首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
《FEBS letters》1993,320(3):276-280
Duchenne muscular dystrophy (DMD) patients and mdx mice are characterized by the absence of dystrophin, a membrane cytoskeletal protein. Dystrophin is associated with a large oligomeric complex of sarcolemmal glycoproteins, including dystroglycan which provides a linkage to the extarcellular matrix component, laminin. The finding that all of the dystrophin-associated proteins (DAPs) are drastically reduced in DMD and mdx skeletal muscle supports the primary function of dystrophin as an anchor of the sarcolemmal glycoprotein complex to the subsarcolemmal cytoskeleton. These findings indicate that the efficacy of dystrophin gene therapy will depend not only on replacing dystrophin but also on restoring all of the DAPs in the sarcolemma. Here we have investigated the status of the DAPs in the skeletal muscle of mdx mice transgenic for the dystrophin gene. Our results demonstrate that transfer of dystrophin gene restores all of the DAPs together with dystrophin, suggesting that dystrophin gene therapy should be effective in restoring the entire dystrophin-glycoprotein complex.  相似文献   

2.
Dystrophin plays an important role in skeletal muscle by linking the cytoskeleton and the extracellular matrix. The amino terminus of dystrophin binds to actin and possibly other components of the subsarcolemmal cytoskeleton, while the carboxy terminus associates with a group of integral and peripheral membrane proteins and glycoproteins that are collectively known as the dystrophin-associated protein (DAP) complex. We have generated transgenic/mdx mice expressing "full-length" dystrophin constructs, but with consecutive deletions within the COOH- terminal domains. These mice have enabled analysis of the interaction between dystrophin and members of the DAP complex and the effects that perturbing these associations have on the dystrophic process. Deletions within the cysteine-rich region disrupt the interaction between dystrophin and the DAP complex, leading to a severe dystrophic pathology. These deletions remove the beta-dystroglycan-binding site, which leads to a parallel loss of both beta-dystroglycan and the sarcoglycan complex from the sarcolemma. In contrast, deletion of the alternatively spliced domain and the extreme COOH terminus has no apparent effect on the function of dystrophin when expressed at normal levels. The proteins resulting from these latter two deletions supported formation of a completely normal DAP complex, and their expression was associated with normal muscle morphology in mdx mice. These data indicate that the cysteine-rich domain is critical for functional activity, presumably by mediating a direct interaction with beta-dystroglycan. However, the remainder of the COOH terminus is not required for assembly of the DAP complex.  相似文献   

3.
products of the dystrophin gene range from the 427-kDa full-length dystrophin to the 70.8-kDa Dp71. Dp427 is expressed in skeletal muscle, where it links the actin cytoskeleton with the extracellular matrix via a complex of dystrophin-associated proteins (DAPs). Dystrophin deficiency disrupts the DAP complex and causes muscular dystrophy in humans and the mdx mouse. Dp71, the major nonmuscle product, consists of the COOH-terminal part of dystrophin, including the binding site for the DAP complex but lacks binding sites for microfilaments. Dp71 transgene (Dp71tg) expressed in mdx muscle restores the DAP complex but does not prevent muscle degeneration. In wild-type (WT) mouse muscle, Dp71tg causes a mild muscular dystrophy. In this study, we tested, using isolated extensor digitorum longus muscles, whether Dp71tg exerts acute influences on force generation and sarcolemmal stress resistance. In WT muscles, there was no effect on isometric twitch and tetanic force generation, but with a cytomegalovirus promotor-driven transgene, contraction with stretch led to sarcolemmal ruptures and irreversible loss of tension. In MDX muscle, Dp71tg reduced twitch and tetanic tension but did not aggravate sarcolemmal fragility. The adverse effects of Dp71 in muscle are probably due to its competition with dystrophin and utrophin (in MDX muscle) for binding to the DAP complex.  相似文献   

4.
Dystrophin-related protein (DRP) is an autosomal gene product with high homology to dystrophin. We have used highly specific antibodies to the unique C-terminal peptide sequences of DRP and dystrophin to examine the subcellular localization and biochemical properties of DRP in adult skeletal muscle. DRP is enriched in isolated sarcolemma from control and mdx mouse muscle, but is much less abundant than dystrophin. Immunofluorescence microscopy localized DRP almost exclusively to the neuromuscular junction region in rabbit and mouse skeletal muscle, as well as mdx mouse muscle and denervated mouse muscle. DRP is also present in normal size and abundance and localizes to the neuromuscular junction region in muscle from the dystrophic mouse model dy/dy. Thus, DRP is a junction-specific membrane cytoskeletal protein that may play an important role in the organization of the postsynaptic membrane of the neuromuscular junction.  相似文献   

5.
beta-Dystrobrevin is a dystrophin-related and -associated protein that is highly expressed in brain, kidney, and liver. Recent studies with the kidneys of the mdx3Cv mouse, which lacks all dystrophin isoforms, suggest that beta-dystrobrevin, and not the dystrophin isoforms, may be the key component in the assembly of complexes similar to the muscle dystrophin-associated protein complexes (DPC) in nonmuscle tissues. To understand the role of beta-dystrobrevin in the function of nonmuscle tissues, we generated beta-dystrobrevin-deficient (dtnb(-/-)) mice by gene targeting. dtnb(-/-) mice are healthy, fertile, and normal in appearance. No beta-dystrobrevin was detected in these mice by Western blotting or immunocytochemistry. In addition, the levels of several beta-dystrobrevin-interacting proteins, namely Dp71 isoforms and the syntrophins, were greatly reduced from the basal membranes of kidney tubules and liver sinusoids and on Western blots of crude kidney and liver microsomes of beta-dystrobrevin-deficient mice. However, no abnormality was detected in the ultrastructure of membranes of kidney and liver cells or in the renal function of these mice. beta-Dystrobrevin may therefore be an anchor or scaffold for Dp71 and syntrophin isoforms, as well as other associating proteins at the basal membranes of kidney and liver, but is not necessary for the normal function of these mice.  相似文献   

6.
The absence of dystrophin complex leads to disorganization of the force-transmitting costameric cytoskeleton and disruption of sarcolemmal membrane integrity in skeletal muscle. However, it has not been determined whether the dystrophin complex can form a mechanically strong bond with any costameric protein. We performed confocal immunofluorescence analysis of isolated sarcolemma that were mechanically peeled from skeletal fibers of mouse hindlimb muscle. A population of gamma-actin filaments was stably associated with sarcolemma isolated from normal muscle and displayed a costameric pattern that precisely overlapped with dystrophin. However, costameric actin was absent from all sarcolemma isolated from dystrophin-deficient mdx mouse muscle even though it was localized to costameres in situ. Vinculin, alpha-actinin, beta-dystroglycan and utrophin were all retained on mdx sarcolemma, indicating that the loss of costameric actin was not due to generalized membrane instability. Our data demonstrate that the dystrophin complex forms a mechanically strong link between the sarcolemma and the costameric cytoskeleton through interaction with gamma-actin filaments. Destabilization of costameric actin filaments may also be an important precursor to the costamere disarray observed in dystrophin-deficient muscle. Finally, these methods will be broadly useful in assessing the mechanical integrity of the membrane cytoskeleton in dystrophic animal models lacking other costameric proteins.  相似文献   

7.
Membrane organization of the dystrophin-glycoprotein complex   总被引:77,自引:0,他引:77  
J M Ervasti  K P Campbell 《Cell》1991,66(6):1121-1131
The stoichiometry, cellular location, glycosylation, and hydrophobic properties of the components in the dystrophin-glycoprotein complex were examined. The 156, 59, 50, 43, and 35 kd dystrophin-associated proteins each possess unique antigenic determinants, enrich quantitatively with dystrophin, and were localized to the skeletal muscle sarcolemma. The 156, 50, 43, and 35 kd dystrophin-associated proteins contained Asn-linked oligosaccharides. The 156 kd dystrophin-associated glycoprotein contained terminally sialylated Ser/Thr-linked oligosaccharides. Dystrophin, the 156 kd, and the 59 kd dystrophin-associated proteins were found to be peripheral membrane proteins, while the 50 kd, 43 kd, and 35 kd dystrophin-associated glycoproteins and the 25 kd dystrophin-associated protein were confirmed as integral membrane proteins. These results demonstrate that dystrophin and its 59 kd associated protein are cytoskeletal elements that are tightly linked to a 156 kd extracellular glycoprotein by way of a complex of transmembrane proteins.  相似文献   

8.
9.
In Duchenne muscular dystrophy (DMD), dystrophin mutation leads to progressive lethal skeletal muscle degeneration. For unknown reasons, dystrophin deficiency does not recapitulate DMD in mice (mdx), which have mild skeletal muscle defects and potent regenerative capacity. We postulated that human DMD progression is a consequence of loss of functional muscle stem cells (MuSC), and the mild mouse mdx phenotype results from greater MuSC reserve fueled by longer telomeres. We report that mdx mice lacking the RNA component of telomerase (mdx/mTR) have shortened telomeres in muscle cells and severe muscular dystrophy that progressively worsens with age. Muscle wasting severity parallels a decline in MuSC regenerative capacity and is ameliorated histologically by transplantation of wild-type MuSC. These data show that DMD progression results, in part, from a cell-autonomous failure of?MuSC to maintain the damage-repair cycle initiated by dystrophin deficiency. The essential role of MuSC function has therapeutic implications for DMD.  相似文献   

10.
Dystroglycan is part of the dystrophin-associated protein complex, which joins laminin in the extracellular matrix to dystrophin within the subsarcolemmal cytoskeleton. We have investigated how mutations in the components of the laminin-dystroglycan-dystrophin axis affect the organization and expression of dystrophin-associated proteins by comparing mice mutant for merosin (alpha(2)-laminin, dy), dystrophin (mdx), and dystroglycan (Dag1) using immunohistochemistry and immunoblots. We report that syntrophin and neuronal nitric-oxide synthase are depleted in muscle fibers lacking both dystrophin and dystroglycan. Some fibers deficient in dystroglycan, however, localize dystrophin at the cell surface at levels similar to that in wild-type muscle. Nevertheless, these fibers have signs of degeneration/regeneration including increased cell surface permeability and central nuclei. In these fibers, syntrophin and nitric-oxide synthase are also localized to the plasma membrane, whereas the sarcoglycan complex is disrupted. These results suggest a mechanism of membrane attachment for dystrophin independent of dystroglycan and that the interaction of sarcoglycans with dystrophin requires dystroglycan. The distribution of caveolin-3, a muscle-specific component of caveolae recently found to bind dystroglycan, was affected in dystroglycan- and dystrophin-deficient mice. We also examined alternative mechanisms of cell-extracellular matrix attachment to elucidate how the muscle basement membrane may subsist in the absence of dystroglycan, and we found the alpha(7B) splice variant of the alpha(7) integrin receptor subunit to be up-regulated. These results support the possibility that alpha(7B) integrin compensates in mediating cell-extracellular matrix attachment but cannot rescue the dystrophic phenotype.  相似文献   

11.
The dystrophin-glycoprotein complex spans the sarcolemma to provide a linkage between the subsarcolemmal cytoskeleton and the extracellular matrix in skeletal muscle. In Duchenne muscular dystrophy (DMD), the absence of dystrophin leads to a drastic reduction in all of the dystrophin-associated proteins in the sarcolemma, thus causing the disruption of the dystrophin-glycoprotein complex and the loss of the linkage to the extracellular matrix. The resulting sarcolemmal instability is presumed to render muscle fibers susceptible to necrosis. In the present study, we investigated the status of the dystrophin-associated proteins in the skeletal muscle from patients with Becker muscular dystrophy (BMD), a milder allelic form of DMD. BMD patients having in-frame deletions in the rod domain of dystrophin showed a mild to moderate reduction in all of the dystrophin-associated proteins in the sarcolemma, but this reduction was not as severe as that in DMD patients. The reduction of the immunostaining for the dystrophin-associated proteins showed a good correlation with that for dystrophin in both intensity and distribution. Our results indicate that (1) the abnormality of the sarcolemmal glycoprotein complex, which is similar to but milder than that in DMD patients, also exists in these BMD patients and (2) the rod domain of dystrophin is not crucial for the interaction with the dystrophin-associated proteins.  相似文献   

12.
The mdx mouse model of muscular dystrophy has a premature stop codon preventing production of dystrophin. This results in a progressive phenotype causing centronucleation of skeletal muscle fibers, muscle weakness, and fibrosis and kyphosis. Antisense oligonucleotides alter RNA splicing to exclude the nonsense mutation, while still maintaining the open reading frame to produce a shorter, but partially functional dystrophin protein that should ameliorate the extent of pathology. The present study investigated the benefits of chronic treatment of mdx mice by once-monthly deep intramuscular injections of antisense oligonucleotides into paraspinal muscles. After 8 mo of treatment, mdx mice had reduced development of kyphosis relative to untreated mdx mice, a benefit that was retained until completion of the study at 18 mo of age (16 mo of treatment). This was accompanied by reduced centronucleation in the latissimus dorsi and intercostals muscles and reduced fibrosis in the diaphragm and latissimus dorsi. These benefits were accompanied by a significant increase in dystrophin production. In conclusion, chronic antisense oligonucleotide treatment provides clear and ongoing benefits to paralumbar skeletal muscle, with associated marked reduction in kyphosis.  相似文献   

13.
Dystrophin was purified by immunoaffinity chromatography from detergent-solubilized Torpedo electric organ postsynaptic membranes using monoclonal antibodies. A major doublet of proteins at Mr 58,000 and minor proteins at Mr 87,000, Mr 45,000, and Mr 30,000 reproducibly copurified with dystrophin. The Mr 58,000 and Mr 87,000 proteins were identical to previously described peripheral membrane proteins (Mr 58,000 protein and 87,000 protein) whose muscle homologs are associated with the sarcolemma (Froehner, S. C., Murnane, A. A., Tobler, M., Peng, H. B., and Sealock, R. (1987) J. Cell Biol. 104, 1633-1646; Carr, C., Fischbach, G. D., and Cohen, J. B. (1989) J. Cell Biol. 109, 1753-1764). The copurification of dystrophin and Mr 58,000 protein was shown to be specific, since dystrophin was also captured with a monoclonal antibody against the Mr 58,000 protein but not by several control antibodies. The Mr 87,000 protein was a major component (along with the Mr 58,000 protein) in material purified on anti-58,000 columns, suggesting that the Mr 58,000 protein forms a distinct complex with the Mr 87,000 protein, as well as with dystrophin. Immunofluorescence staining of skeletal and cardiac muscle from the dystrophin-minus mdx mouse with the anti-58,000 antibody was confined to the sarcolemma as in normal muscle but was much reduced in intensity, even though immunoblotting demonstrated that the contents of Mr 58,000 protein in normal and mdx muscle were comparable. Thus, the Mr 58,000 protein appears to associate inefficiently with the sarcolemmal membrane in the absence of dystrophin. This deficiency may contribute to the membrane abnormalities that lead to muscle necrosis in dystrophic muscle.  相似文献   

14.
Abstract: Neuronal nitric oxide synthase (nNOS) is a component of the dystrophin complex in skeletal muscle. The absence of dystrophin protein in Duchenne muscular dystrophy and in mdx mouse causes a redistribution of nNOS from the plasma membrane to the cytosol in muscle cells. Aberrant nNOS activity in the cytosol can induce free radical oxidation, which is toxic to myofibers. To test the hypothesis that derangements in nNOS disposition mediate muscle damage in Duchenne dystrophy, we bred dystrophin-deficient mdx male mice and female mdx heterozygote mice that lack nNOS. We found that genetic deletion of nNOS does not itself cause detectable pathology and that removal of nNOS does not influence the extent of increased sarcolemmal permeability in dystrophin-deficient mice. Thus, histological analyses of nNOS-dystrophin double mutants show pathological changes similar to the dystrophin mutation alone. Taken together, nNOS defects alone do not produce muscular dystrophy in the mdx model.  相似文献   

15.
16.
17.
Although the reduction in dystrophin-associated glycoproteins is the primary pathophysiological consequence of the deficiency in dystrophin, little is known about the secondary abnormalities leading to x-linked muscular dystrophy. As abnormal Ca(2+) handling may be involved in myonecrosis, we investigated the fate of key Ca(2+) regulatory membrane proteins in dystrophic mdx skeletal muscle membranes. Whereas the expression of the ryanodine receptor, the dihydropyridine receptor, the Ca(2+)-ATPase, and calsequestrin was not affected, a drastic decline in calsequestrin-like proteins of 150-220 kDa was observed in dystrophic microsomes using one-dimensional immunoblotting, two-dimensional immunoblotting with isoelectric focusing, diagonal two-dimensional blotting technique, and immunoprecipitation. In analogy, overall Ca(2+) binding was reduced in the sarcoplasmic reticulum of dystrophic muscle. The reduction in Ca(2+) binding proteins might be directly involved in triggering impaired Ca(2+) sequestration within the lumen of the sarcoplasmic reticulum. Thus disturbed sarcolemmal Ca(2+) fluxes seem to influence overall Ca(2+) homeostasis, resulting in distinct changes in the expression profile of a subset of Ca(2+) handling proteins, which might be an important factor in the progressive functional decline of dystrophic muscle fibers.  相似文献   

18.
Embryonic stem (ES) cells have great therapeutic potential because of their capacity to proliferate extensively and to form any fully differentiated cell of the body, including skeletal muscle cells. Successful generation of skeletal muscle in vivo, however, requires selective induction of the skeletal muscle lineage in cultures of ES cells and following transplantation, integration of appropriately differentiated skeletal muscle cells with recipient muscle. Duchenne muscular dystrophy (DMD), a severe progressive muscle wasting disease due to a mutation in the dystrophin gene and the mdx mouse, an animal model for DMD, are characterized by the absence of the muscle membrane associated protein, dystrophin. Here, we show that co-culturing mouse ES cells with a preparation from mouse muscle enriched for myogenic stem and precursor cells, followed by injection into mdx mice, results occasionally in the formation of normal, vascularized skeletal muscle derived from the transplanted ES cells. Study of this phenomenon should provide valuable insights into skeletal muscle development in vivo from transplanted ES cells.  相似文献   

19.
The cell biological hypothesis of Duchenne muscular dystrophy assumes that deficiency in the membrane cytoskeletal element dystrophin triggers a loss in surface glycoproteins, such as beta-dystroglycan, thereby rendering the sarcolemmal membrane more susceptible to micro-rupturing. Secondary changes in ion homeostasis, such as increased cytosolic Ca2+ levels and impaired luminal Ca2+ buffering, eventually lead to Ca2+-induced myonecrosis. However, individual muscle groups exhibit a graded pathological response during the natural time course of x-linked muscular dystrophy. The absence of the dystrophin isofom Dp427 does not necessarily result in a severe dystrophic phenotype in all muscle groups. In the dystrophic mdx animal model, extraocular and toe muscles are not as severely affected as limb muscles. Here, we show that the relative expression and sarcolemmal localization of the central trans-sarcolemmal linker of the dystrophin-glycoprotein complex, beta-dystroglycan, is preserved in mdx extraocular and toe fibres by means of two-dimensional immunoblotting and immunofluorescence microscopy. Thus, with respect to improving myology diagnostics, the relative expression levels of beta-dystroglycan appear to represent reliable markers for the severity of secondary changes in dystrophin-deficient fibres. Immunoblotting and enzyme assays revealed that mdx toe muscle fibres exhibit an increased expression and activity of the sarcoplasmic reticulum Ca2+-ATPase. Chemical crosslinking studies demonstrated impaired calsequestrin oligomerization in mdx gastrocnemius muscle indicating that abnormal calsequestrin clustering is involved in reduced Ca2+ buffering of the dystrophic sarcoplasmic reticulum. Previous studies have mostly attributed the sparing of certain mdx fibres to the special protective properties of small-diameter fibres. Our study suggests that the rescue of dystrophin-associated glycoproteins, and possibly the increased removal of cytosolic Ca2+ ions, might also play an important role in protecting muscle cells from necrotic changes.  相似文献   

20.
Abnormalities of calcium homeostasis are involved in the process of cell injuries such as Duchenne muscular dystrophy characterized by the absence of the protein dystrophin. But how the absence of dystrophin leads to cytosolic calcium overload is as yet poorly understood. This question has been addressed with skeletal muscle cells from human DMD muscles or mdx mice. Although easier to obtain than human muscles, mdx muscle cells have provided controversial data concerning the resting intracellular calcium level ([Ca2+](i)). This work describes the culture of Sol8 cell line that expresses neither dystrophin nor adhalin, a dystrophin-associated protein. The [Ca2+](i)and intracellular calcium transients induced by different stimuli (acetylcholine, caffeine and high potassium) are normal during the first days of culture. At later stages, calcium homeostasis exhibits drastic alterations with a breaking down of the calcium responses and a large [Ca2+](i)elevation. Concomitantly, Sol8 cells exhibit morphological signs of cell death like cytoplasmic shrinkage and incorporation of propidium iodide. Cell death could be significantly reduced by blocking the activity of calpains, a type of calcium-regulated proteases. These results suggest that Sol8 cell line provides an alternative model of dystrophin-deficient skeletal muscle cells for which a clear disturbance of the calcium homeostasis is observed in culture in association with calpain-dependent cell death. It is shown that transfection with a plasmid cDNA permits the forced expression of dystrophin in Sol8 myotubes as well as a correct sorting of the protein. This approach could be used to explore possible interactions between dystrophin deficiency, calcium homeostasis alteration, and dystrophic cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号