首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmodesmata (PD) are thought to play a fundamental role in almost every aspect of plant life, including normal growth, physiology, and developmental responses. However, how specific signaling pathways integrate PD-mediated cell-to-cell communication is not well understood. Here, we present experimental evidence showing that the Arabidopsis thaliana plasmodesmata-located protein 5 (PDLP5; also known as HOPW1-1-INDUCED GENE1) mediates crosstalk between PD regulation and salicylic acid-dependent defense responses. PDLP5 was found to localize at the central region of PD channels and associate with PD pit fields, acting as an inhibitor to PD trafficking, potentially through its capacity to modulate PD callose deposition. As a regulator of PD, PDLP5 was also essential for conferring enhanced innate immunity against bacterial pathogens in a salicylic acid-dependent manner. Based on these findings, a model is proposed illustrating that the regulation of PD closure mediated by PDLP5 constitutes a crucial part of coordinated control of cell-to-cell communication and defense signaling.  相似文献   

2.
Plasmodesmata provide the cytoplasmic conduits for cell-to-cell communication throughout plant tissues and participate in a diverse set of non–cell-autonomous functions. Despite their central role in growth and development and defence, resolving their modus operandi remains a major challenge in plant biology. Features of protein sequences and/or structure that determine protein targeting to plasmodesmata were previously unknown. We identify here a novel family of plasmodesmata-located proteins (called PDLP1) whose members have the features of type I membrane receptor-like proteins. We focus our studies on the first identified type member (namely At5g43980, or PDLP1a) and show that, following its altered expression, it is effective in modulating cell-to-cell trafficking. PDLP1a is targeted to plasmodesmata via the secretory pathway in a Brefeldin A–sensitive and COPII-dependent manner, and resides at plasmodesmata with its C-terminus in the cytoplasmic domain and its N-terminus in the apoplast. Using a deletion analysis, we show that the single transmembrane domain (TMD) of PDLP1a contains all the information necessary for intracellular targeting of this type I membrane protein to plasmodesmata, such that the TMD can be used to target heterologous proteins to this location. These studies identify a new family of plasmodesmal proteins that affect cell-to-cell communication. They exhibit a mode of intracellular trafficking and targeting novel for plant biology and provide technological opportunities for targeting different proteins to plasmodesmata to aid in plasmodesmal characterisation.  相似文献   

3.
Systemic acquired resistance (SAR) is a plant defence response that provides immunity to distant uninfected leaves after an initial localised infection. The lipid transfer protein (LTP) Defective in Induced Resistance1 (DIR1) is an essential component of SAR that moves from induced to distant leaves following a SAR‐inducing local infection. To understand how DIR1 is transported to distant leaves during SAR, we analysed DIR1 movement in transgenic Arabidopsis lines with reduced cell‐to‐cell movement caused by the overexpression of Plasmodesmata‐Located Proteins PDLP1 and PDLP5. These PDLP‐overexpressing lines were defective for SAR, and DIR1 antibody signals were not observed in phloem sap‐enriched petiole exudates collected from distant leaves. Our data support the idea that cell‐to‐cell movement of DIR1 through plasmodesmata is important during long‐distance SAR signalling in Arabidopsis.  相似文献   

4.
Frequency, density and branching of plasmodesmata were counted in successive tangential and transverse walls in the cambial zone of tomato stems in order to examine development of the plasmodesmal network in a chronological order. Coincident with progress of cell development, plasmodesmal connectivity increased, both at the xylem- and phloem-side. In transverse walls, the number of secondary plasmodesmata enhanced considerably. The same held for tangential walls, with a superimposed plasmodesmal doubling during the first phase of phloem development. This plasmodesmal doubling was interpreted to result from the deposition of wall material between branched plasmodesmal strands. Structural plasmodesmal development was correlated with production of hydroxyl radicals which control local cell wall alterations. Successive phases of plasmodesmal deployment and modification were distinguished which may coincide with differential functional capacities as documented by intracellular injection of fluorochromes. Diffusion-driven symplasmic transport appeared to be transiently interrupted during cell maturation.  相似文献   

5.
Systemic acquired resistance (SAR) is a plant defense response in which an initial localized infection affords enhanced pathogen resistance to distant, uninfected leaves. SAR requires efficient long-distance signaling between the infected leaf, where SAR signals are generated, and the distant uninfected leaves that receive them. A growing body of evidence indicates that the lipid transfer protein DIR1 (Defective in Induced Resistance) is an important mediator of long-distance SAR signaling. In a recent publication, we investigated if cell-to-cell movement through plasmodesmata is required for long-distance movement of DIR1 during SAR. We determined that overexpression of Plasmodesmata-Located Proteins (PDLP1 and 5) negatively impacted long-distance DIR1 movement and SAR competence, suggesting that movement through plasmodesmata contributes to long-distance signal movement during SAR.  相似文献   

6.
Elicitor-triggered transient membrane potential changes and Ca2+ influx through the plasma membrane are thought to be important during defense signaling in plants. However, the molecular bases for the Ca2+ influx and its regulation remain largely unknown. Here we tested effects of overexpression as well as retrotransposon (Tos17)-insertional mutagenesis of the rice two-pore channel 1 (OsTPC1), a putative voltage-gated Ca(2+)-permeable channel, on a proteinaceous fungal elicitor-induced defense responses in rice cells. The overexpressor showed enhanced sensitivity to the elicitor to induce oxidative burst, activation of a mitogen-activated protein kinase (MAPK), OsMPK2, as well as hypersensitive cell death. On the contrary, a series of defense responses including the cell death and activation of the MAPK were severely suppressed in the insertional mutant, which was complemented by overexpression of the wild-type gene. These results suggest that the putative Ca(2+)-permeable channel determines sensitivity to the elicitor and plays a role as a key regulator of elicitor-induced defense responses, activation of MAPK cascade and hypersensitive cell death.  相似文献   

7.
Mittler R  Shulaev V  Seskar M  Lam E 《The Plant cell》1996,8(11):1991-2001
The hypersensitive response (HR) of plants to invading pathogens is thought to involve a coordinated activation of plant defense mechanisms and programmed cell death (pcd). To date, little is known about the mechanism underlying death of plant cells during this response. In addition, it is not known whether suppression of pcd affects the induction of other defense mechanisms during the HR. Here, we report that death of tobacco cells (genotype NN) infected with tobacco mosaic virus (TMV) is inhibited at low oxygen pressure. In contrast, virus replication and activation of defense mechanisms, as measured by synthesis of the pathogenesis-related protein PR-1a, were not inhibited at low oxygen pressure. Bacterium-induced pcd was also inhibited at low oxygen pressure. However, pcd induced by TMV or bacteria was not inhibited in transgenic tobacco plants expressing the mammalian anti-pcd protein Bcl-XL. Our results suggest that ambient oxygen levels are required for efficient pcd induction during the HR of plants and that activation of defense responses can be uncoupled from cell death. Furthermore, pcd that occurs during the interaction of tobacco with TMV or bacteria may be distinct from some cases of pcd or apoptosis in animals that are insensitive to low oxygen or inhibited by the Bcl-XL protein.  相似文献   

8.
In plants, mounting an effective innate immune strategy against microbial pathogens involves triggering local cell death within infected cells as well as boosting the immunity of the uninfected neighboring and systemically located cells. Although not much is known about this, it is evident that well-coordinated cell–cell signaling is critical in this process to confine infection to local tissue while allowing for the spread of systemic immune signals throughout the whole plant. In support of this notion, direct cell-to-cell communication was recently found to play a crucial role in plant defense. Here, we provide experimental evidence that salicylic acid (SA) is a critical hormonal signal that regulates cell-to-cell permeability during innate immune responses elicited by virulent bacterial infection in Arabidopsis thaliana. We show that direct exogenous application of SA or bacterial infection suppresses cell–cell coupling and that SA pathway mutants are impaired in this response. The SA- or infection-induced suppression of cell–cell coupling requires an ENHANCED DESEASE RESISTANCE1– and NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1–dependent SA pathway in conjunction with the regulator of plasmodesmal gating PLASMODESMATA-LOCATED PROTEIN5. We discuss a model wherein the SA signaling pathway and plasmodesmata-mediated cell-to-cell communication converge under an intricate regulatory loop.  相似文献   

9.
10.
Plants recognize potential microbial pathogens through microbial‐associated molecular patterns (MAMPs) and activate a series of defense responses, including cell death and the production of reactive oxygen species (ROS) and diverse anti‐microbial secondary metabolites. Mitogen‐activated protein kinase (MAPK) cascades are known to play a pivotal role in mediating MAMP signals; however, the signaling pathway from a MAPK cascade to the activation of defense responses is poorly understood. Here, we found in rice that the chitin elicitor, a fungal MAMP, activates two rice MAPKs (OsMPK3 and OsMPK6) and one MAPK kinase (OsMKK4). OsMPK6 was essential for the chitin elicitor‐induced biosynthesis of diterpenoid phytoalexins. Conditional expression of the active form of OsMKK4 (OsMKK4DD) induced extensive alterations in gene expression, which implied dynamic changes of metabolic flow from glycolysis to secondary metabolite biosynthesis while suppressing basic cellular activities such as translation and cell division. OsMKK4DD also induced various defense responses, such as cell death, biosynthesis of diterpenoid phytoalexins and lignin but not generation of extracellular ROS. OsMKK4DD‐induced cell death and expression of diterpenoid phytoalexin pathway genes, but not that of phenylpropanoid pathway genes, were dependent on OsMPK6. Collectively, the OsMKK4–OsMPK6 cascade plays a crucial role in reprogramming plant metabolism during MAMP‐triggered defense responses.  相似文献   

11.
12.
Kong Q  Qu N  Gao M  Zhang Z  Ding X  Yang F  Li Y  Dong OX  Chen S  Li X  Zhang Y 《The Plant cell》2012,24(5):2225-2236
In Arabidopsis thaliana, the MEKK1-MKK1/MKK2-MPK4 mitogen-activated protein (MAP) kinase cascade represses cell death and immune responses. In mekk1, mkk1 mkk2, and mpk4 mutants, programmed cell death and defense responses are constitutively activated, but the mechanism by which MEKK1, MKK1/MKK2, and MPK4 negatively regulate cell death and immunity was unknown. From a screen for suppressors of mkk1 mkk2, we found that mutations in suppressor of mkk1 mkk2 1 (summ1) suppress the cell death and defense responses not only in mkk1 mkk2 but also in mekk1 and mpk4. SUMM1 encodes the MAP kinase kinase kinase MEKK2. It interacts with MPK4 and is phosphorylated by MPK4 in vitro. Overexpression of SUMM1 activates cell death and defense responses that are dependent on the nucleotide binding-leucine-rich repeat protein SUMM2. Taken together, our data suggest that the MEKK1-MKK1/MKK2-MPK4 kinase cascade negatively regulates MEKK2 and activation of MEKK2 triggers SUMM2-mediated immune responses.  相似文献   

13.
The downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa) is a filamentous oomycete that invades plant cells via sophisticated but poorly understood structures called haustoria. Haustoria are separated from the host cell cytoplasm and surrounded by an extrahaustorial membrane (EHM) of unknown origin. In some interactions, including Hpa-Arabidopsis, haustoria are progressively encased by host-derived, callose-rich materials but the molecular mechanisms by which callose accumulates around haustoria remain unclear. Here, we report that PLASMODESMATA-LOCATED PROTEIN 1 (PDLP1) is expressed at high levels in Hpa infected cells. Unlike other plasma membrane proteins, which are often excluded from the EHM, PDLP1 is located at the EHM in Hpa-infected cells prior to encasement. The transmembrane domain and cytoplasmic tail of PDLP1 are sufficient to convey this localization. PDLP1 also associates with the developing encasement but this association is lost when encasements are fully mature. We found that the pdlp1,2,3 triple mutant is more susceptible to Hpa while overexpression of PDLP1 enhances plant resistance, suggesting that PDLPs enhance basal immunity against Hpa. Haustorial encasements are depleted in callose in pdlp1,2,3 mutant plants whereas PDLP1 over-expression elevates callose deposition around haustoria and across the cell surface. These data indicate that PDLPs contribute to callose encasement of Hpa haustoria and suggests that the deposition of callose at haustoria may involve similar mechanisms to callose deposition at plasmodesmata.  相似文献   

14.
Hwang IS  Kim NH  Choi du S  Hwang BK 《Planta》2012,236(4):1191-1204
Recognition of bacterial effector proteins by plant cells is crucial for plant disease and defense response signaling. The Xanthomonas campestris pv. vesicatoria (Xcv) type III effector protein, AvrBsT, is secreted into plant cells from Xcv strain Bv5-4a. Here, we demonstrate that dexamethasone (DEX): avrBsT overexpression triggers cell death signaling in healthy transgenic Arabidopsis plants. AvrBsT overexpression in Arabidopsis also reduced susceptibility to infection with the obligate biotrophic oomycete Hyaloperonospora arabidopsidis. Overexpression of avrBsT significantly induced some defense-related genes in Arabidopsis leaves. A high-throughput in planta proteomics screen identified TCP-1 chaperonin, SEC7-like guanine nucleotide exchange protein and calmodulin-like protein, which were differentially expressed in DEX:avrBsT-overexpression (OX) Arabidopsis plants during Hp. arabidopsidis infection. Treatment with purified GST-tagged AvrBsT proteins distinctly inhibited the growth and sporulation of Hp. arabidopsidis on Arabdiopsis cotyledons. In contrast, DEX:avrBsT-OX plants exhibited enhanced susceptibility to Pseudomonas syringae pv. tomato (Pst) DC3000 infection. Notably, susceptible cell death and enhanced electrolyte leakage were significantly induced in the Pst-infected leaves of DEX:avrBsT-OX plants. Together, these results suggest that Xcv effector AvrBsT overexpression triggers plant cell death, disease and defense signaling leading to both disease and defense responses to microbial pathogens of different lifestyles.  相似文献   

15.
The effects of the ACTH 4-9 analog (Org 2766) and the COOH-terminal tripeptide of Org 2766 (Phe-D-Lys-Phe; PDLP) on retrieval of one-trial learning passive avoidance behavior were compared with those of beta-endorphin, [Met5]-enkephalin, [D-Ala2,Met5]-enkephalin, des-Tyr1-[Met5]-enkephalin and des-enkephalin-gamma-endorphin (DE gamma E). Amounts of intracerebroventricularly administered Org 2766, PDLP, [Met5]-enkephalin, [D-Ala2,Met5]-enkephalin and DE gamma E, which induced a comparable attenuation of passive avoidance behavior were determined. Pretreatment with the opiate antagonist naltrexone prevented the attenuating effect of these peptides on passive avoidance behavior except that of DE gamma E. The attenuating effect of Org 2766 and of [Met5]-enkephalin was reversed to facilitation of passive avoidance behavior in the presence of naltrexone. Subcutaneous treatment with Org 2766 and [D-Phe7]-ACTH 4-10 decreased electrical self-stimulation behavior elicited from the medial septal area. Naltrexone prevented the inhibitory effect of Org 2766 on this behavior, but not that of [D-Phe7]-ACTH 4-10. Although the attenuating effect of PDLP on passive avoidance behavior was not reduced by pretreatment with [Met5]-enkephalin- or beta-endorphin-antiserum, and PDLP induced neither analgesia nor excessive grooming, the data suggest that the inhibitory effect of Org 2766 and PDLP on passive avoidance behavior and electrical self-stimulation are mediated by endorphin systems in the brain.  相似文献   

16.
17.
Nitric Oxide (NO) is a second messenger related to development and (a)biotic stress responses in plants. We have studied the role of NO in signaling during plant defense responses upon xylanase elicitation. Treatment of tomato cell cultures with the fungal elicitor xylanase resulted in a rapid and dose-dependent NO accumulation. We have demonstrated that NO is required for the production of the lipid second messenger phosphatidic acid (PA) via the activation of the phospholipase C (PLC) and diacylglycerol kinase (DGK) pathway. Defense-related responses downstream of PA were studied. PA and, correspondingly, xylanase were shown to induce reactive oxygen species production. Scavenging of NO or inhibition of either the PLC or the DGK enzyme diminished xylanase-induced reactive oxygen species production. Xylanase-induced PLDbeta1 and PR1 mRNA levels decreased when NO or PA production were compromised. Finally, we have shown that NO and PA are involved in the induction of cell death by xylanase. Treatment with NO scavenger cPTIO, PLC inhibitor U73122, or DGK inhibitor R59022 diminished xylanase-induced cell death. On the basis of biochemical and pharmacological experimental results, we have shown that PLC/DGK-derived PA represents a novel downstream component of NO signaling cascade during plant defense.  相似文献   

18.
Salicylic acid (SA) is implicated in the induction of programmed cell death (PCD) associated with pathogen defense responses because SA levels increase in response to PCD-inducing infections, and PCD development can be inhibited by expression of salicylate hydroxylase encoded by the bacterial nahG gene. The acd11 mutant of Arabidopsis (Arabidopsis thaliana L. Heynh.) activates PCD and defense responses that are fully suppressed by nahG. To further study the role of SA in PCD induction, we compared phenotypes of acd11/nahG with those of acd11/eds5-1 and acd11/sid2-2 mutants deficient in a putative transporter and isochorismate synthase required for SA biosynthesis. We show that sid2-2 fully suppresses SA accumulation and cell death in acd11, although growth inhibition and premature leaf chlorosis still occur. In addition, application of exogenous SA to acd11/sid2-2 is insufficient to restore cell death. This indicates that isochorismate-derived compounds other than SA are required for induction of PCD in acd11 and that some acd11 phenotypes require NahG-degradable compounds not synthesized via isochorismate.  相似文献   

19.
Rapid and localized programmed cell death, known as the hypersensitive response (HR) is frequently associated with plant disease resistance. In contrast to our knowledge about the regulation and execution of apoptosis in animal system, information about plant HR is limited. Recent studies implicated the mitogen-activated protein kinase (MAPK) cascade in regulating plant HR cell death as well as several other defense responses during incompatible interactions between plants and pathogens. Here, we report the generation of transgenic Arabidopsis plants that express the active mutants of AtMEK4 and AtMEK5, two closely related MAPK kinases under the control of a steroid-inducible promoter. Induction of the transgene expression by the application of dexamethasone, a steroid, leads to HR-like cell death, which is preceded by the activation of endogenous MAPKs and the generation of hydrogen peroxide. Both prolonged MAPK activation and reactive oxygen species generation have been implicated in the regulation of HR cell death induced by incompatible pathogens. As a result, we speculate that the prolonged activation of the MAPK pathway in cells could disrupt the redox balance, which leads to the generation of reactive oxygen species and eventually HR cell death.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号