首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Erwinia chrysanthemi is a phytopathogenic enterobacterium causing soft rot disease in a wide range of plants. Osmoregulated periplasmic glucans (OPGs) are intrinsic components of the gram-negative bacterial envelope. We cloned the opgGH operon of E. chrysanthemi, encoding proteins involved in the glucose backbone synthesis of OPGs, by complementation of the homologous locus mdoGH of Escherichia coli. OpgG and OpgH show a high level of similarity with MdoG and MdoH, respectively, and mutations in the opgG or opgH gene abolish OPG synthesis. The opg mutants exhibit a pleiotropic phenotype, including overproduction of exopolysaccharides, reduced motility, bile salt hypersensitivity, reduced protease, cellulase, and pectate lyase production, and complete loss of virulence. Coinoculation experiments support the conclusion that OPGs present in the periplasmic space of the bacteria are necessary for growth in the plant host.  相似文献   

3.
4.
Osmoregulated periplasmic glucans (OPGs) of Escherichia coli are anionic oligosaccharides that accumulate in the periplasmic space in response to low osmolarity of the medium. Their anionic character is provided by the substitution of the glucosidic backbone by phosphoglycerol originating from the membrane phospholipids and by succinyl residues from unknown origin. A phosphoglycerol-transferase-deficient mdoB mutant was subjected to Tn5 transposon mutagenesis, and putative mutant clones were screened for changes in the anionic character of OPGs by thin-layer chromatography. One mutant deficient in succinylation of OPGs was obtained, and the gene inactivated in this mutant was characterized and named mdoC. mdoC, which encodes a membrane-bound protein, is closely linked to the mdoGH operon necessary for the synthesis of the OPG backbone.  相似文献   

5.
Osmoregulated periplasmic glucans (OPGs) G protein (OpgG) is required for OPGs biosynthesis. OPGs from Escherichia coli are branched glucans, with a backbone of beta-1,2 glucose units and with branches attached by beta-1,6 linkages. In Proteobacteria, OPGs are involved in osmoprotection, biofilm formation, virulence and resistance to antibiotics. Despite their important biological implications, enzymes synthesizing OPGs are poorly characterized. Here, we report the 2.5 A crystal structure of OpgG from E.coli. The structure was solved using a selenemethionine derivative of OpgG and the multiple anomalous diffraction method (MAD). The protein is composed of two beta-sandwich domains connected by one turn of 3(10) helix. The N-terminal domain (residues 22-388) displays a 25-stranded beta-sandwich fold found in several carbohydrate-related proteins. It exhibits a large cleft comprising many aromatic and acidic residues. This putative binding site shares some similarities with enzymes such as galactose mutarotase and glucodextranase, suggesting a potential catalytic role for this domain in OPG synthesis. On the other hand, the C-terminal domain (residues 401-512) has a seven-stranded immunoglobulin-like beta-sandwich fold, found in many proteins where it is mainly implicated in interactions with other molecules. The structural data suggest that OpgG is an OPG branching enzyme in which the catalytic activity is located in the large N-terminal domain and controlled via the smaller C-terminal domain.  相似文献   

6.
We report the initial characterization of the osmoregulated periplasmic glucans (OPGs) of Erwinia chrysanthemi. OPGs are intrinsic components of the bacterial envelope necessary to the pathogenicity of this phytopathogenic enterobacterium (F. Page, S. Altabe, N. Hugouvieux-Cotte-Pattat, J.-M. Lacroix, J. Robert-Baudouy and J.-P. Bohin, J. Bacteriol. 183:0000-0000, 2001 [companion in this issue]). OPGs were isolated by trichloracetic acid treatment and gel permeation chromatography. The synthesis of these compounds appeared to be osmoregulated, since lower amounts of OPGs were produced when bacteria were grown in media of higher osmolarities. However, a large fraction of these OPGs were recovered in the culture medium. Then, these compounds were characterized by compositional analysis, high-performance anion-exchange chromatography, matrix-assisted laser desorption mass spectrometry, and (1)H and (13)C nuclear magnetic resonance analyses. OPGs produced by E. chrysanthemi are very heterogeneous at the level of both backbone structure and substitution of these structures. The degree of polymerization of the glucose units ranges from 5 to 12. The structures are branched, with a linear backbone consisting of beta-1,2-linked glucose units to which a variable number of branches, composed of one glucose residue, are attached by beta-1,6 linkages in a random way. This glucan backbone may be substituted by O-acetyl and O-succinyl ester-linked residues.  相似文献   

7.
Osmoregulated periplasmic glucans (OPGs) are major periplasmic constituents of Gram-negative bacteria. The role of OPGs has been postulated in symbiotic as well as pathogenic host–microorganism interactions. Here, we report the role of OPGs from Salmonella enterica serovar Typhimurium during growth and biofilm formation in leafy-green vegetable wash water. The opgGH mutant strain, which was defective in OPG biosynthesis, initiated the growth at a slower rate in wash waters obtained from spinach, lettuce and green collard and severely impaired biofilm formation. The lack of OPG synthesis did not influence biofilm formation by the opgGH mutant in low-nutrient low-osmolarity laboratory media. In coculture experiments initiated with equal proportions of cells, the opgGH mutant was outnumbered by the wild-type strain under the planktonic as well as the biofilm growth conditions. The opgGH mutant strain poorly colonized mouse organs when introduced orally along with the wild-type strain. This is the first report demonstrating the role of OPGs of Salmonella in competitive colonization of biofilms, planktonic cultures and mouse organs.  相似文献   

8.
Osmoregulated periplasmic glucans (OPGs) of Escherichia coli are anionic and highly branched oligosaccharides that accumulate in the periplasmic space in response to low osmolarity of the medium. The glucan length, ranging from 5 to 12 glucose residues, is under strict control. Two genes that form an operon, mdoGH, govern glucose backbone synthesis. The new gene mdoD, which appears to be a paralog of mdoG, was characterized in this study. Cassette inactivation of mdoD resulted in production of OPGs with a higher degree of polymerization, indicating that OpgD, the mdoD product (according to the new nomenclature), controls the glucose backbone structures. OpgD secretion depends on the Tat secretory pathway. Orthologs of the mdoG and mdoD genes are found in various proteobacteria. Most of the OpgD orthologs exhibit a Tat-dependent secretion signal, while most of the OpgG orthologs are Sec dependent.  相似文献   

9.
Osmoregulated periplasmic glucans (OPGs) are intrinsic components of the Gram-negative bacterial envelope and are important for bacterial-host interactions. The OPGs of Pseudomonas syringae pv. syringae have been known to be highly branched linear glucans ranging from 6 to 13 glucose residues devoid of any substituents, while having backbone structure similar to those of Escherichia coli and Erwinia chrysanthemi. Here, we report for the first time succinylated and large-sized OPGs from P. syringae pv. syringae. The glucans were isolated with trichloroacetic acid treatment and various chromatographic techniques. These were further characterized by thin-layer chromatography, matrix-assisted laser desorption/ionization time of flight mass spectrometer, and 1D 1H nuclear magnetic resonance spectroscopy. The results demonstrate that novel anionic glucans with one succinyl residue at the C-6 position of the glucose unit as well as neutral glucans including large-sized glucans with up to 28 degrees of polymerization are produced in P. syringae pv. syringae. Furthermore, the succinylated and large-sized OPGs of P. syringae pv. syringae are necessary for hypoosmotic adaptation.  相似文献   

10.
Dickeya dadantii is a pectinolytic phytopathogen enterobacterium that causes soft rot disease on a wide range of plant species. The virulence of D. dadantii involves several factors, including the osmoregulated periplasmic glucans (OPGs) that are general constituents of the envelope of proteobacteria. In addition to the loss of virulence, opg-negative mutants display a pleiotropic phenotype, including decreased motility and increased exopolysaccharide synthesis. A nitrosoguanidine-induced mutagenesis was performed on the opgG strain, and restoration of motility was used as a screen. The phenotype of the opg mutant echoes that of the Rcs system: high level activation of the RcsCD-RcsB phosphorelay is needed to activate exopolysaccharide synthesis and to repress motility, while low level activation is required for virulence in enterobacteria. Here, we show that mutations in the RcsCDB phosphorelay system restored virulence and motility in a D. dadantii opg-negative strain, indicating a relationship between the Rcs phosphorelay and OPGs.Osmoregulated periplasmic glucans (OPGs) are general periplasmic constituents of the envelope of most proteobacteria. Their common features are that glucose is the sole constituent sugar, and their abundance in the periplasm increases as the osmolarity of the medium decreases. In Enterobacteriaceae and related bacteria, the glucose backbone synthesis is catalyzed by both products of the opgGH operon (5). Studies of several bacterial pathogens, including Dickeya dadantii, showed the importance of OPGs for virulence (4, 5, 18, 25, 26).Dickeya dadantii is a member of the pectinolytic erwiniae causing soft rot disease in a wide range of plant species (33). The virulence of D. dadantii is associated with the synthesis and the secretion of a set of plant cell wall-degrading enzymes (pectinases, cellulases, and proteases) causing maceration of the plant tissues (22). D. dadantii synthesize OPGs containing 5 to 12 glucose units joined by β,1-2 linkages and branched by β,1-6 linkages that are substituted with succinyl and acetyl residues (11). The opgG or opgH mutants unable to synthesize OPGs show a pleiotropic phenotype. They are nonvirulent on chicory leaves and potato tubers, and synthesis and secretion of pectate-lyases, cellulases, and proteases are reduced (32). Motility is severely reduced, while exopolysaccharide secretion is increased (mucoid phenotype) (32). Data suggest that the opg mutants are impaired in perception of the environment, which prevents D. dadantii from recognizing host cells, suggesting a possible dysfunction of phosphorelay signaling pathways, major systems required for environmental perception in bacteria (6). In these systems, upon stimuli, a kinase/phosphatase sensor autophosphorylates and transfers the phosphate group to a cytoplasmic regulator which modulates expression of target genes.Here, we show that mutations in the rcsC and rcsB genes, encoding, respectively, the sensor and the cognate regulator of the RcsCD-RcsB phosphorelay, suppress several phenotypes of an opgG mutant, including the nonvirulent phenotype on potato tubers. This suggests interactions between the RcsCD-RcsB phosphorelay and OPG molecules and constitutes a first hint at the molecular role of these ubiquitous glycans in virulence.  相似文献   

11.
Osmoregulated periplasmic glucans (OPGs) of food- and water-borne enteropathogen Shigella flexneri were characterized. OPGs were composed of 100% glucose with 2-linked glucose as the most abundant residue with terminal glucose, 2-linked and 2,6-linked glucose also present in high quantities. Most dominant backbone polymer chain length was seven glucose residues. Individual genes from the opg gene family comprising of a bicistronic operon opgGH, opgB, opgC and opgD were mutagenized to study their effect on OPGs synthesis, growth in hypo-osmotic media and ability to invade HeLa cells. Mutation in opgG and opgH abolished OPGs biosynthesis, and mutants experienced longer lag time to initiate growth in hypo-osmotic media. Longer lag times to initiate growth in hypo-osmotic media were also observed for opgC and opgD mutants but not for opgB mutant. All opg mutants were able to infect HeLa cells, and abolition of OPGs synthesis did not affect actin polymerization or plaque formation. Ability to synthesize OPGs was beneficial to bacteria in order to initiate growth under low osmolarity conditions, in vitro mammalian cell invasion assays, however, could not discriminate whether OPGs were required for basic aspect of Shigella virulence.  相似文献   

12.
The osmoregulated periplasmic glucans (OPGs) produced by Rhodobacter sphaeroides, a free-living organism, were isolated by trichloracetic acid treatment and gel permeation chromatography. Compounds obtained were characterized by compositional analysis, matrix-assisted laser desorption ionization mass spectrometry and nuclear magnetic resonance. R. sphaeroides predominantly synthesizes a cyclic glucan containing 18 glucose residues that can be substituted by one to seven succinyl esters residues at the C6 position of some of the glucose residues, and by one or two acetyl residues. The glucans were subjected to a mild alkaline treatment in order to remove the succinyl and acetyl substituents, analyzed by MALDI mass spectrometry and purified by high-performance anion-exchange chromatography. Methylation analysis revealed that this glucan is linked by 17 1,2 glycosidic bonds and one 1,6 glycosidic bond. Homonuclear and (1)H/(13)C heteronuclear NMR experiments revealed the presence of a single alpha-1,6 glycosidic linkage, whereas all other glucose residues are beta-1,2 linked. The different anomeric proton signals allowed a complete sequence-specific assignment of the glucan. The structural characteristics of this glucan are very similar to the previously described OPGs of Ralstonia solanacearum and Xanthomonas campestris, except for its different size and the presence of substituents. Therefore, similar OPGs are synthesized by phytopathogenic as well as free-living bacteria, suggesting these compounds are intrinsic components of the Gram-negative bacterial envelope.  相似文献   

13.
We have followed the synthesis and secretion of a number of periplasmic and outer membrane proteins in three strains of Escherichia coli, a secA amber mutant, a secA temperature-sensitive mutant, and a strain that blocks protein secretion due to a high level of expression of an export-defective hybrid protein between maltose-binding protein and beta-galactosidase (MalE-LacZ). Our results show that after several hours under nonpermissive conditions the specificity and extent of the export blocks in the secA temperature-sensitive mutant and the strain producing the MalE-LacZ hybrid protein are identical, affecting at least four major outer membrane proteins and most but not all periplasmic proteins. The secA gene product, therefore, appears to be an essential component of the major export pathway in E. coli which is used by many envelope proteins independent of whether they are cotranslationally or post-translationally secreted. In contrast, the synthesis of only a subset of these envelope proteins is reduced in the secA amber mutant after shift to the nonpermissive condition. These results indicate that the SecA protein serves roles both in the synthesis and the secretion of certain cell envelope proteins.  相似文献   

14.
In both natural and built environments, microbes on occasions manifest in spherical aggregates instead of substratum-affixed biofilms. These microbial aggregates are conventionally referred to as granules. Cryoconites are mineral rich granules that appear on glacier surfaces and are linked with expanding surface darkening, thus decreasing albedo, and enhanced melt. The oxygenic photogranules (OPGs) are organic rich granules that grow in wastewater, which enables wastewater treatment with photosynthetically produced oxygen and which presents potential for net autotrophic wastewater treatment in a compact system. Despite obvious differences inherent in the two, cryoconite and OPG pose striking resemblance. In both, the order Oscillatoriales in Cyanobacteria envelope inner materials and develop dense spheroidal aggregates. We explore the mechanism of photogranulation on account of high similarity between cryoconites and OPGs. We contend that there is no universal external cause for photogranulation. However, cryoconites and OPGs, as well as their intravariations, which are all under different stress fields, are the outcome of universal physiological processes of the Oscillatoriales interfacing with goldilocks interactions of stresses. Finding the rules of photogranulation may enhance engineering of glacier and wastewater systems to manipulate their ecosystem impacts.  相似文献   

15.
We describe AMIN (Amidase N-terminal domain), a novel protein domain found specifically in bacterial periplasmic proteins. AMIN domains are widely distributed among peptidoglycan hydrolases and transporter protein families. Based on experimental data, contextual information and phyletic profiles, we suggest that AMIN domains mediate the targeting of periplasmic or extracellular proteins to specific regions of the bacterial envelope.  相似文献   

16.
17.
Abstract. Stand mapping and vertical and oblique tree crown projections were used to study gap characteristics and gap effects on the regeneration and stand development of Larix gmelini. The hypothesis is that waves of advance Larix regeneration are recruited into the canopy layer following the creation of canopy openings. In old-growth Larix forests of the northern Da Xingan Ling Mts., at 52 °N, obliquely projected gaps (OPG) begin at a distance of 60 - 80% of the canopy tree height from the southernmost stems bordering the gap and thus the OPGs may extend beyond the northern boundaries of the vertically projected gaps (VPG). Changes in the environment and resource availability in the OPG result in increased Larix sapling survival. Due to a greater incidence of light, 10 - 30 yr old OPG saplings were more abundant than saplings in either a near-oblique projected gap (NOPG) or in the shadow of obliquely projected crowns (SOPC). The survival of saplings more than 30-yr old was highest when they were found in the OPG of one canopy opening and the VPG of another. This means that, following recruitment into an OPG, saplings then require the space found in a VPG to permit growth into the canopy. Thus, various-sized gaps contribute to the survival of different aged saplings by increasing the complexity of stand structure. Although individuals may regenerate in an OPG, successful recruitment into the canopy requires the available growing space of a VPG. This research suggests that shade intolerant Larix gmelini can maintain its canopy dominance without fire via gap regeneration.  相似文献   

18.
New thermosensitive mutants of the yeast Saccharomyces cerevisiae which block the secretion of periplasmic enzymes at restriction temperature have been obtained. These mutants accumulate active low molecular weight and mature invertase species in the cell; the buoyant density of the cells in a Percoll gradient is higher than that in the wild strain cells. The mutant cells transferred to permissive temperature (25 degrees C) in the absence of protein synthesis can secrete some amount of accumulated invertase. It was found that the secretory defects of conditional mutants do not affect the activity of cytoplasmic enzymes (e.g., alcohol dehydrogenase) or the level of total protein synthesis and glycosylation and do not induce non-specific disturbances in energy metabolism and plasma membrane functions at restriction temperature. Some strains of new secretory mutants revealed uncoupled defective secretion of periplasmic enzymes and intrinsic membrane proteins (proline permease). The possibility of branching of the secretory pathway for periplasmic enzymes and cytoplasmic membrane proteins is discussed.  相似文献   

19.
opgB gene of Salmonella enterica serovar Typhimurium was identified earlier in a genome-wide screen for mice virulence (Valentine et al. in Infect Immun 66:3378-3383, 1998). Although mutation in opgB resulted in avirulent Salmonella strain, how this gene contributes to pathogenesis remains unclear. Based on DNA homology, opgB is predicted to be responsible for adding phosphoglycerate residues to osmoregulated periplasmic glucans (OPGs) giving them anionic characteristics. In Escherichia coli, yet another gene, opgC, is also reported to contribute to anionic characteristics of OPGs by adding succinic acid residues. We constructed opgB, opgC, and opgBC double mutants of S. enterica serovar Typhimurium strain SL1344. As predicted opgBC mutant synthesized neutral OPGs that were devoid of any anionic substituents. However, opgB, opgC, and opgBC mutations had no significant impact on mice virulence as well as on competitive organ colonization. In low osmotic conditions, opgB, opgC, and opgBC mutants exhibited delay in growth initiation in the presence of sodium deoxycholate. Anionic substituents of OPGs from Salmonella although appear to be needed to overcome resistance of deoxycholate in hypoosmotic growth media, no evidence was found for their role in mice virulence.  相似文献   

20.
Previous immunoelectron microscopic studies have shown that both the final intermediate in O-antigen synthesis, undecaprenol-linked O polymer, and newly synthesized O-antigenic lipopolysaccharide are localized to the periplasmic face of the inner membrane (C. A. Mulford and M. J. Osborn, Proc. Natl. Acad. Sci. USA 80:1159-1163, 1983). In vivo pulse-chase experiments now provide further evidence that attachment of O antigen to core lipopolysaccharide, as well as polymerization of O-specific polysaccharide chains, takes place at the periplasmic face of the membrane. Mutants doubly conditional in lipopolysaccharide synthesis [kdsA(Ts) pmi] were constructed in which synthesis of core lipopolysaccharide and O antigen are temperature sensitive and mannose dependent, respectively. Periplasmic orientation of O antigen:core lipopolysaccharide ligase was established by experiments showing rapid chase of undecaprenol-linked O polymer, previously accumulated at 42 degrees C in the absence of core synthesis, into lipopolysaccharide following resumption of core formation at 30 degrees C. In addition, chase of the monomeric O-specific tetrasaccharide unit into lipopolysaccharide was found in similar experiments in an O-polymerase-negative [rfc kdsA(Ts) pmi] mutant, suggesting that polymerization of O chains also occurs at the external face of the inner membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号