首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The viability of wild populations is frequently assessed by monitoring adult census sizes ( N c). This approach is particularly useful for pond-breeding amphibians, because assemblages during the breeding season are relatively easy to detect and count. However, it is the genetic effective population size ( N e) or surrogates such as effective breeding population size ( N b) that are of primary importance for long-term viability. Although N c estimates of one anuran amphibian ( Bufo bufo ) in Britain were much larger than those of another ( Rana temporaria ) at the same sites, the ratios of N b to N c were much smaller in B. bufo than in R. temporaria. These differences were sufficiently great as to reverse the effective size order at one site, such that N b for R. temporaria was larger than that for B. bufo. Differences in adult sex ratios at breeding sites probably contributed to lower N b values in B. bufo populations compared with those of R. temporaria . The relationship of N b to N c can therefore vary dramatically even between similar species, to the extent that just monitoring N c can give misleading impressions of relative effective breeding sizes and thus of population viability. It will be increasingly important to estimate N e or N b in wildlife populations for assessment of conservation priorities.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 365–372.  相似文献   

2.
Levels of allozyme variation and intrapopulation spatial genetic structure of the two terrestrial clonal orchids Liparis kumokiri , a self-compatible relatively common species, and L. makinoana , a self-incompatible rare species, were examined for 17 ( N  = 1875) and four ( N  = 425) populations, respectively, in South Korea. Populations of L. makinoana harboured high levels of genetic variation ( H e = 0.319) across 15 loci. In contrast, L. kumokiri exhibited a complete lack of allozyme variation ( H e = 0.000). Considering the lack of genetic variability, it is suggested that current populations of L. kumokiri in South Korea originated from a genetically depauperate ancestral population. For L. makinoana , a significant deficit of heterozygosity (mean F IS = 0.198) was found in population samples excluding clonal ramets, suggesting that pollen dispersal is localized, generating biparental inbreeding. The significant fine-scale genetic structuring (≤ 2 m) found in a previous study, in addition to the moderate levels of population differentiation ( F ST = 0.107) and the significant relationship between genetic and geographical distances ( r  = 0.680) found here, suggests a leptokurtic distribution of seed dispersal for L. makinoana . Although populations of L. makinoana harbour high levels of genetic variation, they are affected by a recent genetic bottleneck. This information suggests that genetic drift and limited gene flow could be the main evolutionary forces for speciation of a species-rich genus such as Liparis .  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 153 , 41–48.  相似文献   

3.
Estimates of the effective number of breeding adults were derived for three semi-isolated populations of the common toad Bufo bufo based on temporal (i.e. adult-progeny) variance in allele frequency for three highly polymorphic minisatellite loci. Estimates of spatial variance in allele frequency among populations and of age-specific measures of genetic variability are also described. Each population was characterized by a low effective adult breeding number ( N b) based on a large age-specific variance in mini-satellite allele frequency. Estimates of N b (range 21–46 for population means across three loci) were ≊ 55–230-fold lower than estimates of total adult census size. The implications of low effective breeding numbers for long-term maintenance of genetic variability and population viability are discussed relative to the species' reproductive ecology, current land-use practices, and present and historical habitat modification and loss. The utility of indirect measures of population parameters such as N b and N e based on time-series data of minisatellite allele frequencies is discussed relative to similar measures estimated from commonly used genetic markers such as protein allozymes.  相似文献   

4.
The temporal and spatial population genetic structure of ayu Plecoglossus altivelis (Salmoniformes: Plecoglossidae), an amphidromous fish, was examined using analysis of variation at six microsatellite DNA loci. Intracohort genetic diversities, as measured by the number of alleles and heterozygosity, were similar among six cohorts (2001–2006) within a population (Nezugaseki River), with the mean number of alleles per cohort ranging from 11·0 to 12·5 and the expected heterozygosity ranging from 0·74 to 0·77. Intrapopulational genetic diversities were also similar across the three studied populations along the 50 km coast, with the mean number of alleles and the expected heterozygosity ranging from 11·33 to 11·67 and from 0·75 to 0·76, respectively. The authors observed only one significant difference in pair-wise population differentiation ( F ST-value) between the cohorts within a population and among three populations. Estimates of the effective population size ( N e) based on maximum-likelihood method yielded small values (ranging from 94·8 to 135·5), whereas census population size ranged from c. 4800 to 24 000. As a result, the ratio of annual effective population sizes to census population size ( N e/ N ) ranged from 0·004 to 0·023. These estimates of N e/ N agree more closely with estimates for marine fishes than that of the larger estimates for freshwater fishes. The present study suggests that ayu which is highly fecund and shows low survival during the early life stages is also characterized by having low value of N e/ N , similar to marine species with a pelagic life cycle.  相似文献   

5.
Small, isolated populations may face extinction due to a combination of inbreeding depression and other threats. Effective population size ( N e) is one comprehensive measure that allows us to evaluate the genetic status of a population, and to make management decisions regarding genetic viability. We simulated loss of genetic variation and estimated N e for two small, isolated populations of Kirikuchi charr Salvelinus leucomaenis japonicus , the endangered, southernmost local populations of the genus Salvelinus in the world, using VORTEX, an individual-based stochastic PVA model. Approximately half of the genetic variation was lost over 200 years regardless of census population size and demographic parameters, and N e estimates were roughly 50 in each of the two populations, suggesting the possibility of inbreeding depression. The target population size of N e>500, by securing long-term viability, is several times that of the present size of each of the populations studied, and no local habitats maintaining such a target number are considered to exist. The results strongly indicate a need for recovering natural connections and potential gene flow among local populations. However, the impending threat to these populations from non-native charr widely distributed throughout the drainage has prevented the recovery of the connections. Given the small N e of the two populations, it would be necessary to retain gene flow artificially within or across local populations. This will be true of many other salmonid populations that have been isolated or fragmented recently.  相似文献   

6.
Allozyme diversity was evaluated in four closely-related taxa of the Delphinium series Fissa distributed throughout the Western Mediterranean area. All are considered threatened plants. Delphinium bolosii and Delphinium mansanetianum are narrowly endemic to the Eastern Iberian Peninsula, whereas Delphinium fissum ssp. sordidum is found in a few populations across the Peninsula. Delphinium fissum ssp. fissum is more widely distributed but often in small and isolated populations. In this group, Delphinium bolosii is dysploid (2 n  = 18) whereas the other taxa are diploid (2 n  = 16). A total of 12 populations were surveyed, including all known locations for D. bolosii , D. mansanetianum , and D. fissum ssp. sordidum . Eleven enzyme systems were assayed and 15 loci were resolved. Markedly depauperate values for genetic diversity were obtained for D. mansanetianum ( H e = 0.013) and D. fissum ssp. sordidum ( H e = 0.044). The estimates for D. fissum ssp. fissum ( H e = 0.071) were below the values expected for widespread species. Small population size and marginal distribution have probably contributed to the low variability observed in this group. By contrast, D. bolosii exhibited comparatively larger populations and greater genetic diversity ( H e = 0.138). We suggest that, apart from population size and local adaptation, genetic diversity during speciation may have been promoted by dysploidy through genomic recombination.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 773–784.  相似文献   

7.
Genetic stochasticity due to small population size contributes to population extinction, especially when population fragmentation disrupts gene flow. Estimates of effective population size ( N e) can therefore be informative about population persistence, but there is a need for an assessment of their consistency and informative relevance. Here we review the body of empirical estimates of N e for wild populations obtained with the temporal genetic method and published since Frankham's (1995 ) review. Theoretical considerations have identified important sources of bias for this analytical approach, and we use empirical data to investigate the extent of these biases. We find that particularly model selection and sampling require more attention in future studies.
We report a median unbiased N e estimate of 260 (among 83 studies) and find that this median estimate tends to be smaller for populations of conservation concern, which may therefore be more sensitive to genetic stochasticity. Furthermore, we report a median N e/ N ratio of 0.14, and find that this ratio may actually be higher for small populations, suggesting changes in biological interactions at low population abundances. We confirm the role of gene flow in countering genetic stochasticity by finding that N e correlates strongest with neutral genetic metrics when populations can be considered isolated. This underlines the importance of gene flow for the estimation of N e, and of population connectivity for conservation in general. Reductions in contemporary gene flow due to ongoing habitat fragmentation will likely increase the prevalence of genetic stochasticity, which should therefore remain a focal point in the conservation of biodiversity.  相似文献   

8.
Analyses have been made of allozyme variation of the narrow endemic species Seseli farrenyi Molero & J. Pujadas (Apiaceae), which has only three known populations in Catalonia with a total of around 2000 individuals. All three populations were sampled and subjected to starch gel electrophoresis. Nine enzymes were resolved and 14 loci were interpreted. We detected high values of polymorphism ( P = 83.3%, A = 3.0, H e = 0.297), far exceeding those expected for endemic species ( P = 26.3%, A = 1.39, H e = 0.063). Genetic diversity was greater within populations than among populations, and the value of gene flow was very high ( Nm = 5.85). Most loci showed deviations from Hardy– Weinberg equilibrium, possibly due to the presence of subpopulations. The main threats to this species are human activities (tourism, fires), while natural threats are minimal due to its high genetic diversity. Finally, we propose some conservation measures which include both in situ and ex situ strategies. © 2000 The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 138 , 305–314.  相似文献   

9.
The Amur tiger ( Panthera tigris altaica ) is a critically endangered felid that suffered a severe demographic contraction in the 1940s. In this study, we sampled 95 individuals collected throughout their native range to investigate questions relative to population genetic structure and demographic history. Additionally, we sampled targeted individuals from the North American ex situ population to assess the genetic representation found in captivity. Population genetic and Bayesian structure analyses clearly identified two populations separated by a development corridor in Russia. Despite their well-documented 20th century decline, we failed to find evidence of a recent population bottleneck, although genetic signatures of a historical contraction were detected. This disparity in signal may be due to several reasons, including historical paucity in population genetic variation associated with postglacial colonization and potential gene flow from a now extirpated Chinese population. Despite conflicting signatures of a bottleneck, our estimates of effective population size ( N e = 27–35) and N e /N ratio (0.07–0.054) were substantially lower than the only other values reported for a wild tiger population. Lastly, the extent and distribution of genetic variation in captive and wild populations were similar, yet gene variants persisted ex situ that were lost in situ . Overall, our results indicate the need to secure ecological connectivity between the two Russian populations to minimize loss of genetic diversity and overall susceptibility to stochastic events, and support a previous study suggesting that the captive population may be a reservoir of gene variants lost in situ .  相似文献   

10.
Comparative analyses of the genetic differentiation in microsatellite markers ( F ST) and leaf morphology characters ( Q ST) of Amphicarpaea edgeworthii Benth. were conducted to gain insight into the roles of random processes and natural selection in the population divergence. Simple sequence repeat analyses on 498 individuals of 19 natural populations demonstrate that a significant genetic differentiation occurs among populations (mean F ST = 0.578), and A. edgeworthii is a highly self-fertilized species (mean selfing rate s  = 0.989). The distribution pattern of genetic diversity in this species shows that central populations possess high genetic diversity (e.g. population WL with H E = 0.673 and population JG with H E = 0.663), whereas peripheral ones have a low H E as in population JD (0.011). The morphological divergence of leaf shape was estimated by the elliptical Fourier analysis on the data from 11 natural and four common garden populations. Leaf morphology analyses indicate the morphological divergence does not show strong correlation with the genetic differentiation ( R  = 0.260, P  = 0.069). By comparing the 95% confidence interval of Q ST with that of F ST, Q ST values for five out of 12 quantitative traits are significantly higher than the average F ST value over eight microsatellite loci. The comparison of F ST and Q ST suggests that two kinds of traits can be driven by different evolutionary forces, and the population divergence in leaf morphology is shaped by local selections.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 505–516.  相似文献   

11.
High genetic variability in Neotropical myophilous orchids   总被引:1,自引:0,他引:1  
The patterns of genetic variability of seven Bulbophyllum Thouars species were investigated using 14 enzymatic loci, and compared with those of other Neotropical myophilous orchid species. The genetic variability estimated was very high ( H e = 0.39–0.61, P  = 86–100%, A  = 2.6–3.8), despite the small population sizes, which may be explained by the vegetative reproduction. Of the three species with multiple populations, only B. epiphytum showed moderate values of genetic structuring. Environmental characteristics and seed dispersal mechanisms are important in understanding the differences in the population structure observed. Almost all pairs of species showed low genetic similarity, indicating a long period of divergence. Our results suggest that B. adiamantinum and B. insectiferum , species currently classified in different sections of the genus, are more closely related than previously thought.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 153 , 33–40.  相似文献   

12.
Historic angling records suggest the occurrence of a drastic decline in the River Eo (Spain) Atlantic salmon population size during the past two decades, as a result of overexploitation and habitat deterioration. In recent years, the population has been apparently recovering, and the present study is aimed to report information on the level of genetic diversity and the effective size of the current population as these may have immediate consequences for its conservation. Eighty-six salmon from two temporal groups (1998–1999 and 2004–2006), representing three generations, were genotyped using a panel of eight microsatellites. Inspite of the recent decline in census numbers and the detection of the signs of a population bottleneck, the population exhibits a high level of genetic diversity, similar to that from other populations, and almost unchanged during the period of study [average allelic richness ( A ) = 14·0 and 13·9, and average heterozygosity ( H e) = 0·843 and 0·851 in 1998–1999 and 2004–2006, respectively]. The effective population size ( N e) estimated by two different temporal methods showed a consistent value around 80 salmon, whereas the estimates from the linkage disequilibrium (LD) method provided a value around 165 individuals for either sample. The recent growing number of salmon, as indicated by fisheries records, the relatively large estimates of the ratio N e/ N (with range 0·23–0·44 for the temporal estimates and 0·31–0·59 for the LD estimates) and the high levels of diversity found suggest that the population has not been greatly affected by the historical census declines and can be expected to recover in the future.  相似文献   

13.
We investigated allozyme variation in 34 populations of the perennial herb Silene nutans from Sweden and northern Finland, areas that were ice-covered during the last (Weichselian) glaciation. The present geographical structure of genetic variation in S. nutans in Sweden and northern Finland appears to have been mainly shaped by ancient historical processes. Patterns of variation in allele frequencies suggest two major postglacial immigration routes into Sweden, with populations entering the area from both the south and the east and forming a contact zone with admixed populations in central Sweden. While estimates of within-population genetic diversity and allelic richness are significantly correlated with present population size and geographical position (latitude), population size is not correlated with latitude. Low genetic diversity in the northern populations is more likely to have resulted from ancient stochastic events during the process of immigration than from recent population fragmentation. F IS values are high and increase with latitude. Evidence of recent bottlenecks was detected in several southern Swedish populations: these can be interpreted in terms of population fragmentation as a result of anthropogenic disturbance. Soil pH is uncorrelated with population size and position.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 81 , 357–371.  相似文献   

14.
Levels of allozyme variation, population genetic structure, and fine-scale genetic structure (FSGS) of the rare, both sexually and clonally reproducing terrestrial orchid Epipactis thunbergii were examined for eight ( N  = 734) populations in a 20 × 20-km area in South Korea. Twenty-three putative allozyme loci resolved from 15 enzyme systems were used. Extremely low levels of allozyme variation were found within populations: the mean frequency of polymorphic loci was 3.8% [isocitrate dehydrogenase ( Idh-2 ) with two alleles was polymorphic across populations], the mean number of alleles per locus was 1.04, and the mean expected heterozygosity was 0.013. The overall fixation index was not significantly different from zero ( F IS = 0.069), although the species is self-compatible. However, a significantly high degree of population differentiation was found between populations at Idh-2 ( F ST = 0.388) in the studied area. Furthermore, spatial autocorrelation analyses revealed a significant FSGS (up to 3 m) within populations. These observations suggest that the main explanatory factors for the extremely low levels of genetic diversity and the shaping of the population genetic structure of E. thunbergii are genetic drift as a result of a small effective population size, a restricted gene flow, and the isolation of populations. Considering the current genetic structure of E. thunbergii , three guidelines are suggested for the development of conservation strategies for the species in South Korea: (1) protection of habitats of standing populations; (2) prohibition by law of any collection of E. thunbergii ; and (3) protection of nearby pollinator populations, given the fact that fruit set in natural habitats is very low.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 155 , 161–169.  相似文献   

15.
Over three consecutive years, we surveyed the temporal variability in genetic structure of sardine populations in the Bay of Biscay and effective population size. Based on individual age, the genetic structure of year classes of the fishes was also surveyed, showing that populations of sardines have weak but significant genetic differences between sampling years and between year classes. We used two different methods to assess effective population size. The methods resulted in different values but a similar range, indicating a low effective population for Sardina pilchardus . Effective population size decreased over the 3 years, probably resulting from an abundance of fish in the Bay. Based on these results, we conclude that temporal variability in the genetic structure of the sardine population and effective size are likely related to environmental conditions in the Bay. Finally, we propose to use effective population size to estimate biomass of sardines in the Bay.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 591–602.  相似文献   

16.
Allozymic and morphometric studies were carried out on ten populations of Syngonanthus mucugensis (Eriocaulaceae), a species from north-eastern Brazil threatened by extinction. Genetic and morphological variability was low or moderately low in all populations, being lower in populations from Rio de Contas/Catolés ( P L = 14.3–21.4, A  = 1.1–1.2, H e = 0.026–0.059, D2M = 26.893–33.157) than in those from Mucugê ( P L = 28.6–35.7, A  = 1.3–1.5, H e = 0.078–0.164, D2M = 28.999–45.077). A high coefficient of endogamy ( F is = 0.257) was found, which can be explained by the reproductive characteristics and distribution of the species. The values for genetic and morphological structuring ( F st = 0.512 and A MRPP = 0.175, respectively) were high as a result of the differentiation between populations from the two areas. The mean genetic identity between populations from the two areas (0.812) was much lower than between populations from the same area (Mucugê, 0.980; Rio de Contas/Catolés, 0.997). These results indicate that we are dealing with two distinct taxa and, as a result of the nature of the morphological differences found, a new subspecies is described for the populations of the region of Rio de Contas and Catolés, Syngonanthus mucugensis ssp. riocontensis . Such conclusions raise important implications for the conservation of Syngonanthus mucugensis , and will be used in the drawing up of management plans for its conservation.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 153 , 401–416.  相似文献   

17.
For plant populations, gene movement through pollen and seed dispersal governs the size of local genetic neighbourhoods and shapes the opportunities for natural selection and genetic drift. A critical question is how together these two processes influence the evolutionary dynamics of local populations. To assess the respective contributions of pollen and seed flow, we propose a novel indirect assessment of the separate male and female gametic contributions to total effective parental size ( N e), based on parental correlations estimated via kinship coefficients, that can be applied to data sets that include unambiguous genotypes for male and female gametic contributions. Using the endemic Californian valley oak ( Quercus lobata ) as our study species, we apply this method to a set of microsatellite genotypes for two distinct ecological sets of naturally recruiting seedlings with acorns attached. We found that the effective numbers of contributing male parents ( N ep) exceed effective numbers of female parents ( N em) for seedlings established beneath adult trees ( N ep = 8.1 and N em = 1.1), as well as for seedlings established away from adult trees ( N ep = 15.4 and N em = 2.7), illustrating that seed dispersal enhances pollen dispersal and increases the effective number of seed sources in open seedling patches. The resulting effective parental size of seedling populations translates into smaller effective numbers of parents for undispersed vs. dispersed seedlings ( N e = 3.6 and N e = 6.7, respectively). This study introduces a novel statistic method and provides important new evidence that, on a short-term temporal scale, seed dispersal shapes the local neighbourhood size of new recruits.  相似文献   

18.
The population genetic structure of the butterfly Melitaea didyma was studied along the northern distribution range border in Central Germany by means of allozyme electrophoresis. Individuals were sampled from a total of 21 habitat patches from four regions, and two provinces. Sampling was designed to estimate local vs. regional differentiation. High levels of variability were found, H e= 0.14–0.21. The mean expected sample heterozygosity from one region, Mosel, was significantly lower than from the Hammelburg region, H e= 0.17 and 0.19, respectively. Two hierarchical levels of genetic differentiation were found. Within regions individuals sampled from different patches behaved as belonging to one population with high levels of gene flow (Hammelburg F ST= 0.015, Mosel F ST= 0.044), though local isolation barriers did create a substructuring of these populations. The inbreeding coefficients, F IS, were constant over all sample levels, suggesting a similar distribution of habitat patches within regions. Between regions gene flow was limited. An isolation by distance analysis indicated that the hierarchical structure, at the provincial level, may be breaking down due to isolation of regional populations. A more general observation was that the sampling design may greatly have influenced the estimation of genetic differentiation. Depending on which samples were included, overall F ST estimates ranged from 0.059–0.090.  相似文献   

19.
The northern pike Esox lucius L. is a freshwater fish exhibiting pronounced population subdivision and low genetic variability. However, there is limited knowledge on phylogeographical patterns within the species, and it is not known whether the low genetic variability reflects primarily current low effective population sizes or historical bottlenecks. We analysed six microsatellite loci in ten populations from Europe and North America. Genetic variation was low, with the average number of alleles within populations ranging from 2.3 to 4.0 per locus. Genetic differentiation among populations was high (overall θST = 0.51; overall ρST = 0.50). Multidimensional scaling analysis of genetic distances between populations and spatial analysis of molecular variance suggested a single phylogeographical race within the sampled populations from northern Europe, whereas North American and southern European populations were highly distinct. A population from Ireland was monomorphic at all loci, presumably reflecting founder events associated with introduction of the species to the island in the sixteenth century. Bayesian analysis of demographic parameters showed differences in θ (a product of effective population size and mutation rate) among populations from large and small water bodies, but the relative differences in θ were smaller than expected, which could reflect population subdivision within the larger water bodies. Finally, the analyses showed drastic population declines on a time scale of several thousand years within European populations, which we ascribe to either glacial bottlenecks or postglacial founder events.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 91–101.  相似文献   

20.
Previous surveys of population structure in the Atlantic-Mediterranean anchovy Engraulis encrasicolus L. have reported heterogeneity in morphology, allozyme frequencies, and mitochondrial DNA haplotype frequencies at a regional scale. In particular, two stocks of anchovy have been detected in the Adriatic Sea. In this paper, the available data is reviewed with the aim to relate genetic variation to geography at the widest possible geographical scale, for investigating the evolutionary mechanisms underlying stock structure in anchovy. Correspondence analysis of allozyme frequencies (24 samples, three polymorphic loci) compiled from the literature indicates three distinct entities in the Mediterranean Sea. Open-sea or oceanic anchovy populations are genetically different from inshore-water populations within a region (Nei's ^ G ST = 0.035–0.067), while broadscale geographical variation is weak for each of these two habitat-specific forms (^ G ST = 0.005–0.006). Mitochondrial-DNA haplotype frequencies support the distinction between an inshore form and an oceanic form (^ G ST = 0.067–0.107), with virtually no genetic differences among oceanic populations across the Gulf of Biscay, the western Mediterranean and the Ionian Sea (^ G ST = −0.001). If natural selection on marker loci is unimportant, these results indicate the occurrence of two parapatric, genetically distinct, habitat-specific forms that are widely distributed throughout the Mediterranean Sea. Persistent allele and haplotype-frequency differences between these forms indicate reproductive isolation and the presence of an E. encrasicolus species complex in the Mediterranean. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society 75 : 261–269.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号