首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 321 毫秒
1.
1.  Life-history theorists have long observed that fast growth and high reproduction tend to be associated with short life span, suggesting that greater investment in such traits may trade off with self-maintenance. The immune system plays an integral role in self-maintenance and has been proposed as a mediator of life-history trade-offs.
2.  Ecoimmunologists have predicted that fast-living organisms should rely more heavily on constitutive innate immunity than slow-living organisms, as constitutive innate defences are thought to be relatively inexpensive to develop and can provide a rapid, general response to pathogens.
3.  We present the first study to examine this hypothesis in an ectothermic vertebrate, by testing for differences in three aspects of constitutive innate immunity in replicate populations of two life-history ecotypes of the garter snake Thamnophis elegans , one fast-living and one slow-living.
4.  As predicted, free-ranging snakes from the fast-living ecotype had higher levels of all three measures of constitutive innate immunity than the slow-living ecotype. These differences in immunity were not explained by parasite loads measured. Furthermore, both ecotypes exhibited a positive relationship between innate immunity and body size/age, which we discuss in the context of ectotherm physiology and ecotype differences in developmental rates.  相似文献   

2.
1.?Ecoimmunological theory predicts a link between life-history and immune-defence strategies such that fast-living organisms should rely more on constitutive innate defences compared to slow-living organisms. An untested assumption of this hypothesis is that the variation in immune defence associated with variation in life history has a genetic basis. 2.?Replicate populations of two life-history ecotypes of the garter snake Thamnophis elegans provide an ideal system in which to test this assumption. Free-ranging snakes of the fast-living ecotype, which reside in lakeshore habitats, show higher levels of three measures of constitutive innate immunity than those of the slow-living ecotype, which inhabit meadows around the lake. Although this pattern is consistent with the ecoimmunological pace-of-life hypothesis, environmental differences between the lakeshore and meadow habitats could also explain the observed differences in immune defence. 3.?We performed a common-environment experiment to distinguish between these alternatives. Snakes born and raised in common-environment conditions reflected the immune phenotype of their native habitats when sampled at 4 months of age (i.e. fast-living lakeshore snakes showed higher levels of natural antibodies, complement activity and bactericidal competence than slow-living meadow snakes), but no longer showed differences when 19 months old. 4.?This suggests that the differences in innate immunity observed between the two ecotypes have an important - and likely age-specific - environmental influence, with these immune components showing developmental plasticity. A genetic effect in early life may also be present, but further research is needed to confirm this possibility and therefore provide a more definitive test of the ecoimmunological pace-of-life hypothesis in this system.  相似文献   

3.
Immune defenses have been suggested to play an important rolein mediating life history trade-offs. Detecting and understandingsuch trade-offs, however, is complicated by the complexity ofthe immune system. The measurement of multiple immune indicesin studies of "eco-immunology" has only recently become morecommon, but has great potential for furthering an understandingof the ecological and evolutionary forces driving immunologicalvariation. Building on previous proposals, I create a frameworkintegrating immunological and life history axes that can beused to formulate predictions and interpret variation in multipletypes of immune defense at both the individual and species levelsin vertebrates. In particular, this framework predicts that"fast-living" species (those with high reproductive and lowsurvival rates) should rely more heavily on nonspecific andinflammatory immune defenses, while "slow-living" species shouldexhibit stronger specific and especially antibody-mediated immunity.At the level of individuals within species, nonspecific andinflammatory responses should be downregulated, and specificdefenses upregulated (1) in individuals experiencing the greatestdemands on their resources (for example, undertaking large reproductiveefforts); (2) in the sex investing more in a particular activity(for example, females during reproduction); and (3) during themost demanding periods of the year (for example, the breedingseason). A review of the literature reveals that incorporatingmultiple facets of the immune system into a model of the relationshipbetween immune defense and life histories brings disparate questionsand systems into a common context, and helps explain empiricalresults that are sometimes counterintuitive.  相似文献   

4.
Immune defenses have been shown to be heavily involved in the evolution of physiological trade-offs. In this study, we compared the internal defense systems in two subspecies of the land snail Cornu aspersum that exhibit contrasting life-history strategies. The "fast-living" Cornu aspersum subsp. aspersa is widespread throughout the world, especially in ecosystems disturbed by man, whereas natural populations of the giant Cornu aspersum subsp. maxima, characterized by a longer life span, are present only in north Africa. Snails were experimentally challenged with Escherichia coli; the measurements used to assess their internal defense for cell- and humoral-mediated immune responses were bacterial clearance, hemocyte density, reactive oxygen species (ROS) production, and plasma antibacterial activity. Both subspecies showed a similar ability to clear bacteria from their hemolymph; however, they varied in the robustness of different individual immune components. Cornu aspersum aspersa had higher ROS activity than did C. a. maxima and lower plasma bactericidal activity. These results suggest that ecological factors can sculpt the immune response. One interpretation is that shorter life span selects for immune defenses such as ROS that, although effective, can cause long-term damage. Such different immune patterns obviously entail various costs involved in the strong intraspecific variation of life-history trade-offs we previously observed. We also have to consider that such variation might be related to intraspecific differences in the relative strength of resistance and tolerance mechanisms.  相似文献   

5.
Many vertebrates show seasonality in immune defenses, perhaps because of trade-offs with other physiological processes. Trade-offs between reproduction and immune function have been well studied, but how other life cycle events such as molt affect immune function remains unclear. Here, we hypothesize that one possible explanation is that accumulative dissociated processes (e.g., resource deficits generated over the long term by physiological processes) can have delayed effects on immune activity. To test this hypothesis, we compared cutaneous immune responses in groups of captive female house sparrows (Passer domesticus) photoperiodically induced into six different life cycle stages. We predicted that if delayed trade-offs occur, immune activity would be reduced after a mature life state was reached (e.g., postmolt) and not just compromised when other tissues were actively growing (instantaneous trade-off). We found evidence for both types of trade-offs: immune responses were weakest in sparrows that had just completed postnuptial molt, but they were also weak in birds growing reproductive tissues or feathers. Birds in mature reproductive states or light molt had strong immune responses comparable with birds in a nonbreeding/nonmolting state. Altogether, our results indicate that immune activity in female house sparrows can be influenced by both instantaneous and delayed trade-offs.  相似文献   

6.
Many introduced animals harbor fewer parasites than native ones. This “enemy release” can select for individuals that bias resources away from parasite resistance traits, including immune functions, and towards traits that enhance success in new areas. One vertebrate example that supports this hypothesis involves house sparrows (Passer domesticus) and Eurasian tree sparrows (Passer montanus) introduced to St. Louis, MO, USA, over 150 years ago. Since ca. 1850, house sparrows have colonized most of North America whereas tree sparrows have expanded little from the area of introduction. The more successful house sparrows now exhibit weaker inflammatory responses than the less successful tree sparrows, which supports the possibility that diminished investments in immune defense may have been conducive to the initial colonization by the more successful species. The goal of the present study was to determine whether damped inflammation generally facilitates invasion by comparing inflammatory markers between house sparrows invading Kenya and a native congener. House sparrows arrived in Mombasa, Kenya, about 50 years ago whereas rufous sparrows (Passer ruficinctus) are native but ecologically similar. We predicted that if inflammation mediated invasion success, Kenyan house sparrows would mount weaker inflammatory responses than the native species. Complete Freund’s adjuvant (CFA), a strong inflammatory stimulus, increased body mass in house sparrows, a result unprecedented in any other vertebrate. Haptoglobin (Hp), a multi-functional acute phase protein, was elevated by CFA in both species but rufous sparrows maintained more Hp than house sparrows irrespective of treatment. Lysozyme, a broadly effective antimicrobial enzyme, was reduced by CFA in both species, but not differentially so. Corticosterone was unaffected by CFA in either species, but elevated in both relative to free-living individuals.  相似文献   

7.
The terminal investment hypothesis predicts that individuals should invest more in their present reproduction if they are less likely to survive to future reproductive events. Infections, which reduce viability, may be used by individuals as a cue of a diminishing residual reproductive value and could therefore theoretically trigger an intensification of breeding effort. We tested this hypothesis in a natural population of house sparrows (Passer domesticus). We manipulated the immune system of breeding females by injecting them with a vaccine against the Paramyxo virus, the agent of Newcastle disease. Females were captured and treated immediately after completion of their first clutch either with the vaccine (NDV) or with phosphate buffered saline (PBS). The entire clutch was subsequently removed. We also screened Mhc class I genes of females to assess possible genotype-by-immune treatment interactions on reproductive investment. Our results indicate that vaccinated females were more likely to lay replacement clutches and that the difference in number of eggs between first and replacement clutches was greater for NDV females than for controls. In addition, chick size, both in terms of tarsus length and body mass, was affected by immune activation but in interaction with nestling age and female body mass, respectively. Mhc genotype-by-immune treatment interactions were never significant; however, allelic diversity was positively correlated with nestling survival. These results show that immune system activation is potentially used as a cue of reduced survival prospect and appears to induce a costly terminal investment behavior, and Mhc diversity might be under selection in a natural population of house sparrows.  相似文献   

8.
Immune system components differ in their functions and costs, and immune defense profiles are likely to vary among species with differing ecologies. We compared adaptive immune defenses in two closely related species that have contrasting inflammatory immune responses, the widespread and abundant house sparrow (Passer domesticus) and the less abundant tree sparrow (Passer montanus). We found that the house sparrow, which we have previously shown mounts weaker inflammatory responses, exhibits stronger adaptive immune defenses, including antibody responses, natural antibody titers, and specific T-cell memory, than the tree sparrow. Conversely, tree sparrows, which mount strong inflammatory responses, also mount stronger nonspecific inflammatory T-cell responses but weaker specific adaptive responses. Prevalence of avian malaria parasite infections, which are controlled by adaptive immune defenses, was higher in the geographically restricted tree sparrow than in the ubiquitous house sparrow. Together these data describe distinct immune defense profiles between two closely related species that differ greatly in numbers and distributions. We suggest that these immunological differences could affect fitness in ways that contribute to the contrasting abundances of the two species in North American and Western Europe.  相似文献   

9.
Growing feathers and mounting immune responses are both energetically costly for birds. According to the life history trade‐off hypothesis, it has been posited that the costs of feather growth lead to temporal isolation between molt and other expensive activities, reproduction for example. In contrast to life cycle events, the need to mount an immune response can occur at any time, including during feather growth. Thus, we hypothesized that mounting an immune response during feather growth may divert energy and resources from feather growth and impair feather renewal. To test this hypothesis, we clipped or plucked the same feathers of male house sparrows Passer domesticus biblicus. In the clipped group (n = 16), the feathers were absent with no regrowth; in the plucked group (n = 14), feathers were absent and regrowth was initiated. We also had an intact control group of 15 sparrows. We then initiated an inflammatory immune response by subcutaneous injection over the left breast muscle of the birds with a lipopolysaccharide (LPS) and quantified behavioral and physiological responses. We predicted that sparrows with plucked feathers would incur the highest energetic costs while mounting an immune response, and would increase their foraging effort to offset this cost. We found no difference in body mass and resting metabolic rates among sparrows subjected to the different feather and immune treatments. However, we did find that while sparrows with plucked feathers increased foraging efficiency following the immune challenge by paying fewer but longer visits to the food tray, allowing them to maintain food consumption. Foraging efficiency in sparrows with clipped feathers was reduced. We also found that quality of newly grown feathers after the immune challenge was poorer in the plucked group, suggesting that mounting an immune response competes with feather growth for resources.  相似文献   

10.
Life history strategies often shape biological interactions by specifying the parameters for possible encounters, such as the timing, frequency, or way of exposure to parasites. Consequentially, alterations in life‐history strategies are closely intertwined with such interaction processes. Understanding the connection between life‐history alterations and host–parasite interactions can therefore be important to unveil potential links between adaptation to environmental change and changes in interaction processes. Here, we studied how two different host–parasite interaction processes, oral and hemocoelic exposure to bacteria, affect various life histories of the Glanville fritillary butterfly Melitaea cinxia. We either fed or injected adult butterflies with the bacterium Micrococcus luteus and observed for differences in immune defenses, reproductive life histories, and longevity, compared to control exposures. Our results indicate differences in how female butterflies adapt to the two exposure types. Orally infected females showed a reduction in clutch size and an earlier onset of reproduction, whereas a reduction in egg weight was observed for hemocoelically exposed females. Both exposure types also led to shorter intervals between clutches and a reduced life span. These results indicate a relationship between host–parasite interactions and changes in life‐history strategies. This relationship could cast restrictions on the ability to adapt to new environments and consequentially influence the population dynamics of a species in changing environmental conditions.  相似文献   

11.
Life histories of animals tend to vary along a slow to fast continuum. Those with fast life histories have shorter life spans, faster development, and higher reproductive rates relative to animals with slower life histories. These differences in life histories have been linked to differences in investment in immunological defenses. Animals with faster life histories are predicted to invest relatively more in innate immune responses, which include rapidly‐deployed, non‐specific defenses against a broad spectrum of invaders. On the other hand, animals with slower life histories are predicted to invest relatively more in adaptive immune responses, which are more slowly‐deployed and are highly pathogen‐specific. These predictions have been confirmed in some taxa, but other studies have not found this association. We tested this prediction by measuring innate and adaptive immunity of white‐footed mice Peromyscus leucopus, chipmunks Tamias striatus, and gray squirrels Sciurus carolinensis, three species of rodents that inhabit deciduous forests in the northeastern US. These species exhibit a range of life histories, with mice having a relatively fast life history, squirrels a relatively slow one, and chipmunks an intermediate one. We found mice to have the greatest ‘bacterial killing capacity’, a common measure of innate immunity, and squirrels the lowest, consistent with the pace‐of‐life immune‐defense hypothesis. We also found squirrels to mount the most pronounced antibody response when challenged with lipopolysaccharide (LPS), an immunogenic component of bacteria, while mice had the lowest, again consistent with predictions based on their life histories. These results have implications beyond ecoimmunology because the probability that a host species will transmit an infection – its ‘reservoir competence’ – has been linked to its immune strategy. Understanding the relationship between immunology and reservoir competence is a critical frontier in the ecology of infectious diseases.  相似文献   

12.
This study assessed the hypothesis that plant life history traits determine the incidence of fungal biotrophic and necrotrophic pathogens in pioneer vs. shade‐tolerant tropical plant species. Considering that pioneer species mainly invest in induced defenses, we expected a negative relationship between the incidence of biotrophic and necrotrophic pathogens; in contrast, as shade‐tolerant species invest heavily in constitutive defenses, we expected to find no correlation between the incidence of biotrophic and necrotrophic pathogens. These ideas were evaluated by assessing standing levels of fungal damage in a set of pioneer and shade‐tolerant species from the Lacandona tropical rain forest (Mexico). The results showed that among pioneer plant species, leaves with biotrophic lesions were between 34 and 44 percent more abundant than those with necrotic lesions. In contrast, among shade‐tolerant species, the proportions of leaves with necrotic lesions were 17–23 percent higher than those of leaves with injuries caused by biotrophic pathogens. Our study suggests that tropical tree species might present different defense strategies depending on the life‐style of the pathogens that attack them, and the life history strategy of the attacked host plant species. Thus, the host constitutive and induced defenses, as well as the mechanisms used by different types of pathogens to circumvent those defenses maybe responsible for the patterns of attack observed in perennial tropical plants. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

13.
An association between metabolic rate and life history has been predicted but not demonstrated yet. To test this prediction, we measured the field metabolic rate (FMR) of a rodent, Cavia magna, which has an unusual combination of life-history traits. Cavies live aboveground, feed on energy-poor diets, and take relatively long to produce a few highly precocial young. This "slow-living" life history might predict a relatively low metabolic rate. We recorded FMR of 29 individuals of C. magna in Uruguay using doubly labeled water. This represents the first FMR record for a hystricomorph rodent. Besides body mass, season best explained variation in recorded FMR, with higher daily energy expenditures during winter. Surprisingly, the reproductive state of females did not affect FMR. Comparison with allometric prediction did not support the hypothesis that the slow-living life history of precocial grazing cavies translates into relatively low FMR. However, the clear effect of season on FMR as well as the fact that cavies appear able to compensate for the energy cost of reproduction might be associated with the nonburrowing precocial life history of this species.  相似文献   

14.
Seed beetles (Coleoptera: Bruchidae) lay their eggs on discrete resource patches, such that competition among larvae for food is an important component of their biology. Most seed beetles, including Stator limbatus, lay eggs singly on individual seeds and avoid superparasitism except when seeds are limiting. In contrast, S. beali, a closely related congener, lays eggs in clutches on a single seed. We tested the hypothesis that natural selection on larval life history characters favors small clutches (selection against large clutches) in S. limbatus, but that selection against large clutches is relaxed in S. beali because of the large size of its host's seeds. We manipulated clutch size and examined its relationship to offspring fitness. Clutch size affected the survivorship of S. limbatus larvae(r 2=0.14), but had no detectable effect on the survivorship of S. beali larvae (r 2=0.04). Also, clutch size had a large effect on development time and body weight of S. limbatus, but not of S. beali. We discuss the implications of this result for the evolution of clutch size in S. limbatus and S. beali.  相似文献   

15.
When introduced into new regions, invading organisms leave many native pathogens behind and also encounter evolutionarily novel disease threats. In the presence of predominantly novel pathogens that have not co-evolved to avoid inducing a strong host immune response, costly and potentially dangerous defenses such as the systemic inflammatory response could become more harmful than protective to the host. We therefore hypothesized that introduced populations exhibiting dampened inflammatory responses will tend to be more invasive. To provide initial data to assess this hypothesis, we measured metabolic, locomotor, and reproductive responses to inflammatory challenges in North American populations of the highly invasive house sparrow (Passer domesticus) and its less-invasive relative, the tree sparrow (Passer montanus). In the house sparrow, there was no effect of phytohemagglutinin (PHA) challenge on metabolic rate, and there were no detectable differences in locomotor activity between lipopolysaccharide (LPS)-injected birds and saline-injected controls. In contrast, tree sparrows injected with PHA had metabolic rates 20–25% lower than controls, and LPS injection resulted in a 35% drop in locomotor activity. In a common garden captive breeding experiment, there was no effect of killed-bacteria injections on reproduction in the house sparrow, while tree sparrows challenged with bacteria decreased egg production by 40% compared to saline-injected controls. These results provide some of the first data correlating variation in immune defenses with invasion success in introduced-vertebrate populations.  相似文献   

16.
Summary Variation in life history characteristics was examined in three closely related species of univoltine grasshopper, Praxibulus sp., Kosciuscola cognatus and K. usitatus, along three altitudinal transects in South East Australia. With increasing altitude females lay fewer eggs in total over the summer season but lay their eggs in larger clutches. This pattern of variation, which is not related to variation in egg size, is observed both between and within species. The relationship between clutch size and altitude is similar in all three species but quite distinct reproductive strategies are maintained between species even where different species are found together at the same altitude. It is proposed that both the length and predictability of the summer growing season could be impratant in determining the evolution of life history characteristics along the altitudinal gradient.  相似文献   

17.
Cell-mediated immunity is an important vertebrate defense against pathogens, but components of this response may vary in quality. Such variation could arise through the effects of ecology on optimal immunocompetence. We used injections of phytohaemagglutinin (PHA) to measure the factors influencing T-cell proliferation in nestling house sparrows (Passer domesticus). Bivariate analyses revealed positive associations with nestling mass and size, but no effect of ectoparasites. The response to PHA was, however, strongly affected by brood identity. A mixed model with brood identity as a random factor and nestling mass, size, number of ectoparasites, parental feeding rate, clutch size, brood size at hatching, and date uncovered significant positive correlations between PHA response and both nestling mass and the brood size at hatching. Because many of these variables are related hierarchically, we used path analysis to explore the relationships in more detail. We found that a nestling immune response was affected by several indirect paths. Brood size at hatch had both positive and negative paths, and date in the season had several indirect negative effects through its effect on brood size and nestling mass. The approach used and the results obtained offer some new ideas for incorporating immune responses into life history theory.  相似文献   

18.
Lee KA  Martin LB  Wikelski MC 《Oecologia》2005,145(2):244-251
When introduced into new regions, invading organisms leave many native pathogens behind and also encounter evolutionarily novel disease threats. In the presence of predominantly novel pathogens that have not co-evolved to avoid inducing a strong host immune response, costly and potentially dangerous defenses such as the systemic inflammatory response could become more harmful than protective to the host. We therefore hypothesized that introduced populations exhibiting dampened inflammatory responses will tend to be more invasive. To provide initial data to assess this hypothesis, we measured metabolic, locomotor, and reproductive responses to inflammatory challenges in North American populations of the highly invasive house sparrow (Passer domesticus) and its less-invasive relative, the tree sparrow (Passer montanus). In the house sparrow, there was no effect of phytohemagglutinin (PHA) challenge on metabolic rate, and there were no detectable differences in locomotor activity between lipopolysaccharide (LPS)-injected birds and saline-injected controls. In contrast, tree sparrows injected with PHA had metabolic rates 20-25% lower than controls, and LPS injection resulted in a 35% drop in locomotor activity. In a common garden captive breeding experiment, there was no effect of killed-bacteria injections on reproduction in the house sparrow, while tree sparrows challenged with bacteria decreased egg production by 40% compared to saline-injected controls. These results provide some of the first data correlating variation in immune defenses with invasion success in introduced-vertebrate populations.  相似文献   

19.
20.
Hosts diverge widely in how, and how well, they defend themselves against infection and immunopathology. Why are hosts so heterogeneous? Both epidemiology and life history are commonly hypothesized to influence host immune strategy, but the relationship between immune strategy and each factor has commonly been investigated in isolation. Here, we show that interactions between life history and epidemiology are crucial for determining optimal immune specificity and sensitivity. We propose a demographically-structured population dynamics model, in which we explore sensitivity and specificity of immune responses when epidemiological risks vary with age. We find that variation in life history traits associated with both reproduction and longevity alters optimal immune strategies–but the magnitude and sometimes even direction of these effects depends on how epidemiological risks vary across life. An especially compelling example that explains previously-puzzling empirical observations is that depending on whether infection risk declines or rises at reproductive maturity, later reproductive maturity can select for either greater or lower immune specificity, potentially illustrating why studies of lifespan and immune variation across taxa have been inconclusive. Thus, the sign of selection on the life history-immune specificity relationship can be reversed in different epidemiological contexts. Drawing on published life history data from a variety of chordate taxa, we generate testable predictions for this facet of the optimal immune strategy. Our results shed light on the causes of the heterogeneity found in immune defenses both within and among species and the ultimate variability of the relationship between life history and immune specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号