首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polluted water samples collected from the River Tigris in the vicinity of a raw sewage outfall were examined for the incidence of antibiotic resistance among coli-form bacteria on three occasions during 1983. Eighty percent or more of the coli-form bacteria were resistant to one or more antibiotics. At the same time, raw sewage samples were examined for the incidence of antibiotic-resistant bacteria, and Escherchia coli, Pseudomonas spp. and Staphylococcus spp. were selected for sensitivity testing. Collectively, more than 90% of the 480 strains of the three organisms were resistant to one or more antibiotics. The minimal inhibitory concentration (MIC) of ampicillin for twenty-nine strains including coliforms, E. coli, Klebsiella sp., Serratia sp., Ps. aeruginosa, Pseudomonas sp., Micrococcus sp., Staph. aureus, Streptococcus faecalis and Bacillus sp. from raw sewage and polluted River Tigris water was determined and that for Ps. aeruginosa was 250 μg/ml. The high incidence of antibiotic-resistant bacteria in natural waters could be related to the widespread use of antibiotics in this locality.  相似文献   

2.
Polluted water samples collected from the River Tigris in the vicinity of a raw sewage outfall were examined for the incidence of antibiotic resistance among coliform bacteria on three occasions during 1983. Eighty percent or more of the coliform bacteria were resistant to one or more antibiotics. At the same time, raw sewage samples were examined for the incidence of antibiotic-resistant bacteria, and Escherichia coli, Pseudomonas spp. and Staphylococcus spp. were selected for sensitivity testing. Collectively, more than 90% of the 480 strains of the three organisms were resistant to one or more antibiotics. The minimal inhibitory concentration (MIC) of ampicillin for twenty-nine strains including coliforms, E. coli, Klebsiella sp., Serratia sp., Ps. aeruginosa, Pseudomonas sp., Micrococcus sp., Staph. aureus, Streptococcus faecalis and Bacillus sp. from raw sewage and polluted River Tigris water was determined and that for Ps. aeruginosa was 250 micrograms/ml. The high incidence of antibiotic-resistant bacteria in natural waters could be related to the widespread use of antibiotics in this locality.  相似文献   

3.
The purpose of the present study was to investigate the antibacterial activity of seven ethanolic extracts and three aqueous extracts from various parts (leaves, stems and flowers) of A. aroma against 163 strains of antibiotic multi-resistant bacteria. The disc diffusion assay was performed to evaluate antibacterial activity of the A. aroma crude extracts, against several Gram-positive bacteria (E. faecalis, S. aureus, coagulase-negative stahylococci, S. pyogenes, S. agalactiae, S. aureus ATCC 29213, E. faecalis ATCC 29212) and Gram-negative bacteria (E. coli., K. pneumoniae, P. mirabilis, E. cloacae, S. marcescens, M morganii, A. baumannii, P. aeruginosa, S. maltophilia, E. coli ATCC 35218, P. aeruginosa ATCC 27853, E. coli ATCC 25922). All ethanolic extracts showed activity against gram-positive bacteria. Among all obtained extracts, only leaf and flower fluid extracts showed activity against Gram-negative bacteria. Based on this bioassay, leaf fluid extracts tended to be the most potent, followed by flower fluid extracts. Minimal inhibitory concentration (MIC) values of extracts and antibiotics were comparatively determined by agar and broth dilution methods. Both extracts were active against S. aureus, coagulase-negative stahylococci, E. faecalis and E. faecium and all tested Gram-negative bacteria with MIC values from 0.067 to 0.308 mg/ml. In this study the minimal bactericidal concentration (MBC) values were identical or twice as high than the corresponding MIC for leaf extracts and four or eight times higher than MIC values for flower extracts. This may indicate a bactericidal effect. Stored extracts have similar antibacterial activity as recently obtained extracts. The A. aroma extracts of leaves and flowers may be useful as antibacterial agents against Gram- negative and Gram-positive antibiotic multi-resistant microorganisms.  相似文献   

4.
This ether oxim derivative of erythromycin A is an easy to absorb oral antimicrobial somewhat less effective in vitro than erythromycin. At relatively low MIC's it is active against staphylococci, streptococci, pneumococci, branhnamella and chlamydiae, higher concentrations are needed against enterococci and some strains of H. influenzae. Roxithromycin is also reported to have a very good effect on campylobacters, many anaerobic bacteria, Toxoplasma gondii, Treponema pallidum, Mycoplasma pneumoniae and Legionella pneumophilla. Its half-life in the serum of healthy individuals ranges from 9 to 16 hours. Maximum serum concentrations at 2 oral doses of 150 mg a day are reached at 3 to 4 days and vary from 5.5 to 11.1 mg/l. The distribution of roxithromycin in body tissues is excellent. In a group of 57 patients treated for various infections of clear etiology the positive therapeutic effects resulting in the state of bacteriological negativity was reached in 86% of cases. Roxithromycin can be recommended as a drug of choice in mild or less severe cases of infection caused by agents sensitive to this antimicrobial. Its excellent tolerance makes it especially well suited for use in pediatric practice.  相似文献   

5.
On agar spread plates, N-octylethanolamine was biocidal at comparable minimum inhibitory concentration (MIC) values (3–4mm) against Pseudomonas aeruginosa (two strains), Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Candida tropicalis, and Acremonium sp. which had been grown on a number of different media. The inhibition was greater at higher pH values. In liquid culture, growth inhibition by 3mm N-octylethanolamine was accompanied by cell lysis. Both effects could be prevented by the presence of 1mm spermine or spermidine, but only in bacteria, and not at high pH values. These effects of the polyamines were shown to be non-specific, being shared by other polycations and Mg2+ ions. N-Octylethanolamine at concentrations above its MIC caused total inhibition of the oxidation of 1mm glucose by Ps. aeruginosa (CAS1 and PAO1), E. coli, or C. tropic an effect that was partially reversible by Mg2+ ions. At concentrations below the MIC, there was little inhibit ion of glucose oxidation but a potent inhibition of the extrusion of ethidium bromide from intact cells of E. coli, suggesting that at such concentrations N-octylethanolamine is uncoupling oxidative phosphorylation. The data presented confirm the view that the biocidal effects are due to action on the cytoplasmic membrane.  相似文献   

6.
Minimum inhibitory concentrations (MIC) were determined against 662 recent clinical isolates for eight cephalosporins representing first, second and third generation compounds. All four third-generation cephalosporins tested (cefoperaxone, cefotaxime, ceftazidime and moxalactam) were significantly more active against aerobic gram-negative bacteria than the older compounds (cephalothin, cefamandole, cefoxitin, and cefuroxime). Cefotaxime and moxalactam were most active against Enterobacteriaceae with extremely low MIC-values. Ceftazidime was definitely most active against Pseudomonas aeruginosa with more than 90% of strains inhibited at 4 micro g/ml. MIC-values for cefotaxime against Staphylococcus aureus were for all strains 1-2 micro g/ml, slightly higher for cefoperazone, while the effect of ceftazidime and moxalactam was more limited. All third generation cephalosporins demonstrated efficiency against Streptococcus pyogenes, cefotaxime being most active and moxalactam least active, but were essentially ineffective against Streptococcus faecalis. Moxalactam demonstrated higher activity against Bacteroides fragilis than other second and third generation cephalosporins including cefoxitin. Previous studies have demonstrated a very high activity of all third generation cephalosporins against Haemophilus influenzae and Neisseria gonorrhoeae, including beta-lactamase producing strains.  相似文献   

7.
Enhancement or induction of antimicrobial, biosurfactant, and quorum-sensing inhibition property in marine bacteria due to cross-species and cross-genera interactions was investigated. Four marine epibiotic bacteria (Bacillus sp. S3, B. pumilus S8, B. licheniformis D1, and Serratia marcescens V1) displaying antimicrobial activity against pathogenic or biofouling fungi (Candida albicans CA and Yarrowia lipolytica YL), and bacteria (Pseudomonas aeruginosa PA and Bacillus pumilus BP) were chosen for this study. The marine epibiotic bacteria when co-cultivated with the aforementioned fungi or bacteria showed induction or enhancement in antimicrobial activity, biosurfactant production, and quorum-sensing inhibition. Antifungal activity against Y. lipolytica YL was induced by co-cultivation of the pathogens or biofouling strains with the marine Bacillus sp. S3, B. pumilus S8, or B. licheniformis D1. Antibacterial activity against Ps. aeruginosa PA or B. pumilus BP was enhanced in most of the marine isolates after co-cultivation. Biosurfactant activity was significantly increased when cells of B. pumilus BP were co-cultivated with S. marcescens V1, B. pumilus S8, or B. licheniformis D1. Pigment reduction in the quorum-sensing inhibition indicator strain Chromobacterium violaceum 12472 was evident when the marine strain of Bacillus sp. S3 was grown in the presence of the inducer strain Ps. aeruginosa PA, suggesting quorum-sensing inhibition. The study has important ecological and biotechnological implications in terms of microbial competition in natural environments and enhancement of secondary metabolite production.  相似文献   

8.
Aims:  To prepare 1,5-anhydro- d -fructose (AF) derivatives, test their microbial inhibition spectrum, and to further examine the most effective AF derivative against Pseudomonas aeruginosa and malignant blood cell lines.
Methods and Results:  Microthecin and nine other AF derivatives were synthesized from AF. The 10 compounds were tested in vitro against Gram-positive (GP) and Gram-negative (GN) bacteria, yeasts and moulds using a well diffusion method and in a Bioscreen growth analyser. Of the test compounds, microthecin exhibited the most significant antibacterial activity at 100–2000 ppm against both GP and GN bacteria, including Ps. aeruginosa. Further tests with three malignant blood cell lines ( Mutu, Ramos, Raji ) and one normal cell line indicated that microthecin was a cell toxin, with a cell mortality >85% at 50 ppm. The other nine AF derivatives demonstrated low or no antimicrobial activity.
Conclusions:  Microthecin was active 100–2000 ppm against GP and GN bacteria including Ps. aeruginosa , but was inactive against yeasts and moulds. Microthecin was also a cytotoxin to some mammalian cell lines.
Significance and Impact of the Study:  Microthecin might have potential for development as a novel drug against Ps. aeruginosa and to target cancer cells. It might also be developed as a food processing aid to control bacterial growth.  相似文献   

9.
Previous studies showed that methylxanthines increased the antimicrobial activity of gentamicin against Staphylococcus aureus and Pseudomonas aeruginosa. In this study, the effect of non-selective phosphodiesterase (PDE) inhibitors (methylxanthines: aminophylline and caffeine) and partially selective PDE inhibitors, dipyridamole and sildenafil, was evaluated on the antimicrobial activity of gentamicin using checkerboard method. Aminophylline at concentrations of 0.5 and 1 mg/ml reduced the minimal inhibitory concentration (MIC) of gentamicin (2 μg/ml) 2 and 4 times against S. aureus, and at concentrations of 0.5 and 2 mg/ml reduced the MIC of gentamicin (4 μg/ml) 2 and 4 times, respectively, against P. aeruginosa. Caffeine at concentrations of 1 and 2 mg/ml reduced the MIC of gentamicin (2 μg/ml) 4 and 32 times against S. aureus, and at concentrations of 0.12 and 2 mg/ml reduced the MIC of gentamicin (4 μg/ml) 2 and 4 times, respectively, against P. aeruginosa. However, dipyridamole and sildenafil (32 μg/ml) did not show any effect on MIC of gentamicin against S. aureus and P. aeruginosa. These results suggest that methylxanthines could increase gentamicin effects against S. aureus and P. aeruginosa but this effect is not mediated by inhibition of PDE 5, 6, 8, 10 and 11.  相似文献   

10.
The hexane, ethyl acetate, dichloromethane, methanol extracts and spent media (extracellular substances) were tested in vitro for their antibacterial activity for which one Gram-positive bacterium (Staphylococcus aureus) and four Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, and Klebsiella pneumoniae) were used as test organisms. The methanol extract showed more potent activity than other organic extracts, spent medium of the culture exhibited little activity against E. coli only. No inhibitory effect was found against Klebsiella pneumoniae.The broth microdilution assay gave minimum inhibitory concentrations (MIC) values ranging from 1 to 512 μg/ml. The MIC of methanol extract against S. aureus and E. coli were 128 μg/ml and 256 μg/ml, respectively.  相似文献   

11.
Twelve extracts obtained from nine plants belonging to six different genera of Clusiaceae were analyzed against Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus and Enterococcus faecalis) bacteria using the microdilution broth assay. Tovomita aff. longifolia, T. brasiliensis, Clusia columnaris, Garcinia madruno, Haploclathra paniculata, and Caraipa grandifolia extracts showed significant results against the bacteria. The organic extract obtained from the leaves of T. aff. longifolia showed minimal inhibitory concentration (MIC) = 70 microg/ml and minimal bactericidal concentration (MBC) = 90 microg/ml against E. faecalis and the organic extract made with the stem of C. columnaris showed MIC = 180 microg/ml and MBC = 270 microg/ml against P. aeruginosa. None of the antibacterial extracts showed lethal activity against brine shrimp nauplii. On the other hand, both aqueous and organic extracts obtained from the aerial organs of Vismia guianensis that were cytotoxic to brine shrimp nauplii did not show a significant antibacterial activity in the assay.  相似文献   

12.
Cationic antimicrobial peptides are able to kill a broad variety of Gram-negative and Gram positive bacteria and thus are good candidates for a new generation of antibiotics to treat multidrug-resistant bacteria. Here we describe a high-throughput method to screen large numbers of peptides for improved antimicrobial activity. The method relies on peptide synthesis on a cellulose support and a Pseudomonas aeruginosa strain that constitutively expresses bacterial luciferase. A complete substitution library of 12-amino-acid peptides based on a linearized variant (RLARIVVIRVAR-NH(2)) of the bovine peptide bactenecin was screened and used to determine which substitutions at each position of the peptide chain improved activity. By combining the most favorable substitutions, we designed optimized 12-mer peptides showing broad spectrum activities with minimal inhibitory concentrations (MIC) as low as 0.5 microg/ml against Escherichia coli. Similarly, we generated an 8-mer substituted peptide that showed broad spectrum activity, with an MIC of 2 microg/ml, against E. coli and Staphylococcus aureus.  相似文献   

13.
The in vitro antimicrobial activity of iremycin (10-(alpha-L-rhodosaminyl)-gamma-rhodomycinone) was determined in comparison to that of doxorubicin, a 14-hydroxy-derivative of daunorubicin, which exhibited a strong antitumor activity and is useful in chemotherapy of human tumors. The MIC values determined by means of a standardized agar diffusion plate test indicated a lower antimicrobial activity of iremycin in vitro in comparison to that of doxorubicin. In contrast to doxorubicin, iremycin was highly active against Mycobacterium smegmatis, but five-fold less active than doxorubicin against Staphylococcus aureus, seven-fold less active against Bacillus subtilis, and twenty five-fold less active against Commamonas terrigena. Furthermore, iremycin was hundred-fold less active against a highly sensitive permeation mutant of Pseudomonas aeruginosa. No inducing activity on prophages in lysogenic E. coli cells was demonstrable for iremycin and no growth inhibition in the repair test was observable. In contrast, iremycin inhibited the multiplication of gamma-phages in the BIP test, but the MIC values of violamycin BI, doxorubicin and iremycin in this test system indicated that iremycin is two hundred fifty-fold less active than violamycin BI and ten-fold less active than doxorubicin. No serum binding was demonstrable for iremycin.  相似文献   

14.
Reducing bacterial resistance to antibiotics with ultrasound   总被引:4,自引:0,他引:4  
The effect of erythromycin on planktonic cultures of Psedomonas aeruginosa, with and without application of 70 kHz ultrasound, was studied. Ultrasound was applied at levels that had no inhibitory effect on cultures of Ps. aeruginosa. Ultrasound in combination with erythromycin reduced the viability of Ps. aeruginosa by 1-2 orders of magnitude compared with antibiotic alone, even at concentrations below the minimum inhibitory concentration (MIC). Electron-spin resonance studies suggest that ultrasound induces uptake of antibiotic by perturbing or stressing the membrane. This application of ultrasound may be useful for expanding the number of drugs available for treating localized infections by rendering bacteria susceptible to normally ineffective antibiotics.  相似文献   

15.
本研究探究了羟基酪醇对大肠杆菌、金黄色葡萄球菌、铜绿假单胞杆菌和枯草芽孢杆菌等四种供试菌的抑菌活性及抑菌稳定性。采用试管半倍稀释法确定MIC和MBC,并探讨羟基酪醇对供试菌的生长和细胞膜完整性的影响以及在不同介质下的抑菌稳定性。结果表明,羟基酪醇对大肠杆菌、金黄色葡萄球菌、铜绿假单胞杆菌和枯草芽孢杆菌的MIC分别为0.625、0.625、1.250、2.500 mg/mL,MBC分别为1.250、1.250、2.500、5.000 mg/mL。与对照组相比,四种供试菌核酸和可溶性蛋白泄漏显著,细胞膜的完整性被破坏。在不同NaCl浓度下,羟基酪醇对枯草芽孢杆菌的抑菌活性稳定;在1.0%和2.0%NaCl浓度下,羟基酪醇对大肠杆菌和铜绿假单胞杆菌的抑菌活性稳定;在2.0%NaCl介质下低浓度的羟基酪醇对金黄色葡萄球菌的抑菌活性稳定,在0.5%、1.5%和2.0%NaCl介质下高浓度的羟基酪醇对金黄色葡萄球菌的抑菌活性稳定。在蔗糖介质中,羟基酪醇对四种供试菌的抑菌活性均不稳定。因此,羟基酪醇可以作为一种新型的防腐剂。  相似文献   

16.
樟叶乙醇提取液的抑菌作用   总被引:9,自引:0,他引:9  
樟叶的乙醇提取物对金黄色葡萄球菌、大肠杆菌、枯草芽孢杆菌、汉逊氏酵母菌、青霉、毛霉有一定的抑菌作用。其最低抑菌浓度对三种细菌及酵母为 12 .5m g/ ml,对青霉、毛霉为 2 5m g/ m l  相似文献   

17.
Zhong Z  Xing R  Liu S  Wang L  Cai S  Li P 《Carbohydrate research》2008,343(3):566-570
Three different acyl thiourea derivatives of chitosan (CS) were synthesized and their structures were characterized by FT-IR spectroscopy and elemental analysis. The antimicrobial behaviors of CS and its derivatives against four species of bacteria (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Sarcina) and four crop-threatening pathogenic fungi (Alternaria solani, Fusarium oxysporum f. sp. vasinfectum, Colletotrichum gloeosporioides (Penz.) Saec, and Phyllisticta zingiberi) were investigated. The results indicated that the antimicrobial activities of the acyl thiourea derivatives are much better than that of the parent CS. The minimum value of MIC and MBC of the derivatives against E. coli was 15.62 and 62.49 microg/mL, respectively. All of the acyl thiourea derivatives had a significant inhibitory effect on the fungi in concentrations of 50-500 microg/mL; the maximum inhibitory index was 66.67%. The antifungal activities of the chloracetyl thiourea derivatives of CS are noticeably higher than the acetyl and benzoyl thiourea derivatives. The degree of grafting of the acyl thiourea group in the derivatives was related to antifungal activity; higher substitution resulted in stronger antifungal activity.  相似文献   

18.
Candida inconspicua is an emerging pathogen in immunocompromised patients possessing inherently decreased susceptibility to fluconazole. We determined the MICs and killing activity of fluconazole and amphotericin B against C. inconspicua clinical isolates as well as reference strain C. inconspicua ATCC 16783 for comparison. MICs were determined using the standard broth microdilution method. Killing rates were determined using time-kill methodology at 0.5-16 x MIC fluconazole and amphotericin B concentrations. Fluconazole and amphotericin B MIC values varied between 16-128 mg/l and 0.5-1 mg/l, respectively. In time kill-assays fluconazole showed fungistatic effect at 1-16 x MIC concentrations against all tested strains after 24 h-incubation, but became fungicidal after 48 h at 4-16 x MIC concentrations. The time necessary to achieve fungicidal endpoint at 1 mg/l amphotericin B concentration ranged from 2 to 24 h. Our in vitro results confirm the data that fluconazole is ineffective against C. inconspicua at the fluconazole serum concentration attainable in humans. Amphotericin B due to its rapid killing activity seems to be a good alternative for the treatment of infections caused by C. inconspicua.  相似文献   

19.
The major l-amino acid oxidase (LAAO, EC 1.4.3.2) of king cobra (Ophiophagus hannah) venom is known to be an unusual form of snake venom LAAO as it possesses unique structural features and unusual thermal stability. The antibacterial effects of king cobra venom LAAO were tested against several strains of clinical isolates including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli using broth microdilution assay. For comparison, the antibacterial effects of several antibiotics (cefotaxime, kanamycin, tetracycline, vancomycin and penicillin) were also examined using the same conditions. King cobra venom LAAO was very effective in inhibiting the two Gram-positive bacteria (S. aureus and S. epidermidis) tested, with minimum inhibitory concentration (MIC) of 0.78μg/mL (0.006μM) and 1.56μg/mL (0.012μM) against S. aureus and S. epidermidis, respectively. The MICs are comparable to the MICs of the antibiotics tested, on a weight basis. However, the LAAO was only moderately effective against three Gram-negative bacteria tested (P. aeruginosa, K. pneumoniae and E. coli), with MIC ranges from 25 to 50μg/mL (0.2-0.4μM). Catalase at the concentration of 1mg/mL abolished the antibacterial effect of LAAO, indicating that the antibacterial effect of the enzyme involves generation of hydrogen peroxide. Binding studies indicated that king cobra venom LAAO binds strongly to the Gram-positive S. aureus and S. epidermidis, but less strongly to the Gram-negative E. coli and P. aeruginosa, indicating that specific binding to bacteria is important for the potent antibacterial activity of the enzyme.  相似文献   

20.
Gentamicin is one of the most effective drugs for treatment of infections caused by Ps. aeruginosa. However, isolation of the strains resistant to the antibiotics was not infrequent. It was shown in the experiments with 40 cultures that the activity of gentamicin against Ps. aeruginosa increased approximately 20 times when it was used in combination with ethonium, a derivative of bis-quaternary ammonium compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号