首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many types of cancer cells depend heavily on glycolysis for energy production even in aerobic conditions. We found that koningic acid (KA), an inhibitor of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), selectively kills high-glycolytic cells through glucose-dependent active ATP deprivation. Out of seven tumor cell lines tested, growth of six cell lines, which had high glycolytic capacity, was inhibited by KA, whereas three normal cell lines, which had low glycolytic activity, were insensitive to KA. The growth inhibition and caspase-independent cell death in sensitive cells were related to severe ATP depletion that was promoted by glucose phosphorylation. Although GAPDH was completely inhibited in KA-insensitive CHO-K1 cells, KA-mediated ATP depletion was less extensive and transient, possibly due to utilization of ketogenic essential amino acids as energy source. KA suppressed Ehrlich ascites tumor growth in vivo and benefited the survival of the affected mice.  相似文献   

2.
Concentrations of m-Cl-peroxy benzoic acid (CPBA) higher than 0.1 mM decrease the ATP-content of Saccharomyces cerevisiae in the presence of glucose in 1 min to less than 10% of the initial value. In the absence of glucose, 1.0 mM CPBA is necessary for a similar effect. After the rapid loss of ATP in the first min in the presence of glucose caused by 0.2 mM CPBA, the ATP-content recovers to nearly the initial value after 10 min. Aerobic glucose consumption and ethanol formation from glucose are both completely inhibited by 1.0 mM CPBA. Assays of the activities of nine different enzymes of the glycolytic pathway as well as analysis of steady state concentrations of metabolites suggest that glyceraldehyde-3-phosphate dehydrogenase is the most sensitive enzyme of glucose fermentation. Phosphofructokinase and alcohol dehydrogenase are slightly less sensitive. Incubation for 1 or 10 min with concentrations of 0.05 to 0.5 mM CPBA causes a) inhibition of glyceraldehyde-3-phosphate dehydrogenase, b) decrease of the ATP-content and c) a decrease of the colony forming capacity. From these findings it is concluded that the disturbance of the ATP-producing glycolytic metabolism by inactivation of glyceraldehyde-3-phosphate dehydrogenase may be an explanation for cell death caused by CPBA.Abbreviations CPBA m-Chloro-peroxy benzoic acid - G-6-P glucose-6-phosphate - F-6-P fructose-6-phosphate - F-1,6-P2 frnctose-1,6-bisphosphate - DAP dihydroxyacetone phosphate - GAP glyceraldehyde-3-phosphate - 2PGA 2-phosphoglycerate - PEP phosphoenol pyruvate - Pyr pyruvate - EtOH ethanol - PFK phosphofructokinase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - ADH alcohol dehydrogenase Dedicated to Prof. Dr. Wolfgang Gerok at the occasion of his 60th birthday  相似文献   

3.
The stabilities of liver and pectoral muscle enzymes in 6-aminonicotinamide (6-AN) treated quail against heat treatment in the presence and absence of added ATP were investigated. Only ATP level in the brain and pectoral muscle of 6-AN treated group was significantly reduced compared to the control group whereas ADP and AMP levels were not affected. In the thermal stability (55 degrees C) of liver enzymes, the activity of acetylcholinesterase (AChE) was not affected whereas the activities of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase (LDH) were significantly lowered (P<0.01). The addition of 1mM ATP to liver enzyme extracts of 6-AN group afforded 4- and 1.7-fold more protection for GAPDH and LDH, respectively (P<0.01). In liver, LDH appeared to be more protected by ATP than GAPDH. In muscle, however, GAPDH and AChE activity were significantly affected but not LDH. The addition of 1mM ATP to muscle enzyme extracts of 6-AN group afforded 1.7-fold more protection for GAPDH (P<0.01) but rather inactivated AChE. A marked reduction in ATP levels in muscle did not affect specifically muscle enzyme activities only since liver enzyme activities were also affected to the same degree as muscle.  相似文献   

4.
Glyceraldehyde-3-phosphate dehydrogenase has been purified to apparent homogeneity from Ehrlich ascites carcinoma (EAC) cells. The enzyme is quite active over a pH range of 7.5-9.0 with an optimum pH of 8.4-8.7. The specific activity of the enzyme is much higher than that from other normal sources. In contrast to enzyme obtained from rabbit muscle, the EAC cell enzyme is not significantly inhibited by physiological concentrations of ATP at physiological pH. Kinetic studies using different substrates and inhibitors indicate that the properties of the EAC cell enzyme are significantly different from those of glyceraldehyde-3-phosphate dehydrogenase obtained from other normal sources. The striking dissimilarity of the malignant cell glyceraldehyde-3-phosphate dehydrogenase compared with this enzyme from other normal sources, particularly in respect to the interaction with ATP, may in part explain the high glycolysis of malignant cells.  相似文献   

5.
Abstract: We examined nitric oxide (NO)-induced cell death in NG108-15 cells using NO donors. Both sodium nitroprusside (SNP) and S -nitroso- N -acetylpenicillamine caused lactate dehydrogenase (LDH) leakage from NG108-15 cells. NO is known to increase the amount of radioisotopic labeled glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the presence of [32P]NAD and to inhibit the enzyme activity. To clarify the relationship between the NO-induced inhibition of GAPDH activity and cell death, we studied the effect of koningic acid (KA), a potent selective inhibitor of GAPDH. Both SNP and KA elicited LDH leakage, chromosomal condensation, and fragmentation of nuclei in NG108-15 cells. Gel electrophoretic analysis of cellular DNA extracted from SNP- and KA-treated cells revealed the internucleosomal DNA fragmentation typical of apoptosis in these cultures. The results suggested that in NG108-15 cells, (a) the inhibition of GAPDH activity results in apoptosis and (b) SNP-induced cell death is partly due to the NO-induced inhibition of GAPDH, perhaps by stimulating the binding of NAD to GAPDH.  相似文献   

6.
It has long been observed that many cancer cells exhibit increased aerobic glycolysis and rely more on this pathway to generate ATP and metabolic intermediates for cell proliferation. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key enzyme in glycolysis and has been known as a housekeeping molecule. In the present study, we found that GAPDH expression was significantly up-regulated in human colorectal carcinoma tissues compared to the adjacent normal tissues, and also increased in colon cancer cell lines compared to the non-tumor colon mucosa cells in culture. The expression of GAPDH was further elevated in the liver metastatic tissues compared to the original colon cancer tissue of the same patients, suggesting that high expression of GAPDH might play an important role in colon cancer development and metastasis. Importantly, we found that 3-bromopyruvate propyl ester (3-BrOP) preferentially inhibited GAPDH and exhibited potent activity in inducing colon cancer cell death by causing severe depletion of ATP. 3-BrOP at low concentrations (1–10 μM) inhibited GAPDH and a much higher concentration (300 μM) was required to inhibit hexokinase-2. The cytotoxic effect of 3-BrOP was associated with its inhibition of GAPDH, and colon cancer cells with loss of p53 were more sensitive to this compound. Our study suggests that GAPDH may be a potential target for colon cancer therapy.  相似文献   

7.
Depressed energy metabolism and oxidative stress are common features in many pathological situations in the brain, including stroke. In order to investigate astrocytic responses to such stress, we induced metabolic depression in cultured rat astrocytes. Iodoacetate (IA), an inhibitor of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used and resulted in a rapid inhibition of GAPDH activity. After 1h of GAPDH inhibition the ATP levels started to decrease and were completely abolished at 4h. In parallel, the activity of reactive oxygen species (ROS) was significantly increased, followed by extensive cell death involving flipping of phosphatidylserine and translocation of apoptosis-inducing factor, but not caspase-3 activation. When IA was combined with azide, a respiratory chain complex IV inhibitor, the ATP levels decreased immediately. Interestingly, with azide present, the ROS activity remained low and the astrocytes remained viable even at very low ATP levels. Addition of exogenous ROS-scavengers prevented the IA-induced ROS activity, the ATP levels were maintained and cell death was prevented. Similar protection could be obtained when astrocytes, prior to addition of IA, were incubated with substances known to activate the nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated endogenous antioxidant system. When IA was washed out, after a relatively moderate ATP depression, massive cell death occurred. This was efficiently prevented by addition of azide or ROS scavengers during the IA treatment or by pre-activation of the Nrf2 system. Our results demonstrate that astrocytes in culture can endure and recover from glycolytic inhibition if the ROS activity remained at a low level and suggest that oxidative stress can be an important component for astrocytic cell death following metabolic stress.  相似文献   

8.
Endothelial cell injury and death precede atherosclerosis development. Thus, it is important to understand the mechanisms that lead to these early changes in endothelial cells. Although members of the MAP kinase/ERK kinase (MEK) kinase 3 (MEKK3)-MEK5-ERK5 module play an essential role in underpinning endothelial cell survival, how they execute these actions remain poorly understood. Furthermore, there is poor understanding of death-inducing pathways in endothelial cells and it is also unclear whether there are direct interactions between the kinase module and death-inducing pathways. Using immunoprecipitation and liquid chromatography-electrospray ionisation tandem mass spectrometry approaches, we show in human umbilical vein endothelial cells that the MEKK3-MEK5-ERK5 ternary complex contains glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme that can trigger the death of certain cell-types. GAPDH binds directly to MEKK3. Interestingly, serum depletion, a trigger of endothelial cell death, results in a rapid loss of cytosolic MEKK3 and MEKK3-GAPDH interaction. MEKK3 rapidly reappears in the cytosol upon serum replenishment, accompanied by the restoration of MEKK3-GAPDH interaction. During serum starvation or exposure to cytotoxic concentrations of H2O2, GAPDH accumulates in the nucleus. Inhibition of the nuclear accumulation of GAPDH with R-(−)-deprenyl hydrochloride attenuates the degree of cell death. Serum replenishment of serum-starved cells reduces the level of nuclear GAPDH and prevents cell death. Cell-free assays show phosphorylation of GAPDH on four residues by MEKK3. These data not only strongly implicate nuclear GAPDH in causing endothelial cell death but also reveal a potential mechanism for MEKK3 to regulate GAPDH function and hence promote endothelial cell survival.  相似文献   

9.
10.
Yeast glyceraldehyde-3-phosphate dehydrogenase carboxymethylated at four active-site cysteine residues was incubated with a crude extract of baker's yeast. This resulted in a loss of the glyceraldehyde-3-phosphate dehydrogenase activity initially present in the extract. The extent of inactivation depended upon the ratio modified enzyme/enzyme present in the extract. Under appropriate conditions 63.1% inactivation of glyceraldehyde-3-phosphate dehydrogenase in crude extract could be achieved. The observed effect is explained in terms of hybridization between the carboxymethylated dimers of the purified enzyme and dimeric species of glyceraldehyde-3-phosphate dehydrogenase present in the crude extract, the inactivation being due to the influence of the half-of-the-sites reagent transmitted via the interdimeric contacts.  相似文献   

11.
Glyceraldehyde-3-phosphate dehydrogenase is a glycolytic enzyme that catalyses conversion of glyceraldehyde-3-phosphate to 1,3-diphosphoglycerate. ATP has been found to have an inhibitory effect on this enzyme. To establish the interaction between the enzyme and ATP, a fluorescence technique was used. Fluorescence quenching in the presence of ATP suggests cooperative binding of ATP to the enzyme (the Hill obtained coefficient equals 2.78). The interaction between glyceraldehyde-3-phosphate dehydrogenase and ATP may control not only glycolysis but other activities of this enzyme, such as binding to the cytoskeleton.  相似文献   

12.
The anticancer drug doxorubicin (DOX) is toxic to target cells, but also causes endothelial dysfunction and edema, secondary to oxidative stress in the vascular wall. Thus, the mechanism of action of this drug may involve chemotoxicity to both cancer cells and to the endothelium. Indeed, we found that the permeability of monolayers of bovine pulmonary artery endothelial cells (BPAEC) to albumin was increased by approximately 10-fold above control, following 24-h exposure to clinically relevant concentrations of DOX (up to 1 microM). DOX also caused >4-fold increases in lactate dehydrogenase leakage and large decreases in ATP and reduced glutathione (GSH) in BPAECs, which paralleled the increases in endothelial permeability. A large part of the ATP loss could be attributed to DOX-induced hydrogen peroxide production which inhibited key thiol-enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glucose-6-phosphate dehydrogenase (G6PDH). Depletion of reduced nicotinamide adenine dinucleotide phosphate (NADPH) appeared to be a major factor leading to DOX-induced GSH depletion. At low concentrations, the sulfhydryl reagent, iodoacetate (IA), inhibited GAPDH, caused a decrease in ATP and increased permeability, without inhibiting G6PDH or decreasing GSH. These results, coupled with those of previous work on a related quinone, menadione, suggest that depletion of either GSH or ATP may lead independently to endothelial dysfunction during chemotherapy, contributing to the cardiotoxicity and other systemic side-effects of the drug.  相似文献   

13.
14.
Treatment of cultured neonatal cardiomyocytes with ethacrynic acid (EA) induced a rapid depletion of glutathione (GSH) that preceded a gradual elevation of cytosolic Ca2+ (monitored by phosphorylase a activation), a loss of protein thiols, and a marked inactivation of the thiol-dependent enzyme glyceraldehyde-3-phosphate dehydrogenase (G3PD). A subsequent decline of mitochondrial transmembrane potential (delta psi) and ATP occurred prior to the onset of lipid peroxidation which closely paralleled a loss of cardiomyocyte viability. The antioxidant N,N'-diphenyl-p-phenylenediamine prevented lipid peroxidation and cell death but had no effect on elevated cytosolic Ca2+, delta psi loss, GSH depletion, or G3PD inactivation. Pretreatment with the iron chelator, deferoxamine, decreased both lipid peroxidation and cell death. EA-induced lipid peroxidation and cell damage were also diminished by preincubation with acetoxymethyl esters of the Ca2+ chelators Quin-2 and ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid, even though cytosolic Ca2+ remained elevated. The extent of GSH depletion was unaltered by either chelator; however, Quin-2 did protect G3PD from inactivation by EA. An inhibitor of the mitochondrial respiratory chain, antimycin A, decreased EA-induced lipid peroxidation and cell death but had no effect on thiol depletion or elevated cytosolic Ca2+. These data suggest that cardiomyocyte thiol status may be linked to intracellular Ca2+ homeostasis and that peroxidative damage originating in the mitochondria is a major event in the onset of cell death in this cardiomyocyte model of thiol depletion.  相似文献   

15.
Incubation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (GAPDH) with the antibiotic pentalenolactone (1) resulted in time-dependent, irreversible inhibition of GAPDH. The kinetics of inactivation were biphasic, exhibiting an initial rapid phase and a slower second phase. Pentalenolactone methyl ester (2) also irreversibly inactivated GADPH, albeit at a slower rate and with a higher KI. The substrate glyceraldehyde-3-phosphate (G-3-P) afforded protection against inactivation by 1, whereas the presence of NAD+ in the incubation mixture stimulated the inactivation by increasing the apparent affinity of the enzyme for the inhibitor. In steady-state kinetic experiments, 1 acted as a competitive inhibitor of GAPDH with respect to G-3-P but exhibited uncompetitive inhibition with respect to NAD+. Inactivation of NAD+-free apo-GAPDH by 1 showed simple pseudo-first-order kinetics. By titrating the free thiol residues of partially inactivated GAPDH, it was found that both pentalenolactone and pentalenolactone methyl ester react with all four Cys-SH residues of the tetrameric GAPDH.  相似文献   

16.
In MDCK epithelial cells, cell contact at confluency initiates a protracted process of morphogenesis during which several proteins known to bind the cytoskeleton become progressively associated with the detergent-resistant cell fraction and distributed to their characteristic polarized domains. Using extraction protocols that identify this tight cytoskeletal linkage, here we show a similar but slower, time-dependent enrichment in the detergent resistant fraction of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a highly abundant glycolytic enzyme that is traditionally considered soluble. Similar enrichment did not occur for two other glycolytic enzymes, phosphoglycerate mutase or lactate dehydrogenase. Insoluble GAPDH was not homogeneously distributed in the cytoplasm but rather displayed several discrete patterns that varied within and among MDCK cells. It also localized prominently to a few nuclei in the phenotypically heterogeneous cells of late confluency cultures. Disruptors of cytoskeletal filaments were relatively ineffective in the postconfluent epithelial monolayers, although use of disrupting agents implicated actin as the cytoplasmic filament that tethers insoluble GAPDH. Catalytic activity could be demonstrated in the insoluble fraction of GAPDH from postconfluent cultures, but only after release by mechanical disruption of insoluble extracts. Treatment of postconfluent cells with agents that deplete ATP diminished the fraction of cytoskeletally associated GAPDH, and levels of insoluble GAPDH were restored with ATP repletion, suggesting that ATP levels may regulate cytoskeletal linkage and thereby local enzyme activity. We conclude that the highly abundant and ubiquitous enzyme GAPDH becomes progressively enriched in detergent stable subcellular compartments during the process of epithelial morphogenesis. The process that produces GAPDH compartments is slow, suggesting that epithelial cells just at confluency, when they are typically analyzed, have not yet maximized the organizational state that can be attained in monolayer culture.  相似文献   

17.
The bound fractions of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and of fructose 1,6-diphosphate aldolase (ALD) were measured in intact Taenia coli. ALD was approximately 60% bound and GAPDH was approximately 41% bound. Bound ALD activity remaining in chemically demembranated Taenia coli was similar to that in intact tissue indicating a localization to the contractile apparatus. ALD was found to be specifically bound in the demembranated preparation. Chemical demembranation resulted in almost complete loss of all GAPDH activity indicating a localization of bound GAPDH to cellular membranes.  相似文献   

18.
Summary An albino seedling of Zea mays L. was investigated for its potential for CO2-assimilation. In the mesophyll the number, dimensions and fine structure of chloroplasts are drastically reduced but to a lesser extent in the bundle sheath. Chlorophyll concentration is zero and carotenoid concentration almost zero. Albinism also exerts a strong influence on the stroma of bundle sheath chloroplasts; ribulose-1.5-biphosphate carboxylase (EC 4.1.1.39) activity and glyceraldehyde-3-phosphate dehydrogenase (NADP) (EC 1.2.1.13) activity is not detectable. The C4-enzymes phosphoenolpyruvate carboxylase (EC 4.1.1.31) and malate dehydrogenase (decarboxylating) (EC 1.1.1.40) and the non-photosynthetic linked enzymes malate dehydrogenase (NAD) (EC 1.1.1.37), aspartate-2-oxoglutarate aminotransferase (EC 1.1.1.37), aspartate-2-oxoglutarate aminotransferase (EC 2.6.1.1.) and glyceraldehyde-3-phosphate dehydrogenase (NAD) (EC 1.2.1.1.) are present in the albino seedling with activities comparable to those in etiolated maize seedlings. The potential for CO2 fixation of the albino seedlings exceeds that of comparable dark seedlings considerably. The results are discussed with regard to enzyme localization of the C4 pathway of photosynthesis.Abbreviations Aspartate aminotransferase L-aspartate-2-oxoglutarate aminotransferase-EC 2.6.1.1. - GAPDH (NAD) glyceraldehyde-3-phosphate dehydrogenase (NAD dep.)-EC 1.2.1.12 - GAPDH (NADP) glyceraldehyde-3-phosphate dehydrogenase (NADP dep.)-EC 1.2.1.13 - malic enzyme malate dehydrogenase (NADP dep., decarboxylating)-EC 1.1.1.40 - MDH malate dehydrogenase (NAD dep.)-1.1.1.37 - PEP carboxylase phosphoenolpyruvate carboxylase-EC 4.1.1.31 - RuDP carboxylase ribulose-1.5-biphosphate carboxylase-EC 4.1.1.39  相似文献   

19.
As has been previously shown, Saccharomyces cerevisiae grown in 2% or 0.025% glucose uses this carbohydrate by the fermentative or oxidative pathways, respectively. Depending on the glucose concentration in the medium, the effect of the addition of H2O2 on the level of ATP and on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity differed. In the presence of 2% glucose, ATP and GAPDH decreased sharply during the first few minutes of treatment, whereas in the presence of 0.025% glucose, GAPDH activity decreased similarly, but the ATP level remained practically unchanged. The addition of 3 mM glutathione to the culture media prevented the depletion of ATP levels and GAPDH activity in the presence of H2O2. Catalase and superoxide dismutase activities did not vary significantly when yeast cells were grown either in 2% or in 0.025% glucose.  相似文献   

20.
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a pivotal glycolytic enzyme, and a signaling molecule which acts at the interface between stress factors and the cellular apoptotic machinery. Earlier, we found that knockdown of GAPDH in human carcinoma cell lines resulted in cell proliferation arrest and chemoresistance to S phase-specific cytotoxic agents. To elucidate the mechanism by which GAPDH depletion arrests cell proliferation, we examined the effect of GAPDH knockdown on human carcinoma cells A549. Our results show that GAPDH-depleted cells establish senescence phenotype, as revealed by proliferation arrest, changes in morphology, SA-β-galactosidase staining, and more than 2-fold up-regulation of senescence-associated genes DEC1 and GLB1. Accelerated senescence following GAPDH depletion results from compromised glycolysis and energy crisis leading to the sustained AMPK activation via phosphorylation of α subunit at Thr172. Our findings demonstrate that GAPDH depletion switches human tumor cells to senescent phenotype via AMPK network, in the absence of DNA damage. Rescue experiments using metabolic and genetic models confirmed that GAPDH has important regulatory functions linking the energy metabolism and the cell cycle networks. Induction of senescence in LKB1-deficient non-small cell lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号