首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In fast-spiking neurons such as those in the medial nucleus of the trapezoid body (MNTB) in the auditory brainstem, Kv3.1 potassium channels are required for high frequency firing. The Kv3.1b splice variant of this channel predominates in the mature nervous system and is a substrate for phosphorylation by protein kinase C (PKC) at Ser-503. In resting neurons, basal phosphorylation at this site decreases Kv3.1 current, reducing neuronal ability to follow high frequency stimulation. We used a phospho-specific antibody to determine which PKC isozymes control serine 503 phosphorylation in Kv3.1b-tranfected cells and in auditory neurons in brainstem slices. By using isozyme-specific inhibitors, we found that the novel PKC-delta isozyme, together with the novel PKC-epsilon and conventional PKCs, contributed to the basal phosphorylation of Kv3.1b in MNTB neurons. In contrast, only PKC-epsilon and conventional PKCs mediate increases in phosphorylation produced by pharmacological activation of PKC in MNTB neurons or by metabotropic glutamate receptor activation in Kv3.1/mGluR1-cotransfected cells. We also measured the time course of dephosphorylation and recovery of basal phosphorylation of Kv3.1b following brief high frequency electrical stimulation of the trapezoid body, and we determined that the recovery process is mediated by both novel PKC-delta and PKC-epsilon isozymes and by conventional PKCs. The association between Kv3.1b and PKC isozymes was confirmed by reciprocal coimmunoprecipitation of Kv3.1b with multiple PKC isozymes. Our results suggest that the Kv3.1b channel is regulated by both conventional and novel PKC isozymes and that novel PKC-delta contributes specifically to the maintenance of basal phosphorylation in auditory neurons.  相似文献   

2.
Accurate timing of action potentials is required for neurons in auditory brainstem nuclei to encode the frequency and phase of incoming sound stimuli. Many such neurons express "high threshold" Kv3-family channels that are required for firing at high rates (> -200 Hz). Kv3 channels are expressed in gradients along the medial-lateral tonotopic axis of the nuclei. Numerical simulations of auditory brainstem neurons were used to calculate the input-output relations of ensembles of 1-50 neurons, stimulated at rates between 100-1500 Hz. Individual neurons with different levels of potassium currents differ in their ability to follow specific rates of stimulation but all perform poorly when the stimulus rate is greater than the maximal firing rate of the neurons. The temporal accuracy of the combined synaptic output of an ensemble is, however, enhanced by the presence of gradients in Kv3 channel levels over that measured when neurons express uniform levels of channels. Surprisingly, at high rates of stimulation, temporal accuracy is also enhanced by the occurrence of random spontaneous activity, such as is normally observed in the absence of sound stimulation. For any pattern of stimulation, however, greatest accuracy is observed when, in the presence of spontaneous activity, the levels of potassium conductance in all of the neurons is adjusted to that found in the subset of neurons that respond better than their neighbors. This optimization of response by adjusting the K(+) conductance occurs for stimulus patterns containing either single and or multiple frequencies in the phase-locking range. The findings suggest that gradients of channel expression are required for normal auditory processing and that changes in levels of potassium currents across the nuclei, by mechanisms such as protein phosphorylation and rapid changes in channel synthesis, adapt the nuclei to the ongoing auditory environment.  相似文献   

3.
Transient outward K+ currents are particularly important for the regulation of membrane excitability of neurons and repolarization of action potentials in cardiac myocytes. These currents are modulated by PKC (protein kinase C) activation, and the K+- channel subunit Kv4.2 is a major contributor to these currents. Furthermore, the current recorded from Kv4.2 channels expressed in oocytes is reduced by PKC activation. The mechanism underlying PKC regulation of Kv4.2 currents is unknown. In the present study, we determined that PKC directly phosphorylates the Kv4.2 channel protein. In vitro phosphorylation of the intracellular N- and C-termini of Kv4.2 GST (glutathione transferase) tagged fusion protein revealed that the C-terminal of Kv4.2 was phosphorylated by PKC, whereas the N-terminal was not. Amino acid mapping and site-directed mutagenesis revealed that the phosphorylated residues on the Kv4.2 C-terminal were Ser447 and Ser537. A phospho-site-specific antibody showed that phosphorylation at the Ser537 site was increased in the hippocampus in response to PKC activation. Surface biotinylation experiments revealed that mutation to alanine of both Ser447 and Ser537 in order to block phosphorylation at both of the PKC sites increased surface expression compared with wild-type Kv4.2. Electrophysiological recordings of the wild-type and both the alanine and aspartate mutant Kv4.2 channels expressed with KChIP3 (Kv4 channel-interacting protein 3) revealed no significant difference in the half-activation or half-inactivation voltage of the channel. Interestingly, Ser537 lies within a possible ERK (extracellular-signal-regulated kinase)/MAPK (mitogen-activated protein kinase) recognition (docking) domain in the Kv4.2 C-terminal sequence. We found that phosphorylation of Kv4.2 by PKC enhanced ERK phosphorylation of the channel in vitro. These findings suggest the possibility that Kv4.2 is a locus for PKC and ERK cross-talk.  相似文献   

4.
Voltage-dependent (Kv)4.2-encoded A-type K+ channels play an important role in controlling neuronal excitability and are subject to modulation by various protein kinases, including ERK. In studies of ERK modulation, the organic compound U0126 is often used to suppress the activity of MEK, which is a kinase immediately upstream from ERK. We have observed that the inactivation time constant of heterologously expressed Kv4.2 channels was accelerated by U0126 at 1–20 µM. This effect, however, was not Kv4 family specific, because U0126 also converted noninactivating K+ currents mediated by Kv1.1 subunits into transient ones. To determine whether U0126 exerted these effects through kinase inhibition, we tested U0125, a derivative of U0126 that is less potent in MEK inhibition. At the same concentrations, U0125 had effects similar to those of U0126 on channel inactivation. Finally, we expressed a mutant form of Kv4.2 in which three identified ERK phosphorylation sites (T602, T607, and S616) were replaced with alanines. The inactivation of K+ currents mediated by this mutant was still accelerated by U0126. Our data favor the conclusion that the increase in the rate of channel inactivation by U0126 is likely to be independent of protein kinase inhibition and instead represents a direct action on channel gating. voltage-gated potassium channel; kinase; gating  相似文献   

5.
N-type voltage-gated calcium channel activity in rat superior cervical ganglion neurons is modulated by a variety of pathways. Activation of heterotrimeric G-proteins reduces whole-cell current amplitude, whereas phosphorylation by protein kinase C leads to an increase in current amplitude. It has been proposed that these two distinct pathways converge on the channel's pore-forming alpha(1B) subunit, such that the actions of one pathway can preclude those of the other. In this study, we have characterized further the actions of PKC on whole-cell barium currents in neonatal rat superior cervical ganglion neurons. We first examined whether the effects of G-protein-mediated inhibition and phosphorylation by PKC are mutually exclusive. G-proteins were activated by including 0.4 mM GTP or 0.1 mM GTP-gamma-S in the pipette, and PKC was activated by bath application of 500 nM phorbol 12-myristate 13-acetate (PMA). We found that activated PKC was unable to reverse GTP-gamma-S-induced inhibition unless prepulses were applied, indicating that reversal of inhibition by phosphorylation appears to occur only after dissociation of the G-protein from the channel. Once inhibition was relieved, activation of PKC was sufficient to prevent reinhibition of current by G-proteins, indicating that under phosphorylating conditions, channels are resistant to G-protein-mediated modulation. We then examined what effect, if any, phosphorylation by PKC has on N-type barium currents beyond antagonizing G-protein-mediated inhibition. We found that, although G-protein activation significantly affected peak current amplitude, fast inactivation, holding-potential-dependent inactivation, and voltage-dependent activation, when G-protein activation was minimized by dialysis of the cytoplasm with 0.1 mM GDP-beta-S, these parameters were not affected by bath application of PMA. These results indicate that, under our recording conditions, phosphorylation by PKC has no effect on whole-cell N-type currents, other than preventing inhibition by G-proteins.  相似文献   

6.
The mammalian Kv4.3 potassium channel is a fast activating and inactivating K+ channel widely distributed in mammalian tissues. Kv4.3 is the major component of various physiologically important currents ranging from A-type currents in the CNS to the transient outward potassium conductance in the heart (I(to)). Here we show that the KCNE3 beta-subunit has a strong inhibitory effect on current conducted by heterologously expressed Kv4.3 channels. KCNE3 reduces the Kv4.3 current amplitude, and it slows down the channel activation and inactivation as well as the recovery from inactivation. KCNE3 also inhibits currents generated by Kv4.3 in complex with the accessory subunit KChIP2. We find the inhibitory effect of KCNE3 to be specific for Kv4.3 within the Kv4 channel family. Kv4.3 has previously been shown to interact with a number of beta-subunits, but none of the described subunit-interactions exert an inhibitory effect on the Kv4.3 current.  相似文献   

7.
The Kv7 family (Kv7.1–7.5) of voltage-activated potassium channels contributes to the maintenance of resting membrane potential in excitable cells. Previously, we provided pharmacological and electrophysiological evidence that Kv7.4 and Kv7.5 form predominantly heteromeric channels and that Kv7 activity is regulated by protein kinase C (PKC) in response to vasoconstrictors in vascular smooth muscle cells. Direct evidence for Kv7.4/7.5 heteromer formation, however, is lacking. Furthermore, it remains to be determined whether both subunits are regulated by PKC. Utilizing proximity ligation assays to visualize single molecule interactions, we now show that Kv7.4/Kv.7.5 heteromers are endogenously expressed in vascular smooth muscle cells. Introduction of dominant-negative Kv7.4 and Kv7.5 subunits in mesenteric artery myocytes reduced endogenous Kv7 currents by 84 and 76%, respectively. Expression of an inducible protein kinase Cα (PKCα) translocation system revealed that PKCα activation is sufficient to suppress endogenous Kv7 currents in A7r5 rat aortic and mesenteric artery smooth muscle cells. Arginine vasopressin (100 and 500 pm) and the PKC activator phorbol 12-myristate 13-acetate (1 nm) each inhibited human (h) Kv7.5 and hKv7.4/7.5, but not hKv7.4 channels expressed in A7r5 cells. A decrease in hKv7.5 and hKv7.4/7.5 current densities was associated with an increase in PKC-dependent phosphorylation of the channel proteins. These findings provide further evidence for a differential regulation of Kv7.4 and Kv7.5 channel subunits by PKC-dependent phosphorylation and new mechanistic insights into the role of heteromeric subunit assembly for regulation of vascular Kv7 channels.  相似文献   

8.
High frequency firing in mammalian neurons requires ultra-rapid delayed rectifier potassium currents generated by homomeric or heteromeric assemblies of Kv3.1 and Kv3.2 potassium channel alpha subunits. Kv3.1 alpha subunits can also form slower activating channels by coassembling with MinK-related peptide 2 (MiRP2), a single transmembrane domain potassium channel ancillary subunit. Here, using channel subunits cloned from rat and expressed in Chinese hamster ovary cells, we show that modulation by MinK, MiRP1, and MiRP2 is a general mechanism for slowing of Kv3.1 and Kv3.2 channel activation and deactivation and acceleration of inactivation, creating a functionally diverse range of channel complexes. MiRP1 also negatively shifts the voltage dependence of Kv3.1 and Kv3.2 channel activation. Furthermore, MinK, MiRP1, and MiRP2 each form channels with Kv3.1-Kv3.2 heteromers that are kinetically distinct from one another and from MiRP/homomeric Kv3 channels. The findings illustrate a mechanism for dynamic expansion of the functional repertoire of Kv3.1 and Kv3.2 potassium currents and suggest roles for these alpha subunits outside the scope of sustained rapid neuronal firing.  相似文献   

9.
The voltage-gated K(+) channel Kv2.1 is expressed as a highly phosphorylated protein in most central neurons, where it plays a key role in regulating neuronal membrane excitability. Previous studies have shown that Kv2.1 channel activity is upregulated by Src-mediated phosphorylation through an unknown mechanism. However, a systematic analysis of the molecular mechanism of Kv2.1 channel phosphorylation by Src is lacking. Here, we show that tyrosine phosphorylation by Src plays a fundamental role in regulating Kv2.1-mediated K(+) current enhancement. We found that the level of expression of the Kv2.1 protein is increased by Src kinase. Using mass spectrometric proteomic techniques, we identified two novel phosphotyrosine sites, Y686 and Y810, in the cytoplasmic domains of Kv2.1. We found that Src-dependent phosphorylation at these sites affects Kv2.1 through distinct regulatory mechanisms. Whereas phosphorylation at Y686 regulates Kv2.1 activity similarly to the known site Y124, phosphorylation at Y810 plays a significant role in regulating the intracellular trafficking of Kv2.1 channels. Our results show that these two novel tyrosine phosphorylation sites of Kv2.1 are crucial to regulating diverse aspects of Kv2.1 channel function and provide novel insights into molecular mechanisms for the regulation of Src-dependent modulation of Kv2.1 channels.  相似文献   

10.
K(+) currents in cultured Drosophila larval neurons have been classified into four categories according to their inactivation time constants, relative amplitude, and response to K(+) channel blockers 4-AP and tetraethylammonium. The percentage (65%) of neurons displaying K(+) currents which were reduced to 30% in amplitude by 5 mM cyclic adenosine monophosphate (cAMP) analog 8-bromo-cAMP in both Drosophila memory mutants rutabaga (rut) and amnesiac (amn) was significantly larger than that (50%) in wild type. This initial characterization provides evidence for altered K(+) currents in both rut and amn mutants. Arachidonic acid, a specifical inhibitor of Kv4 family (shal) K(+) channels, was found to inhibit K(+) currents in cultured Drosophila neurons, suggesting the presence of shal channels in these neurons.  相似文献   

11.
Voltage-gated potassium channels (Kv channels) play a crucial role in formation of action potentials in response to glucose stimulation in pancreatic β-ells. We previously reported that the Kv channel is regulated by glucose metabolism, particularly by MgATP. We examined whether the regulation of Kv channels is voltage-dependent and mechanistically related with phosphorylation of the channels. In rat pancreatic β-cells, suppression of glucose metabolism with low glucose concentrations of 2.8 mM or less or by metabolic inhibitors decreased the Kv2.1-channel activity at positive membrane potentials, while increased it at potentials negative to −10 mV, suggesting that modulation of Kv channels by glucose metabolism is voltage-dependent. Similarly, in HEK293 cells expressing the recombinant Kv2.1 channels, 0 mM but not 10 mM MgATP modulated the channel activity in a manner similar to that in β-cells. Both steady-state activation and inactivation kinetics of the channel were shifted toward the negative potential in association with the voltage-dependent modulation of the channels by cytosolic dialysis of alkaline phosphatase in β-cells. The modulation of Kv-channel current-voltage relations were also observed during and after glucose-stimulated electrical excitation. These results suggest that the cellular metabolism including MgATP production and/or channel phosphorylation/dephosphorylation underlie the physiological modulation of Kv2.1 channels during glucose-induced insulin secretion.  相似文献   

12.
The effects of endothelin on the transient outward K(+) currents were compared between Kv1.4 and Kv4.3 channels in Xenopus oocytes expression system. Both transient outward K(+) currents were decreased by stimulation of endothelin receptor ET(A) coexpressed with the K(+) channels. Transient outward current of Kv1.4 was decreased by about 85% after 10(-8) M ET-1, while that of Kv4.3 was decreased by about 60%. By mutagenesis experiments we identified two phosphorylation sites of PKC and CaMKII in Kv1.4 responsible for the decrease in I(to) by ET-1. In Kv4.3 a PKC phosphorylation site was identified which is in part responsible for the decrease in I(to). Differences in the suppression of I(to) could be ascribed to the difference in intracellular signaling including the number of phosphorylation sites. These findings might give clues for the understanding of molecular mechanism of ventricular arrhythmias in heart failure, in which endothelin is involved in the pathogenesis.  相似文献   

13.
The Shaker family voltage-dependent potassium channels (Kv1) are expressed in a wide variety of cells and are essential for cellular excitability. In humans, loss-of-function mutations of Kv1 channels lead to hyperexcitability and are directly linked to episodic ataxia and atrial fibrillation. All Kv1 channels assemble with beta subunits (Kv betas), and certain Kv betas, for example Kv beta 1, have an N-terminal segment that closes the channel by the N-type inactivation mechanism. In principle, dissociation of Kv beta 1, although never reported, should eliminate inactivation and thus potentiate Kv1 current. We found that cortisone increases rat Kv1 channel activity by binding to Kv beta 1. A crystal structure of the Kv beta-cortisone complex was solved to 1.82-A resolution and revealed novel cortisone binding sites. Further studies demonstrated that cortisone promotes dissociation of Kv beta. The new mode of channel modulation may be explored by native or synthetic ligands to fine-tune cellular excitability.  相似文献   

14.
Activation of TRPV1 by the satiety factor oleoylethanolamide   总被引:9,自引:0,他引:9  
The fatty acid oleoylethanolamide (OEA) is a satiety factor that excites peripheral vagal sensory nerves, but the mechanism by which this occurs and the molecular targets of OEA are unclear. In this study the ability of OEA to modulate the capsaicin receptor (TRPV1) was explored. OEA alone did not activate TRPV1 expressed in Xenopus oocytes under control conditions, but produced a differential modulation of agonist-evoked responses. OEA enhanced proton-gated TRPV1 currents, inhibited anandamide-evoked currents and had no effect on capsaicin-evoked responses. Following stimulation of protein kinase C (PKC), OEA alone directly activated TRPV1 channel with an EC50 of approximately 2 microm at room temperature. This effect was due to direct phosphorylation of TRPV1 because no responses to OEA were observed with mutant channels lacking critical PKC phosphorylation sites, S502A/S800A. In sensory neurons, OEA-induced Ca2+ rises that were selective for capsaicin-sensitive cells, inhibited by the TRPV1 blocker, capsazepine, and occurred in a PKC-dependent manner. Further, after PKC stimulation, OEA activated TRPV1 channels in cell-free patches suggesting a direct mode of action. Thus, TRPV1 represents a potential target for OEA and may contribute to the excitatory action of OEA on sensory nerves.  相似文献   

15.
The voltage−gated K+ (Kv) channel subunits Kv2.1 and Kv2.2 are expressed in almost every tissue. The diversity of Kv2 current is increased by interacting with the electrically silent Kv (KvS) subunits Kv5−Kv6 and Kv8−Kv9, into functional heterotetrameric Kv2/KvS channels. These Kv2/KvS channels possess unique biophysical properties and display a more tissue-specific expression pattern, making them more desirable pharmacological and therapeutic targets. However, little is known about the pharmacological properties of these heterotetrameric complexes. We demonstrate that Kv5.1, Kv8.1 and Kv9.3 currents were inhibited differently by the channel blocker 4−aminopyridine (4−AP) compared to Kv2.1 homotetramers. In contrast, Kv6.4 currents were potentiated by 4−AP while displaying moderately increased affinities for the channel pore blockers quinidine and flecainide. We found that the 4−AP induced potentiation of Kv6.4 currents was caused by modulation of the Kv6.4−mediated closed−state inactivation: suppression by 4−AP of the Kv2.1/Kv6.4 closed−state inactivation recovered a population of Kv2.1/Kv6.4 channels that was inactivated at resting conditions, i.e. at a holding potential of −80 mV. This modulation also resulted in a slower initiation and faster recovery from closed−state inactivation. Using chimeric substitutions between Kv6.4 and Kv9.3 subunits, we demonstrated that the lower half of the S6 domain (S6c) plays a crucial role in the 4−AP induced potentiation. These results demonstrate that KvS subunits modify the pharmacological response of Kv2 subunits when assembled in heterotetramers and illustrate the potential of KvS subunits to provide unique pharmacological properties to the heterotetramers, as is the case for 4−AP on Kv2.1/Kv6.4 channels.  相似文献   

16.
Kv beta 2 enhances the rate of inactivation and level of expression of Kv1.4 currents. The crystal structure of Kv beta 2 binds NADP(+), and it has been suggested that Kv beta 2 is an oxidoreductase enzyme (). To investigate how this function might relate to channel modulation, we made point mutations in Kv beta 2 in either the NADPH docking or putative catalytic sites. Using the yeast two-hybrid system, we found that these mutations did not disrupt the interaction of Kv beta 2 with Kv alpha 1 channels. To characterize the Kv beta 2 mutants functionally, we coinjected wild-type or mutant Kv beta 2 cRNAs and Kv1.4 cRNA in Xenopus laevis oocytes. Kv beta 2 increased both the amplitude and rate of inactivation of Kv1.4 currents. The cellular content of Kv1.4 protein was unchanged on Western blot, but the amount in the plasmalemma was increased. Mutations in either the orientation or putative catalytic sites for NADPH abolished the expression-enhancing effect on Kv1.4 current. Western blots showed that both types of mutation reduced Kv1.4 protein. Like the wild-type Kv beta 2, both types of mutation increased the rate of inactivation of Kv1.4, confirming the physical association of mutant Kv beta 2 subunits with Kv1.4. Thus, mutations that should interfere with NADPH function uncouple the expression-enhancing effect of Kv beta 2 on Kv1.4 currents from its effect on the rate of inactivation. These results suggest that the binding of NADPH and the putative oxidoreductase activity of Kv beta 2 may play a role in the processing of Kv1.4.  相似文献   

17.
Heteromultimerization of Kir4.1 and Kir5.1 leads to a channel with distinct functional properties. The heteromeric Kir4.1-Kir5.1 channel is expressed in the eye, kidney and brainstem and has CO(2)/pH sensitivity in the physiological range, suggesting a candidate molecule for the regulation of K(+) homeostasis and central CO(2) chemoreception. It is known that K(+) transport in renal epithelium and brainstem CO(2) chemosensitivity are subject to modulation by hormones and neurotransmitters that activate distinct intracellular signaling pathways. If the Kir4.1-Kir5.1 channel is involved in pH-dependent regulation of cellular functions, it may also be regulated by some of the intracellular signaling systems. Therefore, we undertook studies to determine whether PKC modulates the heteromeric Kir4.1-Kir5.1 channel. The channel expressed using a Kir4.1-Kir5.1 tandem dimer construct was inhibited by the PKC activator PMA in a dose-dependent manner. The channel inhibition was produced via reduction of the P(open). The effect of PMA was abolished by specific PKC inhibitors. In contrast, exposure of oocytes to forskolin (a PKA activator) had no significant effect on Kir4.1-Kir5.1 currents. The channel inhibition appeared to be independent of PIP(2) depletion and PKC-dependent internalization. Several consensus sequences of potential PKC phosphorylation sites were identified in the Kir4.1 and Kir5.1 subunits by sequence scan. Although the C-terminal peptides of both Kir4.1 and Kir5.1 were phosphorylated in vitro, site-directed mutagenesis of individual residues failed to reveal the PKC phosphorylation sites suggesting that the channel may have multiple phosphorylation sites. Taken together, these results suggest that the Kir4.1-Kir5.1 but not the homomeric Kir4.1 channel is strongly inhibited by PKC activation.  相似文献   

18.
Kv3.3 K+ channels are believed to incorporate an NH2-terminal domain to produce an intermediate rate of inactivation relative to the fast inactivating K+ channels Kv3.4 and Kv1.4. The rate of Kv3.3 inactivation has, however, been difficult to establish given problems in obtaining consistent rates of inactivation in expression systems. This study characterized the properties of AptKv3.3, the teleost homologue of Kv3.3, when expressed in Chinese hamster ovary (CHO) or human embryonic kidney (HEK) cells. We show that the properties of AptKv3.3 differ significantly between CHO and HEK cells, with the largest difference occurring in the rate and voltage dependence of inactivation. While AptKv3.3 in CHO cells showed a fast and voltage-dependent rate of inactivation consistent with N-type inactivation, currents in HEK cells showed rates of inactivation that were voltage-independent and more consistent with a slower C-type inactivation. Examination of the mRNA sequence revealed that the first methionine start site had a weak Kozak consensus sequence, suggesting that the lack of inactivation in HEK cells could be due to translation at a second methionine start site downstream of the NH2-terminal coding region. Mutating the nucleotide sequence surrounding the first methionine start site to one more closely resembling a Kozak consensus sequence produced currents that inactivated with a fast and voltage-dependent rate of inactivation in both CHO and HEK cells. These results indicate that under the appropriate conditions Kv3.3 channels can exhibit fast and reliable inactivation that approaches that more typically expected of "A"-type K+ currents.  相似文献   

19.
Heteromultimerization of Kir4.1 and Kir5.1 leads to a channel with distinct functional properties. The heteromeric Kir4.1-Kir5.1 channel is expressed in the eye, kidney and brainstem and has CO2/pH sensitivity in the physiological range, suggesting a candidate molecule for the regulation of K+ homeostasis and central CO2 chemoreception. It is known that K+ transport in renal epithelium and brainstem CO2 chemosensitivity are subject to modulation by hormones and neurotransmitters that activate distinct intracellular signaling pathways. If the Kir4.1-Kir5.1 channel is involved in pH-dependent regulation of cellular functions, it may also be regulated by some of the intracellular signaling systems. Therefore, we undertook studies to determine whether PKC modulates the heteromeric Kir4.1-Kir5.1 channel. The channel expressed using a Kir4.1-Kir5.1 tandem dimer construct was inhibited by the PKC activator PMA in a dose-dependent manner. The channel inhibition was produced via reduction of the Popen. The effect of PMA was abolished by specific PKC inhibitors. In contrast, exposure of oocytes to forskolin (a PKA activator) had no significant effect on Kir4.1-Kir5.1 currents. The channel inhibition appeared to be independent of PIP2 depletion and PKC-dependent internalization. Several consensus sequences of potential PKC phosphorylation sites were identified in the Kir4.1 and Kir5.1 subunits by sequence scan. Although the C-terminal peptides of both Kir4.1 and Kir5.1 were phosphorylated in vitro, site-directed mutagenesis of individual residues failed to reveal the PKC phosphorylation sites suggesting that the channel may have multiple phosphorylation sites. Taken together, these results suggest that the Kir4.1-Kir5.1 but not the homomeric Kir4.1 channel is strongly inhibited by PKC activation.  相似文献   

20.
DPP10 is an inactivation modulatory protein of Kv4.3 and Kv1.4   总被引:3,自引:0,他引:3  
Voltage-gated K+ channels exist in vivo as multiprotein complexes made up of pore-forming and ancillary subunits. To further our understanding of the role of a dipeptidyl peptidase-related ancillary subunit, DPP10, we expressed it with Kv4.3 and Kv1.4, two channels responsible for fast-inactivating K+ currents. Previously, DPP10 has been shown to effect Kv4 channels. However, Kv1.4, when expressed with DPP10, showed many of the same effects as Kv4.3, such as faster time to peak current and negative shifts in the half-inactivation potential of steady-state activation and inactivation. The exception was recovery from inactivation, which is slowed by DPP10. DPP10 expressed with Kv4.3 caused negative shifts in both steady-state activation and inactivation of Kv4.3, but no significant shifts were detected when DPP10 was expressed with Kv4.3 + KChIP2b (Kv channel interacting protein). DPP10 and KChIP2b had different effects on closed-state inactivation. At –60 mV, KChIP2b nearly abolishes closed-state inactivation in Kv4.3, whereas it developed to a much greater extent in the presence of DPP10. Finally, expression of a DPP10 mutant consisting of its transmembrane and cytoplasmic 58 amino acids resulted in effects on Kv4.3 gating that were nearly identical to those of wild-type DPP10. These data show that DPP10 and KChIP2b both modulate Kv4.3 inactivation but that their primary effects are on different inactivation states. Thus DPP10 may be a general modulator of voltage-gated K+ channel inactivation; understanding its mechanism of action may lead to deeper understanding of the inactivation of a broad range of K+ channels. potassium channel inactivation; potassium channel ancillary subunits; closed-state inactivation; voltage-gated potassium channels  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号