首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Characterization of orexin A immunoreactivity in the rat area postrema   总被引:1,自引:0,他引:1  
The distribution of orexin A immunoreactivity and the synaptic relationships of orexin A-positive neurons in the rat area postrema were studied using both light and electron microscopy techniques. At the light microscope level, numerous orexin A-like immunoreactive fibers were found within the area postrema. Using electron microscopy, immunoreactivity within fibers was confined primarily to the axon terminals, most of which contained dense-cored vesicles. Both axo-somatic and axo-dendritic synapses made by orexin A-like immunoreactive axon terminals were found, with these synapses being both symmetric and asymmetric in form. Orexin A-like immunoreactive axon terminals could be found presynaptic to two different immunonegative profiles including the perikarya and dendrites. Occasionally, some orexin A-like immunoreactive profiles, most likely to be dendrites, could be seen receiving synaptic inputs from immunonegative or immunopositive axon terminals. The present results suggest that the physiological function of orexin A in the area postrema depends on synaptic relationships with other immunopositive and immunonegative neurons, with the action of orexin A mediated via a self-modulation feedback mechanism.  相似文献   

2.
Synapses between neurons with corticotropin-releasing-factor-(CRF)-like immunoreactivities and other immunonegative neurons in the hypothalamus of colchicine-treated rats, especially in the paraventricular nucleus (PVN) and the supraoptic nucleus (SON) were observed by immunocytochemistry using CRF antiserum. The immunoreactive nerve cell bodies and fibers were numerous in both the PVN and the SON. The CRF-containing neurons had synaptic contacts with immunonegative axon terminals containing a large number of clear synaptic vesicles alone or combined with a few dense-cored vesicles. We also found CRF-like immunoreactive axon terminals making synaptic contacts with other immunonegative neuronal cell bodies and fibers. And since some postsynaptic immunonegative neurons contained many large neurosecretory granules, they are considered to be magnocellular neurosecretory cells. These findings suggest that CRF functions as a neurotransmitter and/or modulator in addition to its function as a hormone.  相似文献   

3.
Summary Pre-embedding immunocytochemistry was performed on vibratome sections of the hypothalamus of lactating rats using antiserum directed against oxytocin. Electron microscopy revealed that numerous immunopositive somata and dendrites in the supraoptic nucleus were in direct apposition, without glial interposition; a number of them were also bridged by double synapses. The observations support the contention that the ultrastructural reorganisation of the nucleus apparent at lactation affects the magnocellular neurones secreting oxytocin.  相似文献   

4.
Following a demonstration of Golgi-impregnated neurons and their terminal axon arborization in the optic tectum, the neurons of the nucleus parvocellularis and magnocellularis isthmi were studied by means of postembedded electron-microscopical (EM) γ-aminobutyric acid (GABA)-immunogold staining. In the parvocellular nucleus, none of the neuronal cell bodies or dendrites displayed GABA-like immunoreactivity in EM preparations stained by postembedded GABA-immunogold. However, numerous GABA-like immunoreactive and also unlabeled terminals established synapses with GABA-negative neurons. GABA-like immunoreactive terminals were usually found at the dendritic origin. Around the dendritic profiles, isolated synapses of both GABA-like immunoreactive and immunonegative terminals established glomerulus-like structures enclosed by glial processes. All giant and large neurons of the magnocellular nucleus of the isthmi displayed GABA-like immunoreactivity. Their cell surface was completely covered by GABA-like immunoreactive and unlabeled terminals that established synapses with the neurons. These neurons are thought to send axon collaterals to the parvocellular nucleus; their axons enter the tectum opticum. The morphological characteristics of neurons of both isthmic nuclei are like those of interneurons, because of their numerous axosomatic synapses with both asymmetrical and symmetrical features. These neurons are not located among their target neurons and exert their modulatory effect on optic transmission in the optic tectum at a distance.  相似文献   

5.
Galanin-like peptide (GALP) is a novel peptide which is isolated from the porcine hypothalamus. GALP-containing neurons are present in the arcuate nucleus (ARC), being particularly densely concentrated in medial posterior regions. To observe the ultrastructure and synaptic relationships of GALP-containing neurons in the ARC, light and immunoelectron microscopy techniques were used. At the light microscope level, GALP-containing neurons were observed distributed rostrocaudally throughout the ARC, with the majority present in the posterior, periventricular zones. At the electron microscope level, many immunopositive dense-cored vesicles were evident in the perikarya, dendrites and axon terminals of the GALP-containing neurons. Furthermore, these neurons received synapses from immunonegative axon terminals that were symmetric in the case of synapses made on perikarya, and both asymmetric and symmetric for synapses made on dendrites. Axon terminals of GALP-containing neurons often made synapses on immunonegative dendrites. Such synapses were all symmetric. Synapses were also found between axon terminals and perikarya as well as dendrites of GALP-containing neurons. These findings suggest that the physiological role of the GALP-containing neurons in the ARC is based on complex synaptic relationships between GALP-containing neurons and either GALP-immunopositive or -immunonegative neurons.  相似文献   

6.
Summary Vasopressin-containing neurons, identified by immunocytochemistry, are located predominantly in the posterior magnocellular division of the paraventricular nucleus of the rat hypothalamus. By electron microscopy, the immunoreaction product is seen within the cell bodies and neuronal processes. In the perikarya and dendritic processes, the immunoreactive material is associated primarily with neurosecretory granules. Axonal processes, identified by their content of microtubules and accumulation of neurosecretory granules, show the immunoreaction product in association with both of these organelles. Afferent axo-dendritic, axo-somatic and putative axo-axonic synapses with immunostained vasopressinergic neurons can be identified. The presynaptic profiles do not contain immunoreactive material. This study contributes to the ultrastructural characterization of vasopressinergic neurons in the paraventricular nucleus and of their afferent synaptic input.Supported by NIH Grants HD-12956 and 2SO7RR05403  相似文献   

7.
Despite convincing physiological evidences for vasopressin (VP) autoregulation in the supraoptic (SON) and paraventricular (PVN) nuclei, the morphological demonstration of VP synapses has lagged behind. The present work investigates the possible existence of such synapses in the SON and PVN of the rat. Electron microscopy of sections immunostained with VP antibody (1:5,000) and conjugated with avidin-biotin demonstrated presynaptic terminals containing neurosecretory granule (NSG)-like bodies, 80-100 nm in diameter. The terminals formed axodendritic, axosomatic and axoaxonic synapses, though the postsynaptic elements remained largely unidentified. Other ultrastructural features of synaptic specialization were evident. The NSG-like bodies exhibited a varying and dynamic relationship to the presynaptic membrane, suggesting their involvement in synaptic mechanisms.  相似文献   

8.
The aim of the present study was to examine the cellular and sub-cellular distribution of the somatostatin (SRIF) receptor subtype sst1 in the rat hypothalamus. Receptors were immunolabeled using an antibody directed against an antigenic sequence in the N-terminus of the receptor. Immunopositive neuronal cell bodies and dendrites were observed throughout the mediobasal hypothalamus, including the medial preoptic area, paraventricular, periventricular, and arcuate nuclei. Immunoreactive axons and axon terminals were also observed in the median eminence, suggesting that sst1 is also located pre-synaptically. Electron microscopic examination of the arcuate nucleus revealed a predominant association of immunoreactive sst1 with perikarya and dendrites. Most immunoreactive receptors were intracellular and localized to tubulovesicular compartments and organelles such as the Golgi apparatus, but 14% were associated with the plasma membrane. Of the latter, 47% were apposed to abbuting afferent axon terminals and 20% localized immediately adjacent to an active synaptic zone. These results demonstrate a widespread distribution of sst1 receptors in rat hypothalamus. They also show that somatodendritic sst1 receptors in the arcuate nucleus are ideally poised to mediate SRIF’s modulation of afferent synaptic inputs, including central SRIF effects on growth hormone-releasing hormone neurons documented in this area.Special Issue Dedicated to Miklós Palkovits.  相似文献   

9.
Summary The catecholaminergic innervation of thyrotropin-releasing hormone (TRH) neurons was examined by use of a combined method of 5-hydroxydopamine (5-OHDA) uptake or autoradiography after intraventricular injection of 3H-noradrenaline (3H-NA) and immunocytochemistry for TRH in the same tissue sections at the electron-microscopic level.TRH-like immunoreactive nerve cell bodies were distributed abundantly in the parvocellular part of the paraventricular nucleus (PVN), in the suprachiasmatic preoptic nucleus and in the dorsomedial nucleus of the rat hypothalamus. In the PVN, a large number of immunonegative axon terminals were found to make synaptic contact with TRH-like immunoreactive cell bodies and fibers. In the combined autoradiography or 5-OHDA labeling with immunocytochemistry, axon terminals labeled with 3H-NA or 5-OHDA were found to form synaptic contacts with the TRH immunoreactive nerve cell bodies and fibers. These findings suggest that catecholamine-containing neurons, probably noradrenergic, may innervate TRH neurons to regulate TRH secretion via synapses with other unknown neurons in the rat PVN.This study was supported by grants from the Ministry of Education, Science and Culture, Japan  相似文献   

10.
The catecholaminergic innervation of the hypothalamic paraventricular nucleus (PVN) of the rat was studied by preembedding immunocytochemical methods utilizing specific antibodies which were generated against catecholamine synthesizing enzymes. Phenylethanolamine-N-methyltransferase (PNMT)-immunoreactive terminals contained 80-120 nm dense core granules and 30-50 nm clear synaptic vesicles. The labeled boutons terminated on cell bodies and dendrites of both parvo- and magnocellular neurons of PVN via asymmetric synapses. The parvocellular subnuclei received a more intense adrenergic innervation than did the magnocellular regions of the nucleus. Dopamine-beta-hydroxylase (DBH)-immunopositive axons were most numerous in the periventricular zone and the medial parvocellular subnucleus of PVN. Labeled terminal boutons contained 70-100 nm dense granules and clusters of spherical, electron lucent vesicles. Dendrites, perikarya and spinous structures of paraventricular neurons were observed to be the postsynaptic targets of DBH axon terminals. These asymmetric synapses frequently exhibited subsynaptic dense bodies. Paraventricular neurons did not demonstrate either PNMT or DBH immunoreactivity. The fibers present within the nucleus which contained these enzymes are considered to represent extrinsic afferent connections to neurons of the PVN. Tyrosine hydroxylase (TH)-immunoreactivity was found both in neurons and neuronal processes within the PVN. In TH-cells, the immunolabel was associated with rough endoplasmic reticulum, free ribosomes and 70-120 nm dense granules. Occasionally, nematosome-like bodies and cilia were observed in the TH-perikarya. Unlabeled axons established en passant and bouton terminaux type synapses with these TH-immunopositive cells. TH-immunoreactive axons terminated on cell bodies as well as somatic and dendritic spines of paraventricular parvocellular neurons. TH-containing axons were observed to deeply invaginate into both dendrites and perikarya of magnocellular neurons. These observations provide ultrastructural evidence for the participation of central catecholaminergic neuronal systems in the regulation of the different neuronal and neuroendocrine functions which have been related to hypothalamic paraventricular neurons.  相似文献   

11.
The distribution of the P2X2 subtype of the purine receptor associated with the extracellular signalling activities of ATP was studied in the rat hypothalamo-neurohypophysial system at the electron microscope level. Receptors were labelled with ExtrAvidin-horseradish peroxidase preembedding immunocytochemistry using a polyclonal antibody against a fragment of an intracellular domain of the receptor. Immunoreactivity to P2X2 receptors was localised in: (i) paraventricular and supraoptic nuclei—in subpopulations of endocrine neurones, neurosecretory and non-neurosecretory axons and dendrites; and (ii) the neurohypophysis—in pituicytes and subpopulation of neurosecretory axons. In both the hypothalamic nuclei examined, labelled asymmetric axo-dendritic synapses were commonly observed. These synapses involved either P2X2-labelled axon terminals (synaptic buttons) and unlabelled dendrites or labelled dendrites and unlabelled axon terminals. Axo-somatic synapses established by P2X2-positive axons on P2X2-positive endocrine cell bodies as well as on P2X2-negative somata were also observed. The functional significance of these findings is discussed.  相似文献   

12.
A diverse afferent synaptic input to immunostained oxytocin magnocellular neurons of the paraventricular nucleus of the rat hypothalamus is described. By electron microscopy, immunoreactive material is present within cell bodies and neuronal processes and it is associated primarily with neurosecretory granules and granular endoplasmic reticulum. Afferent axon terminals synapse on perikarya, dendritic processes, and possibly axonal processes of oxytocin-containing neurons. The presynaptic elements of the synaptic complexes contain clear spherical vesicles, a mixture of clear spherical and ellipsoidal vesicles, or a mixture of clear and dense-centered vesicles. The postsynaptic membranes of oxytocinergic cells frequently show a prominent coating of dense material on the cytoplasmic face which gives the synaptic complex a marked asymmetry.  相似文献   

13.
Guan JL  Wang QP  Hori T  Takenoya F  Kageyama H  Shioda S 《Peptides》2004,25(8):1307-1311
The ultrastructural properties of orexin 1-receptor-like immunoreactive (OX1R-LI) neurons in the dorsal horn of the rat spinal cord were examined using light and electron microscopy techniques. At the light microscopy level, the most heavily immunostained OX1R-LI neurons were found in the ventral horn of the spinal cord, while some immunostained profiles, including nerve fibers and small neurons, were also found in the dorsal horn. At the electron microscopy level, OX1R-LI perikarya were identified containing numerous dense-cored vesicles which were more heavily immunostained than any other organelles. Similar vesicles were also found within the axon terminals of the OX1R-LI neurons. The perikarya and dendrites of some of the OX1R-LI neurons could be seen receiving synapses from immunonegative axon terminals. These synapses were found mostly asymmetric in shape. Occasionally, some OX1R-LI axon terminals were found making synapses on dendrites that were OX1R-LI in some cases and immunonegative in others. The synapses made by OX1R-LI axon terminals were found both asymmetric and symmetric in appearance. The results provide solid morphological evidence that OX1R is transported in the dense-cored vesicles from the perikarya to axon terminals and that OX1R-LI neurons in the dorsal horn of the spinal cord have complex synaptic relationships both with other OX1R-LI neurons as well as other neuron types.  相似文献   

14.
Morphological relationships between neuropeptide Y- (NPY) like and ghrelin-like immunoreactive neurons in the arcuate nucleus (ARC) were examined using light and electron microscopy techniques. At the light microscope level, both neuron types were found distributed in the ARC and could be observed making contact with each other. Using a preembedding double immunostaining technique, some NPY-immunoreactive axon terminals were observed at the electron microscope level to make synapses on ghrelin-immunoreactive cell bodies and dendrites. While the axo-somatic synapses were mostly symmetric in nature, the axo-dendritic synapses were both symmetric and asymmetric. In contrast, ghrelin-like immunoreactive (ghrelin-LI) axon terminals were found to make synapses on NPY-like immunoreactive (NPY-LI) dendrites although no NPY-like immunoreactive perikarya were identified receiving synapses from ghrelin-LI axon terminals. NPY-like axon terminals were also found making synapses on NPY-like neurons. Axo-axonic synapses were also identified between NPY- and ghrelin-like axon terminals. The present study shows that NPY- and ghrelin-LI neurons could influence each other by synaptic transmission through axo-somatic, axo-dendritic and even axo-axonic synapses, and suggests that they participate in a common effort to regulate the food-intake behavior through complex synaptic relationships.  相似文献   

15.
Light microscopic analysis of the rat midbrain periaqueductal grey (PAG) showed vasoactive intestinal polypeptide immunoreactive (VIP-ir) neurons localized at the lateral and ventral walls of the aqueduct. Some varicose VIP-ir elements were detected closely associated with the ependyma. While several VIP-ir elements were encountered immediately under the ependyma, in a few cases, VIP-ir cell bodies were seen on the luminal surface of the ependymal cells lining the aqueduct. Electron microscopy revealed that most of these cells possessed the characteristics of a local circuit neuron. All VIP-ir cells had indented nuclei. Two types were distinguished: one with rounded cell body receiving numerous axo-somatic synapses established by VIP-negative axons. The other cell type was fusiform and its surface was almost fully isolated from axonal contacts by a glial sheath. The VIP-ir processes were interconnected with other periaqueductal cells by a variety of synaptic contacts. VIP-ir axon terminals formed asymmetric synapses with immunonegative dendritic shafts often in glomerulus-like assemblies. The postsynaptic immunonegative dendrites were of the aspinous, beaded type. We suggest that VIP-ir cells and processes in the midbrain PAG establish connections between the longitudinal functional columns of this region. On the basis of their morphology, VIP-ir cells in the PAG appear to be excitatory, terminating on inhibitory interneurons. Thus, a VIP-stimulated inhibition may be instrumental in the coordination of responses evoked by the stimulation of PAG columns.  相似文献   

16.
Summary The catecholaminergic innervation of the hypothalamic paraventricular nucleus (PVN) of the rat was studred by preembedding immunocytochemical methods utilizing specific antibodies which were generated against catecholamine synthesizing enzymes. Phenylethanolamine-N-methyltransferase (PNMT)-immunoreactive terminals contained 80–120 nm dense core granules and 30–50 nm clear synaptic vesicles. The labeled boutons terminated on cell bodies and dendrites of both parvo- and magnocellular neurons of PVN via asymmetric synapses. The parvocellular subnuclei received a more intense adrenergic innervation than did the magnocellular regions of the nucleus. Dopamine--hydroxylase (DBH)-immunopositive axons were most numerous in the periventricular zone and the medial paryocellular subnucleus of PVN. Labeled terminal boutens contained 70–100 nm dense granules and clusters of spherical, electron lucent vesicles. Dendrites, perikarya and spinous structures of paraventricular neurons were observed to be the postsynaptic targets of DBH axon terminals. These asymmetric synapses frequently exhibited subsynaptic dense bodies. Paraventricular neurons did not demonstrate either PNMT or DBH immunoreactivity. The fibers present within the nucleus which contained these enzymes are considered to represent extrinsic afferent connections to neurons of the PVN.Tyrosine hydroxylase (TH)-immunoreactivity was found both in neurons and neuronal processes within the PVN In TH-cells, the immunolabel was associated with rough endoplasmic reticulum, free ribosomes and 70–120 nm dense granules. Occasionally, nematosome-like bodies and cilia were observed in the TH-perikarya. Unlabeled axons established en passant and bouton terminaux type synapses with these TH-immunopositive cells. TH-immunoreactive axons terminated on cell bodies as well as somatic and dendritic spines of paraventricular parvocellular neurons. TH-containing axons were observed to deeply invaginate into both dendrites and perikarya of magnocellular neurons.These observations provide ultrastructural evidence for the participation of central catecholaminergic neuronal systems in the regulation of the different neuronal and neuroendocrine functions which have been related to hypothalamic paraventricular neurons.Supported by NIH Grant NS 19266 to W.K. Paull  相似文献   

17.
The interrelationships of corticotropin-releasing factor (CRF) immunoreactive neuronal cell bodies and processes have been examined in the paraventricular nucleus (PVN) of adrenalectomized-dexamethasone treated rats. Antisera generated against ovine CRF (oCRF) were used in the peroxidase-anti-peroxidase-complex (PAP)-immunocytochemical method at both the light and electron microscopic levels. In this experimental model, a great number of CRF-immunoreactive neurons were detected in the parvocellular subdivisions of the PVN and a few scattered labelled parvocellular neurons were also observed within the magnocellular subunits. Characteristic features of immunolabeled perikarya included hypertrophied rough endoplasmic reticulum with dilated endoplasmic cisternae, well developed Golgi complexes and increased numbers of neurosecretory granules. These features are interpreted to indicate accelerated hormone synthesis as a result of adrenalectomy. Afferent fibers communicated with dendrites and somata of CRF-immunoreactive neurons via both symmetrical and asymmetrical synapses. Some neurons exhibited somatic appendages and these structures were also observed to receive synaptic terminals. Within both the PVN and its adjacent neuropil, CRF-immunoreactive axons demonstrated varicosites which contained accumulations of densecore vesicles. CRF-containing axons were observed to branch into axon collaterals. These axons or axon collaterals established axo-somatic synapses on CRF-producing neurons in the parvocellular regions of the PVN, while in the magnocellular area of the nucleus they were found in juxtaposition with unlabeled magnocellular neuronal cell bodies or in synaptic contact with their dendrites. The presence of CRF-immunoreactive material in presynaptic structures suggests that the neurohormone may participate in mechanisms of synaptic transfer. These ultrastructural data indicate that the function of the paraventricular CRF-synthesizing neurons is adrenal steroid hormone dependent. They also provide morphological evidence for the existence of a neuronal ultrashort feed-back mechanism within the PVN for the regulation of CRF production and possibly that of other peptide hormones contained within this complex.  相似文献   

18.
Summary The interrelationships of corticotropin-releasing factor (CRF) immunoreactive neuronal cell bodies and processes have been examined in the paraventricular nucleus (PVN) of adrenalectomized-dexamethesone treated rats. Antisera generated against ovine CRF (oCRF) were used in the peroxidase-anti-peroxidase-complex (PAP)-immunocytochemical method at both the light and electron microscopic levels. In this experimental model, a great number of CRF-immunoreactive neurons were detected in the parvocellular subdivisions of the PVN and a few scattered labelled parvocellular neurons were also observed within the magnocellular subunits. Characteristic features of immunolabeled perikarya included hypertrophied rough endoplasmic reticulum with dilated endoplasmic cisternae, well developed Golgi complexes and increased numbers of neurosecretory granules. These features are interpreted to indicate accelerated hormone synthesis as a result of adrenalectomy. Afferent fibers communicated with dendrites and somata of CRF-immunoreactive neurons via both symmetrical and asymmetrical synapses. Some neurons exhibited somatic appendages and these structures were also observed to receive synaptic terminals. Within both the PVN and its adjacent neuropil, CRF-immunoreactive axons demonstrated varicosites which contained accumulations of densecore vesicles. CRF-containing axons were observed to branch into axon collaterals. These axons or axon collaterals established axo-somatic synapses on CRF-producing neurons in the parvocellular regions of the PVN, while in the magnocellular area of the nucleus they were found in juxtaposition with unlabeled magnocellular neuronal cell bodies or in synaptic contact with their dendrites. The presence of CRF-immunoreactive material in presynaptic structures suggests that the neurohormone may participate in mechanisms of synaptic transfer.These ultrastructural data indicate that the function of the paraventricular CRF-synthesizing neurons is adrenal steroid hormone dependent. They also provide morphological evidence for the existence of a neuronal ultrashort feedback mechanism within the PVN for the regulation of CRF production and possibly that of other peptide hormones contained within this complex.Supported by NIH grant NS 19266 to WKP  相似文献   

19.
Summary In the rostral hypothalamus of the domestic fowl, the magnocellular neurosecretory nuclei show a peculiar differentiation. Golgi studies of the supraoptic and paraventricular nuclei of the fowl reveal at least two major cell types: 1) large multipolar neurons, and 2) small interneurons. Golgi impregnations provide a detailed cytoarchitectural picture of the large-sized cells; the latter may well correspond to the neurosecretory cells demonstrated in the same regions by selective staining, and immunocytochemical and electron microscopical techniques.Electron microscopically, neuronal perikarya are observed to contain variable amounts of neurosecretory granules (100–200 nm in diameter; mean diameter of 160 nm) scattered throughout the cytoplasm. The diameters of these granules do not differ statistically in the two principal nuclear areas examined. The perikarya of these neurons display only a few axosomatic synapses containing electron-lucent and dense-cored vesicles (70–90 nm in diameter). Numerous nerve terminals of this type also end on the dendritic ramifications in the surrounding neuropil.  相似文献   

20.
Summary The cholinergic innervation of the mouse superior cervical ganglion was investigated by means of immunocytochemistry using a well-characterized monoclonal antibody against choline acetyltransferase (ChAT). Immunopositive nerve fibers entered the superior cervical ganglion from the cervical sympathetic trunk. Light-microscopically, these fibers appeared to be heterogeneously distributed among the principal ganglion cells. The rostral part of the ganglion contained more ChAT-positive fibers then the middle or the caudal one. The axons branched several times before forming numerous varicosities. Most of the ChAT-stained fibers and varicosities aggregated in glomerula-like neuropil structures that were surrounded by principal ganglion cell bodies, whereas others were isolated or formed little bundles among principal neurons. None of the neurons or other cell types in the ganglion exhibited ChAT-positivity. ChAT-immunoreactive fibers disappeared from the ganglion 5 or 13 days after transection of the cervical sympathetic trunk. At the ultrastructural level, most axon terminals and synapses showed ChAT-immunoreactivity. An ultrastructural analysis indicated that immunostained synapses occurred directly on the surface of neuronal soma (1.8%) and dendritic shafts (17.6%). Synapses were often seen on soma spines (18.4%) and on dendritic spines (62.2%). All immunoreactive synapses were of the asymmetric type. The results provide immunocytochemical evidence for a heterogeneous cholinergic innervation of the ganglion and the principal neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号