首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
组蛋白修饰调节机制的研究进展   总被引:2,自引:0,他引:2  
表观遗传学涉及到DNA甲基化、组蛋白修饰、染色体重塑和非编码RNA调控等内容,其中组蛋白修饰包括组蛋白的乙酰化、磷酸化、甲基化、泛素化及ADP核糖基化等,这些多样化的修饰以及它们时间和空间上的组合与生物学功能的关系又可作为一种重要的表观标志或语言,因而被称为“组蛋白密码”.相同组蛋白残基的磷酸化与去磷酸化、乙酰化与去乙酰化、甲基化与去甲基化等,以及不同组蛋白残基的磷酸化与乙酰化、泛素化与甲基化、磷酸化与甲基化等组蛋白修 饰之间既相互协同又互相拮抗,形成了一个复杂的调节网络.对组蛋白修饰内在调节机制的研究将丰富“组蛋白密码”的内涵.  相似文献   

2.
组蛋白甲基化研究进展   总被引:5,自引:0,他引:5  
组蛋白甲基化是表观遗传修饰方式中的一种,参与异染色质形成、基因印记、X染色体失活和基因转录调控.组蛋白甲基化过程的异常参与多种肿瘤的发生.既往认为组蛋白甲基化是稳定的表观遗传标记,而组蛋白去甲基化酶的发现对这一观点提出了挑战,也为进一步深入研究组蛋白修饰提供新的途径.  相似文献   

3.
4.
N-terminal modifications of nucleosomal core histones are involved in gene regulation, DNA repair and recombination as well as in chromatin modeling. The degree of individual histone modifications may vary between specific chromatin domains and throughout the cell cycle. We have studied the nuclear patterns of histone H3 and H4 acetylation and of H3 methylation in Arabidopsis. A replication-linked increase of acetylation only occurred at H4 lysine 16 (not for lysines 5 and 12) and at H3 lysine 18. The last was not observed in other plants. Strong methylation at H3 lysine 4 was restricted to euchromatin, while strong methylation at H3 lysine 9 occurred preferentially in heterochromatic chromocenters of Arabidopsis nuclei. Chromocenter appearance, DNA methylation and histone modification patterns were similar in nuclei of wild-type and kryptonite mutant (which lacks H3 lysine 9-specific histone methyltransferase), except that methylation at H3 lysine 9 in heterochromatic chromocenters was reduced to the same low level as in euchromatin. Thus, a high level of H3methylK9 is apparently not necessary to maintain chromocenter structure and does not prevent methylation of H3 lysine 4 within Arabidopsis chromocenters.  相似文献   

5.
DNA methylation and histone modifications are vital in maintaining genomic stability and modulating cellular functions in mammalian cells. These two epigenetic modifications are the most common gene regulatory systems known to spatially control gene expression. Transgene silencing by these two mechanisms is a major challenge to achieving effective gene therapy for many genetic conditions. The implications of transgene silencing caused by epigenetic modifications have been extensively studied and reported in numerous gene delivery studies. This review highlights instances of transgene silencing by DNA methylation and histone modification with specific focus on the role of these two epigenetic effects on the repression of transgene expression in mammalian cells from integrative and non-integrative based gene delivery systems in the context of gene therapy. It also discusses the prospects of achieving an effective and sustained transgene expression for future gene therapy applications.  相似文献   

6.
7.
8.
关于组蛋白甲基化的研究   总被引:3,自引:0,他引:3  
李想  张飞雄 《遗传》2004,26(2):244-248
主要阐述了组蛋白甲基转移酶的类型,组蛋白H3中第9位赖氨酸甲基化与异染色质的形成、常染色体中基因表达的调控,以及与DNA甲基化之间的关系,说明了组蛋白甲基化与组蛋白乙酰化、磷酸化的相互关系, 指出组蛋白甲基化对维持细胞各种状态的平衡起到极其重要的作用。 Abstract: The types of histone methyltransferases, the relationship between methylation of Lysine 9 of H3 and the formation of heterochromatin, gene regulation in euchromatin, and that with DNA methylation, were mainly introduced. The interrelation between histone methylation and histone acetylation/phosphorylation was summarized. It is showed that histone methylation plays a very important role in maintaining the balance state of cell. The future research tendency of histone methylation was fantanstic.  相似文献   

9.
Allele‐specific association of histone modification is observed at the regulatory region of imprinted genes and has been suggested to work as an epigenetic marker for monoallelic gene expression, along with the allelic CpG methylation of DNA. Although the parent‐origin‐specific epigenetic status in imprinted genes is thought to be established during preimplantation development, little is known about the allelic specificity of histone modifications during this period because of the limited volume of material available for analysis. In this study, we first revealed the allelic enrichment of histone modifications and variant histones at the imprinting control regions (ICRs) of four‐cell to blastocyst stage preimplantation embryos by using carrier chromatin immunoprecipitation and sequence polymorphism analysis of immunoprecipitated DNA. We found relative enrichment of histone H3 lysine 9 dimethylation at the imprinted alleles of ICRs and obtained the results suggesting that histone modifications at ICRs are established during a late preimplantation stage. genesis, 47:611–616, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
11.
Epigenetic modifications, such as DNA methylation and histone modifications, are dynamically altered predominantly in paternal pronuclei soon after fertilization. To identify which histone modifications are required for early embryonic development, we utilized histone K‐M mutants, which prevent endogenous histone methylation at the mutated site. We prepared four single K‐M mutants for histone H3.3, K4M, K9M, K27M, and K36M, and demonstrate that overexpression of H3.3 K4M in embryos before fertilization results in developmental arrest, whereas overexpression after fertilization does not affect the development. Furthermore, loss of H3K4 methylation decreases the level of minor zygotic gene activation (ZGA) predominantly in the paternal pronucleus, and we obtained similar results from knockdown of the H3K4 methyltransferase Mll3/4. We therefore conclude that H3K4 methylation, likely established by Mll3/4 at the early pronuclear stage, is essential for the onset of minor ZGA in the paternal pronucleus, which is necessary for subsequent preimplantation development in mice.  相似文献   

12.
13.
Histone modifications as a platform for cancer therapy   总被引:8,自引:0,他引:8  
Tumorigenesis and metastasis are a progression of events resulting from alterations in the processing of the genetic information. These alterations result from stable genetic changes (mutations) involving tumor suppressor genes and oncogenes (e.g., ras, BRAF) and potentially reversible epigenetic changes, which are modifications in gene function without a change in the DNA sequence. Mutations of genes coding for proteins that directly or indirectly influence epigenetic processes will alter the cell's gene expression program. Epigenetic mechanisms often altered in cancer cells are DNA methylation and histone modifications (acetylation, methylation, phosphorylation). This article will review the potential of these reversible epigenetic processes as targets for cancer therapies.  相似文献   

14.
15.
16.
表观遗传修饰是生命现象中普遍存在的一类基因调控方式,主要包括DNA甲基化、组蛋白乙酰化和组蛋白甲基化等,通常协同调控基因表达。端粒是位于真核生物染色体末端的保护性结构,在端粒以及亚端粒区域中也存在丰富的表观遗传修饰。随着研究深入,发现表观遗传修饰在调控寿命过程中扮演着重要角色,而揭示衰老的有关机制有助于我们找到延长寿命的方法,具有重大的生物学意义和临床应用前景。  相似文献   

17.
FLOWERING LOCUS C (FLC), a repressor of flowering, is a major determinant of flowering time in Arabidopsis. FLC expression is repressed by vernalization and in plants with low levels of DNA methylation, resulting in early flowering. This repression is not associated with changes of DNA methylation within the FLC locus in either vernalized plants or plants with low levels of DNA methylation. In both cases, there is a reduction of histone H3 trimethyl-lysine 4 (K4) and acetylation of both histones H3 and H4 around the promoter-translation start of FLC. The expression of the two genes flanking FLC is also repressed in both conditions and repression is associated with decreased histone H3 acetylation. The changes in histone modifications at the FLC gene cluster, which are similar in vernalized plants and in plants with reduced DNA methylation, must arise by different mechanisms. VERNALIZATION 1, VERNALIZATION 2 and VERNALIZATION INSENSITIVE 3 modulate FLC expression in vernalized plants; these proteins play no role in the downregulation of FLC in plants with low levels of DNA methylation. Chimeric FLC::GUS transgenes respond to vernalization but these same transgenes show a position-dependent response to low levels of DNA methylation. In plants with reduced DNA methylation, expression of the five MADS AFFECTING FLOWERING (MAF) genes is repressed, suggesting that DNA methylation alters the expression of a trans-acting regulator common to FLC and members of the related MAF gene family. Our observations suggest that DNA methylation is not part of the vernalization pathway.  相似文献   

18.
表观遗传学主要包括DNA甲基化、组蛋白修饰和非编码RNA,组蛋白甲基化作为组蛋白修饰中的一种重要修饰,在植物体的发育和环境适应中发挥着重要作用。组蛋白甲基化主要发生在赖氨酸残基上,同时根据不同的赖氨酸位点和每个赖氨酸位点甲基化程度的不同,形成了不同的赖氨酸甲基化修饰。根据对基因的不同功能,通常将组蛋白赖氨酸甲基化修饰分为2大类:(1)能够促进基因表达的,如H3K4me3和H3K36me3;(2)能够抑制基因表达的,如H3K9me2和H3K27me3。不同的组蛋白赖氨酸甲基化去甲基化过程需要相应的阅读(reader)、书写(writer)和擦除(eraser)3种蛋白。同时,组蛋白赖氨酸甲基化的遗传性质目前还不是很清楚。综述了植物中组蛋白赖氨酸甲基化建立与去除过程,以及对组蛋白赖氨酸甲基化可遗传性的探讨。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号