首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two dietary resources - blood and sugar - were assessed for effects on the melanization immune response of the mosquito Anopheles stephensi Liston (Diptera: Culicidae) towards inoculated Sephadex beads (negatively charged C-25). This melanization is conferred by genetic factors capable of making the mosquito refractory to malaria parasites. If An. stephensi females had obtained a bloodmeal one day before inoculation with a bead, the efficacy of their immune response increased with the concentration of sugar ingested. At the highest sugar concentration (6%) tested, 38% of the mosquitoes completely melanized their bead, whereas at the lowest sugar concentration (2%), none of the mosquitoes were able to melanize their bead completely. Among mosquitoes not having a bloodmeal, the immuno-competence was low (c. 9% of the mosquitoes completely melanized their bead) and independent of sugar concentration. The observed interaction between these two resources indicates that both resources are required for the Anopheles female to develop an effective melanization immune response.  相似文献   

2.
To investigate the evolutionary cost of an immune response, we selected six lines of the mosquito Aedes aegypti for earlier or later pupation and measured the extent to which this selection procedure changed the mosquito's ability to encapsulate and melanize a negatively charged Sephadex bead. After 10 generations of selection, the age at pupation in the two selection regimes differed by about 0.7 days, accompanied by an increase of wing length of the mosquitoes selected for late pupation. Among the mosquitoes that had been selected for early pupation, only 6% had strongly or completely melanized the bead, while among the individuals that had been selected for late pupation, 32% had melanized the bead. Thus, our results suggest a genetic correlation between age at pupation and immunocompetence. As a consequence, mosquitoes that respond to increased intense parasite pressure with more effective immunity are predicted to pay for the increased defense with slower development.  相似文献   

3.
In refractory mosquitoes, melanotic encapsulation of Plasmodium ookinetes and oocysts is a commonly observed immune response. However, in susceptible mosquitoes, Plasmodium oocysts develop extracellularly in the body cavity without being recognized by the immune system. Like Plasmodium gallinaceum oocysts, negatively charged carboxymethyl (CM)-Sephadex beads implanted in the hemocoel of Aedes aegypti female mosquitoes were not usually melanized, but were coated with mosquito-derived laminin. Conversely, electrically neutral G-Sephadex beads were routinely melanized. Since mosquito laminin coated both CM-Sephadex beads and P. gallinaceum oocysts, we hypothesized that laminin prevents melanization of both. To test this hypothesis, we coated cyanogen-bromide-activated G-Sephadex beads with laminin, recombinant P. gallinaceum ookinete surface protein (PgS28) or bovine serum albumin (BSA). Beads were implanted into the abdominal body cavity of female Aedes aegypti and retrieved 4 days later. Uncoated controls as well as BSA-coated G-Sephadex beads were melanized in a normal manner. However, melanization of beads coated with mouse laminin, Drosophila L2-secreted proteins or PgS28 was markedly reduced. Fluorescent antibody labeling showed that PgS28-coated beads had adsorbed mosquito laminin on their surface. Thus, mosquito laminin interacting with Plasmodium surface proteins probably masks oocysts from the mosquito's immune system, thereby facilitating their development in the body cavity.  相似文献   

4.
The costs and benefits of activating the immune system can reach across generations. Thus, in vertebrates and in several invertebrates, stimulating the immune system of a female can enhance immunity of her offspring or decrease offspring fitness. We evaluated the potential maternally transmitted costs and benefits of the melanization response, an innate immune response of insects that helps to protect mosquitoes from malaria parasites. We manipulated the maternal melanization response of the yellow fever mosquito Aedes aegypti by inoculating female mosquitoes with negatively charged sephadex beads or with immunologically inert glass beads; a control group was not inoculated. In the next generation, we assayed the melanization response and measured three other life-history traits: survival up to emergence, the age at emergence, and body size (estimated as wing length). We found no evidence of fitness costs or benefits for the offspring. A retrospective power analysis found that our experiment would have detected an effect size that is three times smaller than the maternal immune priming effects that have been reported in the literature. We did find a strong correlation between offspring wing length and melanization response. Overall, our findings indicate that trans-generational immune priming in invertebrates cannot be generalized, and that it may depend on the species, the immune challenge, and the environmental conditions.  相似文献   

5.
We have performed a global genome expression analysis of mosquito responses to CM-25 Sephadex beads and identified 27 regulated immune genes, including several anti-Plasmodium factors and other components with likely roles in melanization. Silencing of two bead injection responsive genes, TEP1 and LRIM1, which encode proteins known to mediate Plasmodium killing, significantly compromised the ability to melanize the beads. In contrast, silencing of two Plasmodium protective c-type lectins, CTL4 and CTLMA2, did not affect bead melanization. This data suggest that the anti-Plasmodium factors have dual functions, as determinants of both Plasmodium killing and melanization of the parasite and other foreign bodies, while the Plasmodium protective factors are specifically utilized by the parasite for evasion of mosquito defense mechanisms.  相似文献   

6.
A refractory strain of the mosquito, Anopheles gambiae, melanotically encapsulates and kills many species of malaria parasites, whereas susceptible strains allow the parasites to develop normally. To study the role of surface characteristics in eliciting this immune response, 27 types of chromatography beads that differed in matrix type, charge, functional group, and functional group density were assayed for degree of melanotic encapsulation in refractory and susceptible mosquitoes. Overall, two glucan-based matrices, Sephadex (dextran) and cellulose, stimulated the strongest responses, regardless of functional group. Substituting matrix hydroxyl groups with functional groups on Sephadex and cellulose beads decreased the level of encapsulation. These results demonstrate that glucans induce melanotic encapsulation in An. gambiae. Beads with agarose, polystyrene, and acrylic matrices, and most methacrylate-based beads elicited little or no melanization; however, epoxide-methacrylate beads were encapsulated, demonstrating that glucans are not essential for eliciting a response. Comparisons between the two strains demonstrated that refractory mosquitoes melanized many bead types to a greater degree than did susceptible mosquitoes. On this basis, we propose that an important difference between the two strains is that one of the enzymes involved in the melanization pathway functions at a higher level in the refractory strain. Finally, of all beads tested, only 85% substituted CM-Sephadex beads were virtually unmelanized in susceptible mosquitoes but highly melanized in the refractory strain; thus, a specific surface microenvironment is necessary to demonstrate this effect.  相似文献   

7.
Mosquitoes are vectors of many deadly and debilitating pathogens. In the current study, we used light and electron microscopies to study the immune response of Aedes aegypti hemocytes to bacterial inoculations, Plasmodium gallinaceum natural infections, and latex bead injections. After challenge, mosquitoes mounted strong phagocytic and melanization responses. Granulocytes phagocytosed bacteria singly or pooled them inside large membrane-delimited vesicles. Phagocytosis of bacteria, Plasmodium sporozoites, and latex beads was extensive; we estimated that individual granulocytes have the capacity to phagocytose hundreds of bacteria and thousands of latex particles. Oenocytoids were also seen to internalize bacteria and latex particles, although infrequently and with low capacity. Besides phagocytosis, mosquitoes cleared bacteria and sporozoites by melanization. Interestingly, the immune response toward 2 species of bacteria was different; most Escherichia coli were phagocytosed, but most Micrococcus luteus were melanized. Similar to E. coli, most Plasmodium sporozoites were phagocytosed. The immune response was rapid; phagocytosis and melanization of bacteria began as early as 5 min after inoculation. The magnitude and speed of the cellular response suggest that hemocytes, acting in concert with the humoral immune response, are the main force driving the battle against foreign invaders.  相似文献   

8.
Malaria parasites develop as oocysts within the haemocoel of their mosquito vector during a period that is longer than the average lifespan of many of their vectors. How can they escape from the mosquito''s immune responses during their long development? Whereas older oocysts might camouflage themselves by incorporating mosquito-derived proteins into their surface capsule, younger stages are susceptible to the mosquito''s immune response and must rely on other methods of immune evasion. We show that the malaria parasite Plasmodium gallinaceum suppresses the encapsulation immune response of its mosquito vector, Aedes aegypti, and in particular that the parasite uses both an indirect and a direct strategy for immunosuppression. Thus, when we fed mosquitoes with the plasma of infected chickens, the efficacy of the mosquitoes to encapsulate negatively charged Sephadex beads was considerably reduced, whether the parasite was present in the blood meal or not. In addition, zygotes that were created ex vivo and added to the blood of uninfected chickens reduced the efficacy of the encapsulation response. As dead zygotes had no effect on encapsulation, this result demonstrates active suppression of the mosquito''s immune response by malaria parasites.  相似文献   

9.
The impacts of different doses of the plant growth regulator gibberellic acid (GA(3)) in diet on the number of total and differential hemocytes, frequency of apoptotic, and necrotic hemocytes, mitotic indices, encapsulation, and melanization responses were investigated using the greater wax moth Galleria mellonella L. (Lepidoptera: Pyralidae) larvae. Total hemocyte counts increased in G. mellonella larvae at all treatment doses whereas GA(3) application had no effect on the number of different hemocyte types. The occurrence of apoptosis, necrosis and mitotic indices in GA(3) treated and untreated last instars were detected by acridine orange or ethidium bromide double staining by fluorescence microscopy. While the ratio of necrotic hemocytes increased at all GA(3) treatments, that of late apoptotic cells was only higher at doses >200 ppm when compared with untreated larvae. The percentage of mitotic index also increased at 5,000 ppm. Positively charged DEAE Sephadex A-25 beads were used for analysis of the levels of encapsulation and melanization in GA(3) treated G. mellonella larvae. At four and 24 h posttreatments with Sephadex A-25 bead injection, insects were dissected under a stereomicroscope. Encapsulation rates of larval hemocytes were dependent on the extent of encapsulation and time but not treatment groups. While the extent of melanization of hemocytes showed differences related to time, in general, a decrease was observed at all doses of GA(3) treated larvae at 24 h. We suggest that GA(3) treatment negatively affects hemocyte physiology and cell immune responses inducing cells to die by necrosis and apoptosis in G. mellonella larvae.  相似文献   

10.
The immune system of invertebrates can mount different responses, including melanotic encapsulation and several antibacterial defense mechanisms. Variation of the efficacies of these responses is generally considered to be a product of the evolutionary pressure on each response due to infection by parasites. However, potential interactions and trade-offs among the different responses of the immune system could constrain the evolutionary potential of each response. In a natural population of the mosquito Anopheles gambiae, we measured the genetic association between the melanization response and an antibacterial response in two environmental qualities (well-fed and undernourished larvae). In both environments the two immune responses were positively genetically correlated: in full-sib families that were most likely to melanize a bead, injected bacteria were most likely to be cleared. Thus, our data do not support the idea of a trade-off among different outcomes of the invertebrate immune system, but rather that some families are overall immunologically superior to others.  相似文献   

11.
The melanization response of Aedes aegypti black-eyed Liverpool strain (LVP) and Aedes trivittatus against intrathoracically inoculated Dirofilaria immitis microfilariae (mff) was assessed in mosquitoes less than 1, 14, 21, and 28 days after adult ecdysis. There was a significant decrease in the melanization response of A. aegypti 14 days of age and older at 1, 3, and 5 days postinoculation (PI) compared to less than 1-day-old mosquitoes. The response also was reduced significantly in 14- to 28-day-old A. trivittatus on days 1 and 3 PI. Although essentially 100% of recovered mff were melanized by day 5 PI in A. trivittatus, the amount of melanin deposited was much less than that seen in 0-day-old mosquitoes. Potential mechanisms responsible for a reduced immune competence in older mosquitoes and the possible relationship to vector potential are discussed.  相似文献   

12.
Shin SW  Zou Z  Raikhel AS 《EMBO reports》2011,12(9):938-943
Microbial infections in the mosquito Aedes aegypti activate the newly identified CLSP1 and CLSP2 genes, which encode modular proteins composed of elastase-like serine protease and C-type lectin domains. These genes are predominantly regulated by the immune deficiency pathway, but also by the Toll pathway. Silencing of CLSP2, but not CLSP1, results in the activation of prophenoloxidase (PPO), the terminal enzyme in the melanization cascade, suggesting that CLSP2 is a negative modulator of this reaction. Haemolymph PPO activation is normally inhibited in the presence of Plasmodium parasites, but in CLSP2-depleted mosquitoes, the Plasmodium-induced block of melanization is reverted, and these mosquitoes are refractory to the parasite. Thus, CLSP2 is a new component of the mosquito immune response.  相似文献   

13.
Central to the conceptual basis of ecological immunity is the notion that immune effector systems are costly to produce, run, and/or maintain. Using the mealworm beetle, Tenebrio molitor, as a model we investigated two aspects of the costs of innate immunity. We conducted an experiment designed to identify the cost of an induced immune response, and the cost of constitutive investment in immunity, as well as potential interactions. The immune traits under consideration were the encapsulation response and prophylactic cuticular melanization, which are mechanistically linked by the melanin-producing phenoloxidase cascade. If immunity is costly, we predicted reduced longevity and/or fecundity as a consequence of investment in either immune trait. We found a measurable longevity cost associated with producing an inducible immune response (encapsulation). In contrast to other studies, this cost was expressed under ad libitum feeding conditions. We found no measurable costs for constitutive investment in immunity (prophylactic investment in cuticular colour).  相似文献   

14.
Melanization of foreign targets in the mosquito, Anopheles gambiae, was studied using a model Sephadex bead system. A mosquito factor that was deposited on beads and prevented bead melanization (MPF) was purified. The N-terminal sequence of the factor identified it as lysozyme c-1 (Lys c-1). Gene silencing of Lys c-1 mediated by RNA interference resulted in a significant reduction in the MPF activity compared with controls. The purified Lys c-1 protein reduced dopachrome formation by mosquito hemolymph phenoloxidase in solution assays in vitro. In vivo, Lys c-1 might inhibit melanization of beads by blocking attachment of critical factors to the bead surface or by inhibiting PO directly. This work indicates that insect lysozymes can play unexpected roles in mediating melanization of foreign targets.  相似文献   

15.
The melanization response against intrathoracically inoculated Brugia pahangi and Dirofilaria immitis microfilariae (mff) isolated from vertebrate host blood was evaluated in both uninfected Aedes aegypti black-eyed Liverpool strain and in mosquitoes harboring a developing B. pahangi infection. The immune response against inoculated mff of either species was significantly reduced by 28-47% in infected as compared with uninfected mosquitoes. Attempts to passively transfer this suppression factor(s) by inoculating naive mosquitoes with 0.1-0.2 microliter of hemolymph from B. pahangi-infected mosquitoes produced equivocal results. The role this parasite-induced immune suppression might play in aiding parasite survival in compatible vectors is discussed.  相似文献   

16.
This study involved the assessment of surface changes on hemocytes of Aedes aegypti black-eyed Liverpool strain in association with the melanization response against intrathoracically inoculated Dirofilaria immitis microfilariae (mff). Surface changes on hemocytes were identified using fluorescein-labeled wheat germ agglutinin (WGA). In mosquitoes eliciting a melanization response against inoculated mff, there was a 5-fold increase in the percentages of hemocytes exhibiting WGA binding compared with saline inoculated controls. Relationships of this hemocyte activation in relation to cell-mediated melanization responses of adult mosquitoes against mff are discussed.  相似文献   

17.
Mosquitoes mount strong humoral and cellular immune responses against foreign organisms. Two components of the mosquito immune response that have received much attention are the phenoloxidase cascade that leads to melanization and antimicrobial peptides. The purpose of the current study was to use immunocytochemistry and transmission electron microscopy to identify the location of the melanization rate-limiting enzyme phenoloxidase and the antimicrobial peptide defensin in innate immune reactions against Escherichia coli and Micrococcus luteus by the mosquito Aedes aegypti. Our results show that both phenoloxidase and defensin are present at the sites of melanin biosynthesis in immune reactions against bacteria. Furthermore, both proteins are often present inside the same melanotic capsules. When hemocytes were analyzed, phenoloxidase was present in the cytosol of oenocytoids, but no significant amounts of defensin were detected inside any hemocytes. In summary, these data show that phenoloxidase and defensin colocalize in melanization reactions against bacteria and argue for further studies into the potential role of defensin in phenoloxidase-based melanization innate immune responses in mosquitoes.  相似文献   

18.
Monophenol oxidase (MPO) activity in hemocytes collected from Aedes aegypti Liverpool strain and Aedes trivittatus intrathoracically inoculated with saline alone, inoculated with Dirofilaria immitis microfilariae (mff), or from uninoculated mosquitoes was compared using a radiometric tyrosine hydroxylation assay. Hemocyte MPO activity in mff-inoculated (= immune-activated) mosquitoes was significantly increased at 24 hr postinoculation (PI) in A. aegypti and at 6, 12, and 24 hr PI in A. trivittatus as compared with saline-inoculated controls. Baseline and immune-activated levels of hemocyte MPO activity in A. trivittatus were significantly higher compared with those seen in A. aegypti. Baseline hemocyte population levels were similar in both species, but immune activation did not elicit increases in total hemocyte populations in A. trivittatus as has been demonstrated for A. aegypti. Likewise, immune activation by the inoculation of mff did not significantly alter plasma MPO activity in A. trivittatus as compared with uninoculated or saline-inoculated mosquitoes. Plasma MPO activity in A. aegypti, however, appears to constitute a major component of the immune response. The importance of phenol oxidase(s) in the immune response of mosquitoes against mff and the relationship of observed differences in MPO activity to differences in immunological capability between A. aegypti and A. trivittatus are assessed.  相似文献   

19.
The employment of defense mechanisms is recognized as a costly life-history trait. In the malaria vector Anopheles gambiae, reproductive costs have been associated with both humoral and cellular innate immune responses and also with malaria infection. The resorption of developing oocytes associated with malaria infection is preceded by the programmed cell death, or apoptosis, of follicular cells. Here we demonstrate that apoptosis in ovarian follicular epithelial cells also occurs when mosquitoes are subjected to artificial immune-elicitors that induce a melanization response or humoral antimicrobial activity. Caspases are key cysteine proteases involved in apoptosis. Caspase-like activity was detected in epithelial cells in approximately 4.0% of the developing ovarian follicles of untreated, blood-fed, mosquitoes. Lipopolysaccharide injection resulted in a significant increase in anti-Micrococcus luteus humoral activity and a significant increase of 257.7% of follicles exhibiting apoptosis compared to results after saline injections. Melanization also triggered follicular apoptosis, which increased by 106.25% or 134.37% in Sephadex C-25 or G-25 bead-inoculated mosquitoes, respectively, compared to that in sham-injected ones. Ovaries from Plasmodium yoelii nigeriensis-infected mosquitoes exhibited a significant increase in follicular apoptosis of 440.9% compared to non-infected ones. Thus, at the time point investigated, infection had a much greater effect than artificial immune-elicitors. Death of follicular epithelial cells has been shown to lead to follicle resorption and hence a decrease in egg production. We propose the trade-off between reproductive fitness and immune defense in A. gambiae operates via the induction of apoptosis in ovarian follicles and that different immune responses impose costs via the same pathway.  相似文献   

20.
《The Journal of cell biology》1984,98(6):1947-1960
In the trunk region of avian embryos, neural crest cells migrate along two pathways: dorsally just under the ectoderm, and ventrally between the neural tube and the somites. Previous work from this laboratory has shown that uncoated latex beads are able to translocate along the ventral neural crest pathway after injection into young embryos; however, beads coated with fibronectin are restricted from the ventral route ( Bronner -Fraser, M.E., 1982, Dev. Biol., 91: 50-63). Here, we extend these observations to determine the effects of other macromolecules on bead distribution. The data show that laminin-coated beads, like fibronectin-coated beads, are restricted from the ventral pathway. In contrast, beads coated with type I collagen translocate ventrally after injection. Because macromolecules have characteristic charge properties, changes in surface charge caused by coating the beads may confound interpretation of the results. Electrostatic effects on bead movement were examined by coating the latex beads with polyamino acids in order to predictably alter the initial surface charge. The surface charge before injection was measured for beads coated with amino acid polymers or with various biologically important macromolecules; the subsequent translocation ability of these beads was then monitored in the embryo. Polylysine-coated beads (positively charged) were restricted from the ventral pathway as were fibronectin and laminin-coated beads, even though fibronectin and laminin beads were both negatively charged. In contrast, polytyrosine -coated beads ( neutrally charged) translocated ventrally as did negatively charged collagen-coated or uncoated beads. The results demonstrate that no correlation exists between the charge properties on the latex bead surface and their subsequent ability to translocate along the ventral pathway. Therefore, an adhesion mechanism independent of surface charge effects must explain the restriction or translocation of latex beads on a neural crest pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号