首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Barnes EM 《Life sciences》2000,66(12):1063-1070
Some of the mechanisms that control the intracellular trafficking of GABA(A) receptors have recently been described. Following the synthesis of alpha, beta, and gamma subunits in the endoplasmic reticulum, ternary receptor complexes assemble slowly and are inefficiently inserted into surface membranes of heterologous cells. While beta3, beta4, and gamma2S subunits appear to contain polypeptide sequences that alone are sufficient for surface targeting, these sequences are neither conserved nor essential for surface expression of heteromeric GABA(A) receptors formed from alpha1beta or alpha1betagamma subunits. At the neuronal surface, native GABA(A) receptor clustering and synaptic targeting require a gamma2 subunit and the participation of gephyrin, a clustering protein for glycine receptors. A linker protein, such as the GABA(A) receptor associated protein (GABARAP), may be necessary for the formation of GABA(A) receptor aggregates containing gephyrin. A substantial fraction of surface receptors are sequestered by endocytosis, another process which apparently requires a GABA(A) receptor gamma2 subunit. In heterologous cells, constitutive endocytosis seems to predominate while, in cortical neurons, internalization is evoked when receptors are occupied by GABA(A) agonists. After constitutive endocytosis, receptors are relatively stable and can be rapidly recycled to the cell surface, a process that may be regulated by protein kinase C. On the other hand, a portion of the intracellular GABA(A) receptors derived from ligand-dependent endocytosis is apparently degraded. The clustering of GABA(A) receptors at synapses and at coated pits are two mechanisms that may compete for a pool of diffusable receptors, providing a model for plasticity at inhibitory synapses.  相似文献   

2.
GABA (gamma-aminobutyric acid) type A receptors (GABA(A)Rs) mediate most fast synaptic inhibition in the mammalian brain, controlling activity at both the network and the cellular levels. The diverse functions of GABA in the CNS are matched not just by the heterogeneity of GABA(A)Rs, but also by the complex trafficking mechanisms and protein-protein interactions that generate and maintain an appropriate receptor cell-surface localization. In this Review, we discuss recent progress in our understanding of the dynamic regulation of GABA(A)R composition, trafficking to and from the neuronal surface, and lateral movement of receptors between synaptic and extrasynaptic locations. Finally, we highlight a number of neurological disorders, including epilepsy and schizophrenia, in which alterations in GABA(A)R trafficking occur.  相似文献   

3.
4.
Hardie DG  Frenguelli BG 《Neuron》2007,53(2):159-162
The cellular energy-sensing kinase AMPK is known to be activated in neurons in response to metabolic insults, but the downstream consequences have been unclear. A study by Kuramoto and colleagues in this issue of Neuron favors the idea that AMPK activation is neuroprotective, and suggests a potential mechanism for this effect involving phosphorylation of the GABA(B) receptor.  相似文献   

5.
Several recent studies suggest that G protein-coupled receptors can assemble as heterodimers or hetero-oligomers with enhanced functional activity. However, inactivation of a fully functional receptor by heterodimerization has not been documented. Here we show that the somatostatin receptor (sst) subtypes sst(2A) and sst(3) exist as homodimers at the plasma membrane when expressed in human embryonic kidney 293 cells. Moreover, in coimmunoprecipitation studies using differentially epitope-tagged receptors, we provide direct evidence for heterodimerization of sst(2A) and sst(3). The sst(2A)-sst(3) heterodimer exhibited high affinity binding to somatostatin-14 and the sst(2)-selective ligand L-779,976 but not to the sst(3)-selective ligand L-796,778. Like the sst(2A) homodimer, the sst(2A)-sst(3) heterodimer stimulated guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding, inhibition of adenylyl cyclase, and activation of extracellular signal-regulated kinases after exposure to the sst(2)-selective ligand L-779,976. However, unlike the sst(3) homodimer, the sst(2A)-sst(3) heterodimer did not promote GTPgammaS binding, adenylyl cyclase inhibition, or extracellular signal-regulated kinase activation in the presence of the sst(3)-selective ligand L-796,778. Interestingly, during prolonged somatostatin-14 exposure, the sst(2A)-sst(3) heterodimer desensitized at a slower rate than the sst(2A) and sst(3) homodimers. Both sst(2A) and sst(3) homodimers underwent agonist-induced endocytosis in the presence of somatostatin-14. In contrast, the sst(2A)-sst(3) heterodimer separated at the plasma membrane, and only sst(2A) but not sst(3) underwent agonist-induced endocytosis after exposure to somatostatin-14. Together, heterodimerization of sst(2A) and sst(3) results in a new receptor with a pharmacological and functional profile resembling that of the sst(2A) receptor, however with a greater resistance to agonist-induced desensitization. Thus, inactivation of sst(3) receptor function by heterodimerization with sst(2A) or possibly other G protein-coupled receptors may explain some of the difficulties in detecting sst(3)-specific binding and signaling in mammalian tissues.  相似文献   

6.
The chemokine receptor CXCR7 binds CXCL11 and CXCL12 with high affinity, chemokines that were previously thought to bind exclusively to CXCR4 and CXCR3, respectively. Expression of CXCR7 has been associated with cardiac development as well as with tumor growth and progression. Despite having all the canonical features of G protein-coupled receptors (GPCRs), the signalling pathways following CXCR7 activation remain controversial, since unlike typical chemokine receptors, CXCR7 fails to activate Gα(i)-proteins. CXCR7 has recently been shown to interact with β-arrestins and such interaction has been suggested to be responsible for G protein-independent signals through ERK-1/2 phosphorylation. Signal transduction by CXCR7 is controlled at the membrane by the process of GPCR trafficking. In the present study we investigated the regulatory processes triggered by CXCR7 activation as well as the molecular interactions that participate in such processes. We show that, CXCR7 internalizes and recycles back to the cell surface after agonist exposure, and that internalization is not only β-arrestin-mediated but also dependent on the Serine/Threonine residues at the C-terminus of the receptor. Furthermore we describe, for the first time, the constitutive ubiquitination of CXCR7. Such ubiquitination is a key modification responsible for the correct trafficking of CXCR7 from and to the plasma membrane. Moreover, we found that CXCR7 is reversibly de-ubiquitinated upon treatment with CXCL12. Finally, we have also identified the Lysine residues at the C-terminus of CXCR7 to be essential for receptor cell surface delivery. Together these data demonstrate the differential regulation of CXCR7 compared to the related CXCR3 and CXCR4 receptors, and highlight the importance of understanding the molecular determinants responsible for this process.  相似文献   

7.
The classification of neurotransmitter receptors into distinct pharmacological subtypes is of major importance in drug discovery. This quest is particularly important for neurotransmitter systems that are widely distributed. Because gamma-aminobutyric acid (GABA) receptors, both GABA(A) and GABA(B), are found throughout the neuroaxis, they are likely involved in all central nervous system functions. Accordingly, the therapeutic promise of GABA(B) receptor manipulation depends upon the identification of subtypes than can be specifically targeted.  相似文献   

8.
9.
A radioiodinated probe, [125I]-CGP 71872, containing an azido group that can be photoactivated, was synthesized and used to characterize GABA(B) receptors. Photoaffinity labeling experiments using crude membranes prepared from rat brain revealed two predominant ligand binding species at approximately 130 and approximately 100 kDa believed to represent the long (GABA(B)R1a) and short (GABA(B)R1b) forms of the receptor. Indeed, these ligand binding proteins were immunoprecipitated using a GABA(B) receptor-specific antibody confirming the receptor specificity of the photoaffinity probe. Most convincingly, [125I]-CGP 71872 binding was competitively inhibited in a dose-dependent manner by cold CGP 71872, GABA, saclofen, (-)-baclofen, (+)-baclofen and (L)-glutamic acid with a rank order and stereospecificity characteristic of the GABA(B) receptor. Photoaffinity labeling experiments revealed that the recombinant GABA(B)R2 receptor does not bind [125I]-CGP 71872, providing surprising and direct evidence that CGP 71872 is a GABA(B)R1 selective antagonist. Photoaffinity labeling experiments using rat tissues showed that both GABA(B)R1a and GABA(B)R1b are co-expressed in the brain, spinal cord, stomach and testis, but only the short GABA(B)R1b receptor form was detected in kidney and liver whereas the long GABA(B)R1a form was selectively expressed in the adrenal gland, pituitary, spleen and prostate. We report herein the synthesis and biochemical characterization of the nanomolar affinity [125I]-CGP 71872 and CGP 71872 GABA(B)R1 ligands, and differential tissue expression of the long GABA(B)R1a and short GABA(B)R1b receptor forms in rat and dog.  相似文献   

10.
Structure-activity studies have led to a discovery of 3-(4-pyridyl)methyl ether derivative 9d that has 25- to 50-fold greater functional potency than R-baclofen at human and rodent GABA(B) receptors in vitro. Mouse hypothermia studies confirm that this compound crosses the blood-brain barrier and is approximately 50-fold more potent after systemic administration.  相似文献   

11.
Psychostimulants induce neuroadaptations in excitatory and fast inhibitory transmission in the ventral tegmental area (VTA). Mechanisms underlying drug-evoked synaptic plasticity of slow inhibitory transmission mediated by GABA(B) receptors and G protein-gated inwardly rectifying potassium (GIRK/Kir(3)) channels, however, are poorly understood. Here, we show that 1 day after methamphetamine (METH) or cocaine exposure both synaptically evoked and baclofen-activated GABA(B)R-GIRK currents were significantly depressed in VTA GABA neurons and remained depressed for 7 days. Presynaptic inhibition mediated by GABA(B)Rs on GABA terminals was also weakened. Quantitative immunoelectron microscopy revealed internalization of GABA(B1) and GIRK2, which occurred coincident with dephosphorylation of serine 783 (S783) in GABA(B2), a site implicated in regulating GABA(B)R surface expression. Inhibition of protein phosphatases recovered GABA(B)R-GIRK currents in VTA GABA neurons of METH-injected mice. This psychostimulant-evoked impairment in GABA(B)R signaling removes an intrinsic brake on GABA neuron spiking, which may augment GABA transmission in the mesocorticolimbic system.  相似文献   

12.
Agonist-promoted desensitization of the heterodimeric metabotropic GABA(B) receptor was investigated. Whereas no desensitization was observed in HEK293 cells heterologously expressing the receptor, GABA and the synthetic agonist baclofen induced a robust desensitization in cerebellar granule cells endogenously expressing the receptor. Taking advantage of this cell-specific desensitization phenotype, we identified GRK4 as the kinase involved in the neuronal desensitization. Transfection of small interference RNA directed against GRK4 significantly reduced GRK4 levels in cerebellar granule cells and strongly inhibited the agonist-promoted desensitization. Reciprocally, transfection of GRK4 in HEK293 cells restored agonist-promoted desensitization, confirming that this kinase is sufficient to support desensitization. Surprisingly, this desensitization occurred in the absence of ligand-induced receptor phosphorylation and could be promoted by GRK4 mutants deleted of their kinase domain. Taken together, these results suggest that GRK4 plays a central role in the agonist-promoted desensitization of GABA(B) receptor and that it does so through an atypical mechanism that challenges the generally accepted model linking the kinase activity of GRKs to their role in receptor desensitization.  相似文献   

13.
G protein-coupled receptors (GPCRs) have key roles in cell-cell communication. Recent data suggest that these receptors can form large complexes, a possibility expected to expand the complexity of this regulatory system. Among the brain GPCRs, the heterodimeric GABA(B) receptor is one of the most abundant, being distributed in most brain regions, on either pre- or post-synaptic elements. Here, using specific antibodies labelled with time-resolved FRET compatible fluorophores, we provide evidence that the heterodimeric GABA(B) receptor can form higher-ordered oligomers in the brain, as suggested by the close proximity of the GABA(B1) subunits. Destabilizing the oligomers using a competitor or a GABA(B1) mutant revealed different G protein coupling efficiencies depending on the oligomeric state of the receptor. By examining, in heterologous system, the G protein coupling properties of such GABA(B) receptor oligomers composed of a wild-type and a non-functional mutant heterodimer, we provide evidence for a negative functional cooperativity between the GABA(B) heterodimers.  相似文献   

14.
Inhibitory neurotransmission ensures normal brain function by counteracting and integrating excitatory activity.-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mammalian central nervous system,and mediates its effects via two classes of receptors:the GABA A and GABA B receptors.GABA A receptors are heteropentameric GABA-gated chloride channels and responsible for fast inhibitory neurotransmission.GABA B receptors are heterodimeric G protein coupled receptors (GPCR) that mediate slow and prolonged inhibitory transmission.The extent of inhibitory neurotransmission is determined by a variety of factors,such as the degree of transmitter release and changes in receptor activity by posttranslational modifications (e.g.,phosphorylation),as well as by the number of receptors present in the plasma membrane available for signal transduction.The level of GABA B receptors at the cell surface critically depends on the residence time at the cell surface and finally the rates of endocytosis and degradation.In this review we focus primarily on recent advances in the understanding of trafficking mechanisms that determine the expression level of GABA B receptors in the plasma membrane,and thereby signaling strength.  相似文献   

15.
In different native tissues and cells the receptor for the vasodepressor bradykinin, B2, forms dimers with the receptor for the vasopressor angiotensin II, AT1. Because AT1/B2 heterodimers may contribute to enhanced angiotensin II-stimulated signaling under pathophysiological conditions, we analyzed mechanisms of AT1/B2 heterodimerization. We found that efficient B2 receptor maturation was a prerequisite for heterodimerization because only the fully mature B2 receptor was capable to interact with AT1. To identify chaperones involved in B2 receptor maturation and heterodimerization we performed microarray gene expression profiling of human embryonic kidney (HEK293) cells. The expression of the chaperone calreticulin was up-regulated in cells with efficient B2 receptor maturation. Vice versa, upon down regulation of calreticulin expression by RNA interference, B2 receptor maturation and AT1/B2 receptor heterodimerization were significantly impaired. Concomitantly, the B2 receptor-mediated enhancement of AT1-stimulated signaling was reduced. Thus, calreticulin enhances B2 receptor maturation and heterodimerization with AT1.  相似文献   

16.
Priel A  Selak S  Lerma J  Stern-Bach Y 《Neuron》2006,52(6):1037-1046
A prominent feature of ionotropic glutamate receptors from the AMPA and kainate subtypes is their profound desensitization in response to glutamate-a process thought to protect the neuron from overexcitation. In AMPA receptors, it is well established that desensitization results from rearrangements of the interface formed between agonist-binding domains of adjacent subunits; however, it is unclear how this mechanism applies to kainate receptors. Here we show that stabilization of the binding domain dimer by the generation of intermolecular disulfide bonds apparently blocked desensitization of the kainate receptor GluR6. This result establishes a common desensitization mechanism in both AMPA and kainate receptors. Surprisingly, however, surface expression of these nondesensitizing mutants was drastically reduced and did not depend on channel activity. Therefore, in addition to its role at the synapse, we now propose an intracellular role for desensitization in controlling maturation and trafficking of glutamate receptors.  相似文献   

17.
Coyle et al. (2002), in this issue of Neuron, reveal the crystal structure for the GABA(A) receptor binding protein, GABARAP. They show GABARAP can switch from a monomer to an extended linear polymer form that may function to assemble microtubules during the intracellular trafficking or postsynaptic clustering of GABA(A) receptors.  相似文献   

18.
gamma-Aminobutyric acid (GABA) can mimic and potentiate the action of progesterone in initiating the acrosome reaction (AR) of mammalian sperm, indicating that sperm contain receptors for GABA. This contention was validated by identifying the receptor (R) subtype, GABA(A)R, in mammalian sperm. In the present study a second subtype, GABA(B)R, was identified in rat testis and sperm. Total RNAs of rat testis and sperm were prepared and used as template to synthesize the respective cDNAs by the RT-PCR method. Two splice variants of the cDNA coding GABA(B)R1 (GABA(B)R1a and GABA(B)R1c) and GABA(B)R2 were identified. Extracts of rat testis, spermatogenic cells and sperm contained two proteins with estimated molecular sizes of 130 and 100 kDa, corresponding to GABA(B)R1a and GABA(B)R1c/lb, respectively, determined by Western blot using polyclonal anti-GABA(B)R1 antibody. By an indirect immunofluorescence technique, GABA(B)R1 was located on the head of rat sperm. The present finding is the first direct demonstration that mammalian sperm contain GABA(B)R.  相似文献   

19.
There is evidence that GABA plays a major role in sleep regulation. GABA(A) receptor agonists and different compounds interacting with the GABA(A) receptor complex, such as barbiturates and benzodiazepines, can interfere with the sleep/wake cycle. On the other hand, there is very little information about the possible role of GABA(B) receptors in sleep modulation. The nucleus basalis of Meynert (NBM), a cholinergic area in the basal forebrain, plays a pivotal role in the modulation of sleep and wakefulness, and both GABA(A) and GABA(B) receptors have been described within the NBM. This study used unilateral infusions in the NBM to determine the effects of 3-hydroxy-5-aminomethylisoxazole hydrobromide (muscimol hydrobromide, a GABA(A) receptor subtype agonist) and beta-(aminomethyl)-4-chlorobenzenepropanoic acid (baclofen, a GABA(B) receptor subtype agonist) on sleep parameters in freely moving rats by means of polygraphic recordings. Muscimol (0.5 nmol) and baclofen (0.7 nmol) induced an increase in slow-wave sleep and an inhibition of wakefulness. Muscimol, but not baclofen, also caused a decrease in desynchronized sleep parameters. The results reported here indicate that 1) the NBM activation of both GABA(A) and GABA(B) receptors influences the sleep/wake cycle, and 2) GABA(A) but not GABA(B) receptors are important for desynchronized sleep modulation, suggesting that the two GABAergic receptors play different roles in sleep modulation.  相似文献   

20.
Allosteric modulation of GABA(B) receptor function in human frontal cortex   总被引:2,自引:0,他引:2  
In the present study, the effects of different allosteric modulators on the functional activity of gamma-aminobutyric acid (GABA)B receptors in membranes of post-mortem human frontal cortex were examined. Western blot analysis indicated that the tissue preparations expressed both GABA(B1) and GABA(B2) subunits of the GABA(B) receptor heterodimer. In [35S]-GTPgammaS binding assays, Ca2+ ion (1 mM) enhanced the potency of the agonists GABA and 3-aminopropylphosphinic acid (3-APA) and that of the antagonist CGP55845, but not that of the GABA(B) receptor agonist (-)-baclofen. CGP7930 (2,6-di-t-Bu-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol), a positive allosteric modulator of GABA(B) receptors, potentiated both GABA(B) receptor-mediated stimulation of [35S]-GTPgammaS binding and inhibition of forskolin (FSK)-stimulated adenylyl cyclase activity. Chelation of Ca2+ ion by EGTA reduced the CGP7930 enhancement of GABA potency in stimulating [35S]-GTPgammaS binding by two-fold. Fendiline, also reported to act as a positive allosteric modulator of GABA(B) receptors, failed to enhance GABA stimulation of [35S]-GTPgammaS binding but inhibited the potentiating effect of CGP7930. The inhibitory effect was mimicked by the phenothiazine antipsychotic trifluoperazine (TFP), but not by other compounds, such as verapamil or diphenydramine (DPN). These data demonstrate that the function of GABA(B) receptors of human frontal cortex is positively modulated by Ca2+ ion and CGP7930, which interact synergistically. Conversely, fendiline and trifluoperazine negatively affect the allosteric regulation by CGP7930.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号