首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
C/EBPalpha regulation of the growth-arrest-associated gene gadd45.   总被引:1,自引:0,他引:1       下载免费PDF全文
CCAAT/enhancer-binding protein alpha (C/EBPalpha) is expressed in postmitotic, differentiated adipocytes and is required for adipose conversion of 3T3-L1 cells in culture. Temporal misexpression of C/EBPalpha in undifferentiated adipoblasts leads to mitotic growth arrest. We report here that growth arrest- and DNA damage-inducible gene 45 (gadd45) is preferentially expressed in differentiated 3T3-L1 adipocytes similar to phenotype-associated genes. Furthermore, C/EBPalpha transactivates a reporter plasmid containing 1.5 kb of the gadd45 promoter region. The proto-oncogene myc, which inhibits adipocyte differentiation, abrogates C/EBPalpha activation of gadd45. gadd45 is known to be a target of the tumor suppressor p53 in a G1 checkpoint activated by DNA damage. Immunoprecipitation of radiolabeled proteins with conformation-specific antibodies revealed that wild-type p53 is expressed throughout 3T3-L1 adipocyte development, including the postmitotic period characterized by the accumulation of gadd45 and C/EBPalpha. A stable 3T3-L1 subline was engineered to express a dominant negative p53, human p53(143ala). The p53(143ala) subline differentiated to adipocytes and showed appropriate developmental expression of gadd45. These findings suggest that postmitotic growth arrest is coupled to adipocyte differentiation via C/EBPalpha stimulation of growth arrest-associated and phenotype-associated genes.  相似文献   

6.
7.
8.
The GADD45 (growth arrest and DNA damage-inducible) family of genes is involved in the regulation of cell cycle progression and apoptosis. To study signaling pathways affecting GADD45beta expression and to examine systematically in vivo the GADD45beta expression in tissues following various toxic stresses, we created a transgenic mouse by fusing the GADD45beta promoter to firefly luciferase (Gadd45beta-luc). In vivo GADD45beta expression was assessed by measuring the luciferase activity in the Gadd45beta-luc transgenic mouse using a non-invasive imaging system (IVIS Imaging System, Xenogen Corporation). We found that a number of agents that induce oxidative stress, such as sodium arsenite, CCl4, lipopolysaccharide (LPS), or tumor necrosis factor-alpha, are able to induce luciferase expression throughout the entire animal. In liver, spleen, lung, intestine, kidney, and heart, we observed an induction of luciferase activity after LPS treatment, which correlates with an increase of GADD45beta mRNA in these tissues. Processes that induce DNA damage activate the NF-kappaB signaling pathway. Several inhibitors of the NF-kappaB signaling pathway, including dexamethasone, thalidomide, and a proteasome inhibitor, bortezomib, showed inhibitory effects on LPS-induced GADD45beta expression as indicated by a decrease of the luciferase activity. Northern blot analysis confirmed a broad inhibitory effect of bortezomib on LPS-induced GADD45beta mRNA expression in spleen, lung, and intestine. In liver of bortezomib-treated mice, we observed a reverse correlation between the luciferase activity and the GADD45beta mRNA level. We speculate that such a discrepancy could be due to severe liver toxicity caused by bortezomib and LPS co-treatment. MAPK inhibitors had transient and inconsistent effects on LPS-induced luciferase expression. Our data are consistent with the notion that NF-kappaB, but not the MAPK signaling pathways, is involved in the in vivo regulation of GADD45beta expression. Thus, NF-kappaB signaling involves induction of GADD45beta expression, which supports the proposed role of GADD45beta in protecting cells against DNA damaged under various stress conditions.  相似文献   

9.
Regulation of NF-kappaB signaling by decoy oligodeoxynucleotides   总被引:1,自引:0,他引:1  
  相似文献   

10.
11.
12.
NF-kappaB has been well documented to play a critical role in signaling cell stress reactions. The extracellular signal-regulated kinase (ERK) regulates cell proliferation and survival. GADD45beta is a primary cell cycle element responsive to NF-kappaB activation in anti-apoptotic responses. The present study provides evidence demonstrating that NK-kappaB, ERK and GADD45beta are co-activated by ionizing radiation (IR) in a pattern of mutually dependence to increase cell survival. Stress conditions generated in human breast cancer MCF-7 cells by the administration of a single exposure of 5 Gy IR resulted in the activation of ERK but not p38 or JNK, along with an enhancement of the NF-kappaB transactivation and GADD45beta expression. Overexpression of dominant negative Erk (DN-Erk) or pre-exposure to ERK inhibitor PD98059 inhibited NF-kappaB. Transfection of dominant negative mutant IkappaB that blocks NF-kappaB nuclear translocation, inhibited ERK activity and GADD45beta expression and increased cell radiosensitivity. Interaction of p65 and ERK was visualized in living MCF-7 cells by bimolecular fluorescence complementation analysis. Antisense inhibition of GADD45beta strikingly blocked IR-induced NF-kappaB and ERK but not p38 and JNK. Overall, these results demonstrate a possibility that NF-kappaB, ERK, and GADD45beta are able to coordinate in a loop-like signaling network to defend cells against the cytotoxicity induced by ionizing radiation.  相似文献   

13.
14.
To better understand the short and long-term effects of stress on the developing cerebral cortex, it is necessary to understand how early stress response genes protect or permanently alter cells. One family of highly conserved, stress response genes is the growth arrest and DNA damage-45 (Gadd45) genes. The expression of these genes is induced by a host of genotoxic, drug, and environmental stressors. Here we examined the impact of altering the expression of Gadd45alpha (Gadd45a), a member of the Gadd45 protein family that is expressed throughout the developing cortices of mice and humans. To manipulate levels of Gadd45a protein in developing mouse cortex, we electroporated cDNA plasmids encoding either Gadd45a or Gadd45a shRNA to either overexpress or knockdown Gadd45a levels in the developing cortices of mice, respectively. The effects of these manipulations were assessed by examining the fates and morphologies of the labeled neurons. Gadd45a overexpression both in vitro and in vivo significantly impaired the morphology of neurons, decreasing neurite complexity, inducing soma hypertrophy and increasing cell death. Knockdown of Gadd45a partially inhibited neuronal migration and reduced neurite complexity, an effect that was reversed in the presence of an shRNA-resistant Gadd45a. Finally, we found that shRNA against MEKK4, a direct target of Gadd45a, also stunted neurite outgrowth. Our findings suggest that the expression of Gadd45a in normal, developing brain is tightly regulated and that treatments or environmental stimuli that alter its expression could produce significant changes in neuronal circuitry development.  相似文献   

15.
The abnormal deposition of amyloid beta peptide (Abeta) is a hallmark of Alzheimer's disease (AD). Phospholipase C-delta1 (PLC-delta1) is also known to abnormally accumulate in the brains of AD patients, but no report has addressed the relationship between these two events. This study investigated the effect of Abeta42 on the PLC-delta1 expression in human neuroblastoma cell lines. The PLC-delta1 mRNA level was increased by treatment with Abeta42 in a RT-PCR analysis. In the reporter assay, Abeta42 was found to activate the PLC-delta1 promoter activity in a dose-dependent manner. A novel NF-kappaB binding site in the PLC-delta1 promoter appeared to be responsible for the Abeta42 activity. First, the dominant negative forms of the NF-kappaB activating molecules, dominant negative TGF-beta activated kinase 1 (dnTAK1) and dnNIK (dominant negative NF-kappaB-inducing kinase), abolished the Abeta42 activity in the reporter assay. Second, the Abeta42 augmented a factor binding on the NF-kappaB site in the electrophoretic mobility shift assay (EMSA), which was abolished by a molar excess of the unlabeled consensus NF-kappaB oligonucleotide. These results suggest that the PLC-delta1 promoter is under the control of NF-kappaB, which mediates the expression of PLC-delta due to the Abeta42 treatment.  相似文献   

16.
17.
18.
The facts that fibronectin (FN) mRNA is elevated in cells expressing human T cell leukemia virus type I (HTLV-I) Tax protein and that Tax is known to transactivate the cellular cAMP-response element (CRE) prompted us to examine whether Tax activates the FN promoter of which CRE is thought to play an important role. We showed that Tax transactivated the FN promoter in Jurkat cells. Deletion analyses showed that the response-element resides within the promoter region of -69 bp and that an NF-kappaB-binding site at -41 bp is involved in the Tax-activation of the FN promoter. Gel-shift assays showed that DNA-protein complexes binding to the NF-kappaB site, composed of NF-kappaB p50/p65, were induced on the NF-kappaB motif at -41 bp by Tax. Overexpression of NF-kappaB enhanced the Tax-activation of the FN promoter. Our study shows that the FN promoter is transactivated by Tax through the NF-kappaB pathway.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号