首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Despite expenditures of more than 1 billion dollars annually, there is little information available about project motivations, actions, and results for the vast majority of river restoration efforts. We performed confidential telephone interviews with 317 restoration project managers from across the United States with the goals of (1) assessing project motivations and the metrics of project evaluation and (2) estimating the proportion of projects that set and meet criteria for ecologically successful river restoration projects. According to project managers, ecological degradation typically motivated restoration projects, but post‐project appearance and positive public opinion were the most commonly used metrics of success. Less than half of all projects set measurable objectives for their projects, but nearly two‐thirds of all interviewees felt that their projects had been “completely successful.” Projects that we classified as highly effective were distinct from the full database in that most had significant community involvement and an advisory committee. Interviews revealed that many restoration practitioners are frustrated by the lack of funding for and emphasis on project monitoring. To remedy this, we recommend a national program of strategic monitoring focused on a subset of future projects. Our interviews also suggest that merely conducting and publishing more scientific studies will not lead to significant improvements in restoration practice; direct, collaborative involvement between scientists, managers, and practitioners is required for forward progress in the science and application of river restoration.  相似文献   

2.
We collected information on 860 stream restoration projects in four states in the southeastern United States—Georgia, Kentucky, North Carolina, and South Carolina—to gain a better understanding of the practice of stream restoration in this area of high aquatic biodiversity and rapid metropolitan expansion. This was completed as a part of the National River Restoration Science Synthesis, with the larger goal of understanding the state of the science of stream restoration. Stream restoration project density, goals, and monitoring rates varied by state, although southeastern monitoring rates were higher than in other parts of the country. North Carolina had the most projects in the Southeast, of which 36% were monitored. In‐depth phone interviews with project managers from a random subsample of projects provided insights into the process of stream restoration. Land availability was the most common basis for site prioritization, and 49% of projects involved mitigation. Although 51% of projects were associated with a watershed assessment, only 30% of projects were done as part of a larger plan for the watershed. Projects were monitored using physical (77% of monitored projects), chemical (36%), and biological (86%) variables, although many projects were planned and ultimately evaluated based on public opinion. Our results suggest that stream restoration in the southeastern United States is at an exciting point where better incorporation of a watershed perspective into planning and establishment and evaluation of stated, measurable success criteria for every project could lead to more effective projects.  相似文献   

3.
Two Decades of River Restoration in California: What Can We Learn?   总被引:4,自引:0,他引:4  
As part of the National River Restoration Science Synthesis (NRRSS), we developed a summary database of 4,023 stream restoration projects built in California since 1980, from which we randomly selected 44 records for in‐depth interviews with project managers. Despite substantial difficulties in gathering the data, we were able to draw conclusions about current design, implementation, monitoring, and evaluation practices used in California projects and compare them with national trends. Although more than half of the projects for which we conducted interviews were located in watersheds for which a management or assessment plan had been prepared, these plans had a limited impact on site selection. We also found that the state lacks a consistent framework for design, monitoring, and reporting restoration projects, and that although monitoring is far more widespread than the information in the NRRSS summary database would suggest, there are still problems with the type, duration, and reporting of monitoring. The general lack of systematic, objective assessment of completed projects hinders the advance of restoration science.  相似文献   

4.
Restoration activity has exponentially increased across the Southwest since 1990. Over 37,000 records were compiled into the National River Restoration Science Synthesis (NRRSS) database to summarize restoration trends and assess project effectiveness. We analyzed data from 576 restoration projects in the Southwest (NRRSS‐SW). More than 50% of projects were less than or equal to 3 km in length. The most common restoration project intent categories were riparian management, water quality management, in‐stream habitat improvement, and flow modification. Common project activities were well matched to goals. Conservative estimates of total restoration costs exceeded $500 million. Most restoration dollars have been allocated to flow modification and water quality management. Monitoring was linked to 28% of projects across the Southwest, as opposed to just 10% nationwide. Mean costs were statistically similar whether or not projects were monitored. Results from 48 telephone interviews provided validation of NRRSS‐SW database analyses but showed that project costs are often underreported within existing datasets. The majority of interviewees considered their projects to be successful, most often based upon observed improvements to biota or positive public reaction rather than evaluation of field data. The efficacy of restoration is difficult to ascertain given the dearth of information contained within most datasets. There is a great need for regional entities that not only track information on project implementation but also maintain and analyze monitoring data associated with restoration. Agencies that fund or regulate restoration should reward projects that emphasize monitoring and evaluation as much as project implementation.  相似文献   

5.
Hundreds of millions of dollars per year are spent on river restoration in the Pacific Northwest (PNW), but little is known about the effectiveness of this effort. To help address this gap, we analyzed a database containing 23,000 projects at 35,000 locations in the region. We selected a subset of these projects for interviews using a survey instrument developed by a national team of scientists. In total, 47 project contacts in the PNW were interviewed to learn from the individuals directly involved in restoration. At least one‐third of the projects surveyed (34%) did not conduct sufficient monitoring to evaluate effectiveness. More than two‐thirds (70%) of all respondents reported their projects were successful, but 43% either have no success criteria or are unaware of any criteria for their project. Although almost two‐thirds (66%) of respondents anticipate a need for ongoing project maintenance, less than half (43%) have maintenance funds available. These findings suggest that establishing a connection between effectiveness monitoring and project implementation is not a usual component of project design. Consequently, we can only assess the benefits in a few isolated projects and cannot quantify the cumulative benefits of restoration on a larger scale. These findings highlight the need for (1) planning prior to implementation of restoration projects that accounts for monitoring design; (2) coordinated effectiveness monitoring to assess cumulative effects of restoration; and (3) management and maintenance of projects based on real measures of project performance.  相似文献   

6.
In response to systemic losses of submerged aquatic vegetation (SAV) in the Chesapeake Bay (east coast of North America), the U.S. Environmental Protection Agency's (EPA) Chesapeake Bay Program (CBP) and Maryland Department of Natural Resources (MD DNR) have considered SAV restoration a critical component in Bay restoration programs. In 2003, the CBP created the “Strategy to Accelerate the Protection and Restoration of Submerged Aquatic Vegetation in the Chesapeake Bay” in an effort to increase SAV area. As part of this strategy, large‐scale eelgrass (Zostera marina) restoration efforts were initiated in the Patuxent and Potomac Rivers in Maryland. From 2004 to 2007, nearly 4 million Z. marina seeds were dispersed over 10 ha on the Patuxent River and almost 9 million seeds over 16 ha on the Potomac River. Z. marina seedling establishment was consistent throughout the project (<4%); however, restored eelgrass survival was highly dependent on restoration site. Restoration locations on the Patuxent River experienced initial Z. marina seedling germination, but no long‐term plant survival. Restored Z. marina on the Potomac River has persisted and expanded, both vegetatively and sexually, beyond initial seeding areas. Healthy Z. marina beds now cover approximately five acres of the Potomac River bottom for the first time in decades. The differential success of Z. marina restoration efforts in the two rivers is evidence for the necessity of carefully considering site‐specific characteristics when using large‐scale seeding methods to achieve successful SAV restoration.  相似文献   

7.
Despite some highly visible projects that have resulted in environmental benefits, recent efforts to quantify the number and distribution of river restoration projects revealed a paucity of written records documenting restoration outcomes. Improving restoration designs and setting watershed priorities rely on collecting and making accessible this critical information. Information within the unpublished notes of restoration project managers is useful but rarely documents ecological improvements. This special section of Restoration Ecology is devoted to the current state of knowledge on river restoration. We provide an overview of the section’s articles, reflecting on lessons learned, which have implications for the implementation, legal, and financing frameworks for restoration. Our reflections are informed by two databases developed under the auspices of the National River Restoration Science Synthesis project and by extensive interactions with those who fund, implement, and permit restoration. Requiring measurable ecological success criteria, comprehensive watershed plans, and tracking of when and where restoration projects are implemented are critical to improving the health of U.S. waters. Documenting that a project was put in the ground and stayed intact cannot be equated with ecological improvements. However, because significant ecological improvements can come with well‐designed and ‐implemented stream and river restorations, a small investment in documenting the factors contributing to success will lead to very large returns in the health of our nation’s waterways. Even projects that may appear to be failures initially can be turned into success stories by applying the knowledge gained from monitoring the project in an adaptive restoration approach.  相似文献   

8.
Five Elements for Effective Evaluation of Stream Restoration   总被引:5,自引:0,他引:5  
River and stream restoration projects are increasingly numerous but rarely subjected to systematic post-project evaluation. The few such evaluation studies conducted have indicated a high percentage of failures. Thus, post-project evaluation (and dissemination of results) is essential if the field of river restoration is to advance. Effective evaluation of project success should include: (1) Clear objectives, essential to identity potential incompatibilities among project objectives and to provide a framework for design of project evaluation. (2) Baseline data, needed as an objective basis for evaluating change caused by the project and encompassing as long a pre-project period as possible (including a detailed historical study). (3) Good study design, to demonstrate the effects of restoration projects in the complex riverine environment. (4) Commitment to the long term, to detect effects evident only years following project completion; in general, monitoring should continue for at least a decade, with surveys conducted after each flood above a predetermined threshold. (5) Willingness to acknowledge failures, or rather to recognize that each restoration project constitutes an experiment, so that a failure can be just as valuable to the science as a success, provided we can learn from it (which requires objective, robust post-project evaluation).  相似文献   

9.
Stream restoration has become a multibillion dollar industry worldwide, yet there are few clear success stories and the scientific basis for effective stream restoration remains uncertain. We compiled data on completed river restoration projects from four management authorities in Victoria, Australia, to examine how the available data could inform the science of restoration ecology in rivers, and thus improve future restoration efforts. We found that existing data sources are limited and much historical information has been lost through industry restructuring and poor data archiving. Examining records for 2,247 restoration projects, we found that riparian management projects were the most common, followed by bank stabilization and in‐stream habitat improvement. Only 14% of the project records indicated that some form of monitoring was carried out. It is evident that overall there is little scientific guidance and little or no monitoring and evaluation of the projects for which we had information. However, recent advances with mandatory, statewide reporting and an increased emphasis on project design and monitoring strongly suggest that the design, implementation, monitoring, and reporting of stream restoration projects have improved in recent years and will continue to do so.  相似文献   

10.
Although the importance of monitoring and evaluation of restoration actions is increasingly acknowledged, availability of accurate, quantitative monitoring data is very rare for most restoration areas, particularly for long‐established restoration projects. We propose using fuzzy rule‐based expert systems to evaluate the degree of success of restoration actions when available information on project results and impacts largely relies on expert‐based qualitative assessments and rough estimates of quantitative values. These systems use fuzzy logic to manage the uncertainty present in the data and to integrate qualitative and quantitative information. To illustrate and demonstrate the potential of fuzzy rule‐based systems for restoration evaluation, we applied this approach to seven forest restoration projects implemented in Spain between 1897 and 1952, using information compiled in the REACTION database on Mediterranean forest restoration projects. The information available includes both quantitative and expert‐based qualitative data, and covers a wide variety of indicators grouped into technical, structural, functional, and socioeconomic criteria. The fuzzy rule‐based system translates expert knowledge of restoration specialists and forest managers into a set of simple logic rules that integrate information on individual indicators into more general evaluation criteria. The rule‐based approach proposed here can be readily applicable to any kind of restoration project, provided that some information, even if vague and uncertain, is available for a variety of assessment indicators. The evaluation of long‐established forest restoration projects implemented in Spain revealed important asymmetries in the degree of restoration success between technical, structural, functional, and socioeconomic criteria.  相似文献   

11.
Although many restoration projects now include monitoring and evaluation in an adaptive management approach, a failure to employ distinct performance standards can lead to inconsistent and unclear results that may hinder learning from project outcomes and complicate large‐scale assessments of restoration success. Such is the case with vernal pool restoration projects in California, where performance standard guidelines are vague and inconsistently applied across agencies implementing restoration projects. However, positive steps have been made in recent years to develop wetland functional assessments and monitoring protocols in California to reduce inconsistencies and promote ecologically meaningful restoration. Additional work is needed to develop specific guidelines for vernal pool restoration performance standards and define their role within an adaptive management framework. We provide a case study of a vernal pool restoration project in central California to illustrate some of the challenges in using currently available vernal pool performance standard guidelines and propose suggestions for increasing their ecological relevance and clarity.  相似文献   

12.
It is essential to understand how ecological restoration (ER) improves human well‐being in order to justify more investments and upscaling in this emergent field of action. As part of a 22‐year‐old, 80 ha ER project being carried out around a water reservoir that supplies drinking water to the city of Iracemápolis (population 19,700), in the mega‐diversity Atlantic Forest biome of Brazil, we assessed local community perceptions of the tangible and intangible benefits expected to arise from this project. A detailed questionnaire was completed for 292 members of the local community to gauge perceptions of benefits arising from various cultural and provisioning ecosystem services (ESs; especially safe and clean drinking water) provided by the 80 ha forest restoration project. A striking 94% of those interviewed wanted more ER projects in their community. Participants reported an appreciation for cultural ESs such as esthetic landscape improvement, tourism, recreation, as well as various religious, spiritual, and educational services. In addition, 87% of interviewees believed that the restoration project improved the quality of their drinking water, and 63% said they would agree to an increase in water tariffs if the proceeds were to be invested in more forest restoration. Judging from this study, investigation and subsequent communication of popular perceptions of the various benefits of ER projects could promote consensus‐building and support for projects among stakeholders, and inform governmental and societal investments in restoration .  相似文献   

13.
Many coastal habitat restoration projects are focused on restoring the population of a single foundation species to recover an entire ecological community. Estimates of the ecosystem services provided by the restoration project are used to justify, prioritize, and evaluate such projects. However, estimates of ecosystem services provided by a single species may vastly under‐represent true provisioning, as we demonstrate here with an example of oyster reefs, often restored to improve estuarine water quality. In the brackish Chesapeake Bay, the hooked mussel Ischadium recurvum can have greater abundance and biomass than the focal restoration species, the eastern oyster Crassostrea virginica. We measured the temperature‐dependent phytoplankton clearance rates of both bivalves and their filtration efficiency on three size classes of phytoplankton to parameterize an annual model of oyster reef filtration, with and without hooked mussels, for monitored oyster reefs and restoration scenarios in the eastern Chesapeake Bay. The inclusion of filtration by hooked mussels increased the filtration capacity of the habitat greater than 2‐fold. Hooked mussels were also twice as effective as oysters at filtering picoplankton (1.5–3 µm), indicating that they fill a distinct ecological niche by controlling phytoplankton in this size class, which makes up a significant proportion of the phytoplankton load in summer. When mussel and oyster filtration are accounted for in this, albeit simplistic, model, restoration of oyster reefs in a tributary scale restoration is predicted to control 100% of phytoplankton during the summer months.  相似文献   

14.
The social dimensions of river restoration are not well understood especially in the context of large‐scale restoration projects embedded in a complex social‐ecological system. This study used in‐depth interviews with diverse stakeholders to examine perceptions of restoration success on the Clark Fork River Superfund project in Western Montana. Trust emerged as critical to restoration success and was influenced by public engagement, and by spatial and temporal scale. At this large scale, multiple relationships between agencies, NGOs, businesses, landowners, and other stakeholders meant that building trust was a complicated endeavor. The large spatial scale and long time frame made public engagement challenging, and landowners in particular were critical of the project, expressing mistrust in both agencies and the project as a whole. However, projects focused on smaller spatial scales, such as particular stream reaches, appeared to inspire more effective collaboration. Relationships between organizations were important at this large scale, but inter‐organizational conflict affected trust across the project. Further, because trust requires accepting vulnerability, recognizing the differential vulnerability that particular groups and communities experience, based on the risks and benefits they accrue relative to the project, is important.  相似文献   

15.
Coral reef restoration is an increasingly important part of tropical marine conservation. Information about what motivates coral reef restoration as well as its success and cost is not well understood but is needed to inform restoration decisions. We systematically review and synthesize data from mostly scientific studies published in peer‐reviewed and gray literature on the motivations for coral reef restoration, the variables measured, outcomes reported, the cost per hectare of the restoration project, the survival of restored corals, the duration of the project, and its overall spatial extent depending on the restoration technique employed. The main motivation to restore coral reefs for the projects assessed was to further our ecological knowledge and improve restoration techniques, with coral growth, productivity, and survival being the main variables measured. The median project cost was 400,000 US$/ha (2010 US$), ranging from 6,000 US$/ha for the nursery phase of coral gardening to 4,000,000 US$/ha for substrate addition to build an artificial reef. Restoration projects were mostly of short duration (1–2 years) and over small spatial extents (0.01 ha or 108 m2). Median reported survival of restored corals was 60.9%. Future research to survey practitioners who do not publish their discoveries would complement this work. Our findings and database provide critical data to inform future research in coral reef restoration.  相似文献   

16.
The use of aquaculture systems to grow the seagrass Zostera marina (eelgrass) from seeds for restoration projects was evaluated through laboratory and mesocosm studies. Along the mid‐Atlantic coast of North America Z. marina seeds are shed from late spring through early summer, but seeds typically do not begin to germinate until the late fall. Fall is the optimal season to plant both seeds and shoots in this region. We conducted studies to determine if Z. marina seeds can be induced to germinate in the summer and seedlings grown in mesocosms to a size sufficiently large enough for out‐planting in the fall. Seeds in soil‐less culture germinated in the summer when held at 14°C, with percent germination increasing with lower salinities. Cold storage (4°C) of seeds prior to planting in sediments enhanced germination and seedling survival. Growth rates of seedlings were significantly higher in nutrient enriched estuarine sediments. Results from preliminary studies were used in designing a large‐scale culture project in which 15,000 shoots were grown and out‐planted into the Potomac River estuary in the Chesapeake Bay and compared with an equal number of transplanted shoots. These studies demonstrate that growing Z. marina from seeds is an alternative approach to harvesting plants from donor beds when vegetative shoots are required for restoration projects.  相似文献   

17.
The Society for Ecological Restoration (SER) published the second edition of its International Principles and Standards for the Practice of Ecological Restoration in 2019. We conducted a pan-Canadian study using semi-structured interviews with restoration professionals to explore the extent to which restoration practitioners are aware of the document and use it. Overall, we found that direct uptake of the document by practitioners was lower than expected, with approximately 37.7% of all participants that were both aware of and consulting the publication for guidance in their practice of ecological restoration. This is due in part to low awareness of the document itself, with only a small majority (56.5%) of interviewees being aware of it. Other reasons listed by practitioners such as the structure of the publication, its added value, and its suitability for on-the-ground work revealed why some individuals aware of the existence of the document still failed to consult it. Here, we present a more nuanced assessment of these observations and share our findings with the ecological restoration community to address this disconnection. With intensifying pressures to achieve restoration success internationally, SER's guidance is critical. We analyze why it seems guidance from SER is not being taken up as fully as it might, and ways in which future versions may be improved.  相似文献   

18.
The importance of judging success of restoration studies over extended time periods has been repeatedly voiced but convincing information to justify increased monitoring is generally unavailable. Building on Bell et al. (2008), we investigated the development of areal coverage of the seagrass, Halodule wrightii, as a metric for assessing the outcome of a restoration effort conducted near Tampa Bay, Florida, U.S.A., over 7 years, thereby expanding the timescale over which a subtropical seagrass restoration project was evaluated for success. In each of 12 plots, 500 planting units of H. wrightii were introduced in 2002, and the seagrass cover level documented annually through 2009. Although only low‐moderate levels of H. wrightii cover were recorded after 3 years, a rapid increase to high coverage levels was evident in many plots after 2006 and sustained through 2009. Plots that supported only low levels of seagrass cover initially remained poor performers, 4–7 years post‐planting. By 2008, substantial seagrass spillover, contiguous with over 75% of plots, was recorded. When both within‐plot coverage and spillover were considered, seagrass restoration success was attained 6 years after initiation. Our findings provide an example of comparatively longer‐term monitoring of a restoration effort leading to reversal of an earlier evaluation of project success. Moreover, unique information on H. wrightii temporal dynamics emerged from the 7 year study, further illustrating the value of long‐term assessment of restoration. Extending the duration of post‐planting surveys of seagrass coverage may address multiple needs as it advances the field of seagrass restoration .  相似文献   

19.
Channel reconfiguration is one of the most common and costly stream restoration techniques, though its effectiveness is frequently questioned. Project monitoring often tracks changes in macroinvertebrate communities and other responses for a 5‐year period. However, channel reconfiguration is a documented disturbance to stream ecosystems, suggesting that this form of restoration initiates succession over longer time frames than monitoring typically captures. To address the role of succession in stream ecosystem recovery, we developed the Phased Recovery Framework (PRF) which proposes benchmarks represented by predictable habitat structure and community composition based on project age. The PRF was tested across nine stream restoration projects in western Montana, ranging in age from 1 to 18 years, each paired with an established reference system. We tested for differences in channel form, habitat character, and macroinvertebrate community composition. While restoration established desired channel form, most biotic variables had not recovered to reference condition even for the oldest projects. Across all sites, phases of the PRF were poor predictors of response. However, analyzing responses to reconfiguration independently for sites in watersheds with unimpaired water quality versus those experiencing excessive nutrient enrichment (i.e. impaired sites) indicated that biological variables converged on reference conditions at unimpaired sites, but diverged across impaired reaches. These large‐scale anthropogenic influences may play a stronger role in recovery than do changes to channel form and need to be incorporated into project design and success criteria. Assessment of the PRF suggests that short‐term monitoring is not likely to produce reliable indicators of effectiveness without incorporating locally appropriate change associated with watershed impairment and successional progression.  相似文献   

20.
Although public and financial support for stream restoration projects is increasing, long‐term monitoring and reporting of project successes and failures are limited. We present the initial results of a long‐term monitoring program for the Lower Red River Meadow Restoration Project in north‐central Idaho, U.S.A. We evaluate a natural channel design’s effectiveness in shifting a degraded stream ecosystem onto a path of ecological recovery. Field monitoring and hydrodynamic modeling are used to quantify post‐restoration changes in 17 physical and biological performance indicators. Statistical and ecological significance are evaluated within a framework of clear objectives, expected responses (ecological hypotheses), and performance criteria (reference conditions) to assess post‐restoration changes away from pre‐restoration conditions. Compared to pre‐restoration conditions, we observed ecosystem improvements in channel sinuosity, slope, depth, and water surface elevation; quantity, quality, and diversity of in‐stream habitat and spawning substrate; and bird population numbers and diversity. Modeling documented the potential for enhanced river–floodplain connectivity. Failure to detect either statistically or ecologically significant change in groundwater depth, stream temperature, native riparian cover, and salmonid density is due to a combination of small sample sizes, high interannual variability, external influences, and the early stages of recovery. Unexpected decreases in native riparian cover led to implementation of adaptive management strategies. Challenges included those common to most project‐level monitoring—isolating restoration effects in complex ecosystems, securing long‐term funding, and implementing scientifically rigorous experimental designs. Continued monitoring and adaptive management that support the establishment of mature and dense riparian shrub communities are crucial to overall success of the project.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号