructs into rice and tested for effects on resistance to infection by Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight. While over‐expression of NH3 using the maize ubiquitin‐1 promoter failed to enhance resistance, introduction of an extra copy of NH3 driven by its own promoter (nNT‐NH3) resulted in clear, enhanced resistance. Progeny analysis confirms that the enhanced resistance phenotype, measured by Xoo‐induced lesion length, is associated with the NH3 transgene. Bacterial growth curve analysis indicates that bacterial population levels are reduced 10‐fold in nNT‐NH3 lines compared to control rice lines. The transgenic plants exhibit higher sensitivity to benzothiadiazole (BTH) and 2,6‐dichloroisonicotinic acid (INA) treatment as measured by increased cell death. Expression analysis of pathogenesis‐related (PR) genes showed that nNT‐NH3 plants display greatly enhanced induction of PR genes only after treatment with BTH. Our study demonstrates an alternative method to employ a regulatory protein to enhance plant defence. This approach avoids using undesirable constitutive, high‐level expression and may prove to be more practical for engineering resistance.  相似文献   

20.
Licorice (Glycyrrhiza uralensis) is a medicinal plant that contains glycyrrhizin (GL), which has various pharmacological activities. Because licorice is a legume, it can establish a symbiotic relationship with nitrogen-fixing rhizobial bacteria. However, the effect of this symbiosis on GL production is unknown. Rhizobia were isolated from root nodules of Glycyrrhiza glabra, and a rhizobium that can form root nodules in G. uralensis was selected. Whole-genome analysis revealed a single circular chromosome of 6.7 Mbp. This rhizobium was classified as Mesorhizobium by phylogenetic analysis and was designated Mesorhizobium sp. J8. When G. uralensis plants grown from cuttings were inoculated with J8, root nodules formed. Shoot biomass and SPAD values of inoculated plants were significantly higher than those of uninoculated controls, and the GL content of the roots was 3.2 times that of controls. Because uninoculated plants from cuttings showed slight nodule formation, we grew plants from seeds in plant boxes filled with sterilized vermiculite, inoculated half of the seedlings with J8, and grew them with or without 100 µM KNO3. The SPAD values of inoculated plants were significantly higher than those of uninoculated plants. Furthermore, the expression level of the CYP88D6 gene, which is a marker of GL synthesis, was 2.5 times higher than in inoculated plants. These results indicate that rhizobial symbiosis promotes both biomass and GL production in G. uralensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号