首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
为了研究在突触功能中起重要作用的磷蛋白状况,利用高分辩率的放射自显影、梯度电泳和双向电泳,以及抗CaN多克隆抗体封闭CaN磷酸酶活力等技术,并运用计算机图象处理系统,对大鼠大脑皮层突触体中磷蛋白生后发育变化进行定量分析.结果表明,大鼠出生后(PND)3d、7d、21d、和成年磷蛋白表达有很大不同,在出生后早期对应突触主要形成时期,磷蛋白呈高表达;从PND21d开始至成年,底物蛋白磷酸化状态逐渐降低,同时研究了突触主要形成时期有显著变化的钙调神经磷酸酶,它的内源底物及其在其生后发育所发生的变化.  相似文献   

2.
大鼠大脑皮层中钙调神经磷酸酶活力的时空变化   总被引:5,自引:0,他引:5  
以PNPP为底物测定了超离心制备的大鼠出生后早期和成年大脑皮层亚细胞各组分中钙调神经磷酸酶的活力,实验结果表明:(1)钙调神经磷酸酶活力广泛地存在于胞液和突触部分,并且各亚细胞组分有明显差异,成年大鼠大脑皮层中CaN活力相对最高水平是在突触体,突触质,胞液,重的和轻的突触膜部分。(2)大鼠大脑皮层突触体中CaN活力在出生后第2周和第3周出现高峰的平台期,这与突触发生的高峰期是一致的,在胞液和重的突  相似文献   

3.
大鼠大脑皮层中钙调神经磷酸酶活力的时空变化   总被引:1,自引:0,他引:1  
以PNPP为底物测定了超离心制备的大鼠出生后早期和成年大脑皮层亚细胞各组分中钙调神经磷酸酶的活力。实验结果表明:(l)钙调神经磷酸酶活力广泛地存在于胞液和突触部分,并且各亚细胞组分有明显差异。成年大鼠大脑皮层中CaN活力相对最高水平是在突触体,突触质,胞液,重的和轻的突触膜部分。(2)大鼠大脑皮层突触体中CaN活力在出生后第2周和第3周出现高峰的平台期,这与突触发生的高峰期是一致的。在胞液和重的突触膜中CaN活力最高水平是在出生后的第7d,而在突触质和轻的突触膜中是在第20d。总之,这些发现证实,在脑发育期间,CaN活力是依照区域和时间性控制的,提示CaN可能参与了突触功能作用。  相似文献   

4.
大鼠出生后脑内钙调神经磷酸酶的研究   总被引:1,自引:0,他引:1  
本文用BA-ELISA.immunoblotting及酶活力测定等方法,研究了大鼠脑中钙调神经磷酸酶在大鼠出生后的变化情况。结果表明,钙调神经磷酸酶的含量在大鼠出生后第二周和第三周显著增加,其活力也在出生后第二周达到顶峰。钙调神经磷酸酶这种有规律的变化与脑中突触形成在时间上是一致的,暗示钙调神经磷酸酶可能参与突触功能的调节。  相似文献   

5.
癫痫大鼠与正常大鼠脑中钙调神经磷酸酶及其底物的研究   总被引:5,自引:0,他引:5  
报道了听源性癫痫大鼠发作后其脑内钙调神经磷酸酶(Calcineurin,CaN)及其底物蛋白磷酸化水平的改变,以PNPP为底物测CaN的活力,用间接ELISA测CaN的含量,SDS-PAGE和2-D-PAGE并放射自显影的方法研究脑内蛋白质磷酸化水平,发现与正常大鼠相比,听源性癫痫大鼠发作后,脑内CaN的含量并没有改变,但比活力下降,其底物的磷酸化状态也有改变,其中一个30kD蛋白磷酸化程度明显降  相似文献   

6.
钙调神经磷酸酶是70年代末80年代初发现的一种直接依赖于钙和钙调素的磷蛋白磷酸酶。它大量存在于脑内,分子量80k,由催化亚基A和调节亚基B1:1组成。钙调神经磷酸酶是个多底物的磷蛋白磷酸酶,它的活性还受Mn2+,Ni2+等多种金属离子的调节。  相似文献   

7.
报道了听源性癫痫大鼠发作后其脑内钙调神经磷酸酶(Calcineurin,CaN)及其底物蛋白磷酸化水平的改变。以PNPP为底物测CaN的活力,用间接ELISA测CaN的含量,SDS-PAGE和2-D-PAGE并放射自显影的方法研究脑内蛋白质磷酸化水平,发现与正常大鼠相比,听源性癫痫大鼠发作后,脑内CaN的含量并没有改变,但比活力下降,其底物的磷酸化状态也有改变,其中一个30kD蛋白磷酸化程度明显降低。实验结果提示,大鼠听源性癫痫与CaN及其调控的底物有相关性。  相似文献   

8.
Xu S  Fu MG  Xu YF  Pang YZ  Tang CS 《生理学报》2000,52(4):305-307
本研究观察了钙调神经磷酸酶(CaN)在血管坚张素Ⅱ(AngⅡ)刺激的大鼠心脏成纤维细胞增殖中的作用。在培养的大鼠心脏成纤维细胞上,应用双波长荧光 计检测Fura-2标记的细胞游离Ca^2+浓度;应用对硝基苯磷酸(PNPP)作底物测定钙调神经磷酸酶(CaN)活性;根据^3H-胸腺嘧啶掺入法评估CaN特异性抑制剂环胞素A(CsA)对AngⅡ刺激的心脏成纤维细胞DNA合成的影响。结果表明,AngⅡ(10  相似文献   

9.
红花菜豆凝集素糖-结合肽段的分离施炜星宋金芳孙册(中国科学院上海生物化学研究所,上海200031)关键词红花菜豆凝集素;糖-结合肽段;分离收稿日期:1996-06-08;接收日期:1996-09-03。凝集素的生物学作用和功能与其糖-结合专一性密切相...  相似文献   

10.
同步纯化人心肌肌钙蛋白T、I   总被引:4,自引:0,他引:4  
同步纯化人心肌肌钙蛋白T、I李志梁付朝平钱学贤陆青王素华黎梅兰(第一军医大学珠江医院心内科,广州510282)关键词心肌肌钙蛋白T;心肌肌钙蛋白I;同步纯化收稿日期:1996-04-17;接受日期:1996-08-27。心肌肌钙蛋白包括3种不同的蛋白...  相似文献   

11.
Cytoskeletal preparation obtained from synaptosome fractions of rat cerebrum contained the activity of kinase C, which phosphorylated 17K Mr protein endogenous to the preparation. The kinase C activity associated with the synaptosome cytoskeletons is greater in the cerebellum and hippocampus than in the cerebrum. The enhancement rates of phosphorylation of the 17K Mr protein were 293%, 544%, and 526% in the Triton X-100-insoluble fractions of synaptosomes prepared from cerebral cortex, hippocampus, and cerebellum, respectively. The 17K Mr protein was distinct from myelin basic protein (MBP) for the following reasons: 1) The electrophoretic mobility of the protein was slightly smaller than that of major MBP of rat in the polyacrylamide gel of 10–20% linear gradient, and the protein was not contained in the purified rat myelin. 2) The isoelectric point of the protein was in neutral range, whereas that of MBP was in alkaline one. 3) The 17K Mr protein did not cross-react with anti-MBP antibody. The protein was shown to be a major substrate contained in the cytoskeletal preparation of synaptosome obtained from cerebrum except for contaminating MBP. Only serine residue of the 17K Mr protein was phosphorylated by the kinase C endogenous to the preparation. The results suggest strongly that the synaptic role of protein kinase C through phosphorylation of the 17K Mr protein.Abbreviations used EGTA ethyleneglycol-bis(-aminoethyl ether) - HEPES N-2-hydroxyethyl-piperazine-N-2-ethanesulfonic acid - MBP myelin basic protein - SDS sodium dodecyl sulfate - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - SPM synaptic plasma membrane  相似文献   

12.
DEVELOPMENTAL CHANGES IN GLYCOLYSIS IN RAT CEREBRAL CORTEX   总被引:2,自引:0,他引:2  
Abstract— The ATP concentration in infant rat cerebral cortex slices which were incubated aerobically with glucose (5 m m ) as substrate was much higher than in those from the adult. The higher ATP concentration in slices from young rat was also obtained when they were incubated aerobically with pyruvate (10 m m ), dl -lactate (20 m m ) and dl -3-nydroxybutyrate (20 m m ) However, when the slices were incubated anaerobically with glucose, the ATP concentration was very low. Thus, the formation of ATP in the slices from the young rat was thought to be mainly due to their oxidative metabolism, as in those from the adult. The amounts of glycolytic key enzymes in rat cerebral cortex (hexokinase. phosphofructokinase and pyruvate kinase) increased with age. Glycolysis was actually shown to be less active in the cerebral slices from young rats than from the adult. In addition it is known that the tricarboxylic acid cycle enzymes in rat cerebrum also increase with age. Consequently, the activity with respect to ATP formation must be lower in the cerebral cortex slices from young rats than from the adult. The fact that ATP was nevertheless higher in the slices from young rats may be explained by a lower rate of degradation. Developmental increases in the amounts of Na+-K+-ATPase and Mg2+ -ATPase in rat cerebral cortex were greater than those of the glycolytic key enzymes. These are discussed in relation to the observation that the rate of aerobic glycolysis in slices from cerebral cortex of young rats was not increased by d -glutamate (5 m m ) and high potassium (50 m m ).  相似文献   

13.
Abstract: A new family of membrane phosphoproteins designated as P9, P12, P15, P16, and P20 with corresponding apparent molecular weights of 9K, 12K, 15K, 16K, and 20K was characterized from rat brain by using in vitro exogenous or endogenous phosphorylation and autoradiography. As the phosphorylation was selectively inhibited by the protein kinase C (PKC) inhibitor PKC19–31 or Ca2+-chelating reagents and again stimulated by the PKC activator phorbol 12,13-dibutyrate, these proteins are thought to be the natural PKC substrates. Because P12, P15, P16, and P20 were neutral proteins (pl 7.0) and specifically distributed in neuronal membranes, the new family of membrane-associated PKC substrate proteins was referred to as neutrinins. Neutrinins were widely distributed in rat brain, being especially plentiful in the spinal cord, medulla oblongata, cerebellum, and midbrain, relatively scanty in the cerebral cortex, but lacking in cytosol of brain areas and cell membrane preparations of peripheral tissues. The expression of the developmental changes of neutrinins has been monitored by the in vitro exogenous phosphorylation approach, i.e., adding purified PKC to a deactivated synaptosomal plasma membrane system. Levels of all the neutrinin proteins in rat cerebral cortex, as represented by P12, P15, and P16, showed an ontogenetic increase from the early postnatal days to the adult. This appears to be correlated with the commencement of synaptogenesis.  相似文献   

14.
Summary Synaptosomes derived from 2–21 days postnatal rat cerebral cortex have been examined following glutaraldehyde fixation and block PTA staining, with the aim of investigating the maturation of the paramembranous densities at the contact region between the pre- and postsynaptic components. The internal coats of pre- and postsynaptic membranes first appear as undifferentiated plaque-like thickenings, which gradually develop into, or are replaced by, dense projections and postsynaptic focal densities respectively. Both sets of densities pass through an interconnected phase before starting to emerge as discrete entities at 5–7 days. The external coats of the pre- and postsynaptic membranes coalesce to form a plate-like structure which breaks down during development to form the cleft densities or transverse bars of the adult contact region. Although for the first few days of postnatal development only one type of synaptosome can be identified, from 5 days onwards two types corresponding to types A and B of adult life become recognizable.Increase in height of the dense projections has been correlated with increase in the number of synaptic vesicles per synaptosome during postnatal development, indicating that the synaptic vesicles may play a role in the formation and maturation of dense projections. The possible importance of other factors in this process is also discussed.We would like to thank Professors J. Z. Young, F. R. S., and E. G. Gray for their advice, and Mr. S. Waterman for expert photographic assistance.  相似文献   

15.
16.
The selective monoamine oxidase inhibitors clorgyline and (−)-deprenyl were used to study the distribution of monoamine oxidase-A and -B (MAO-A, MAO-B) activities towards (−)-noradrenaline and (+),(−)-adrenaline in homogenates from seven different regions of human brain. The activities towards 5-hydroxytryptamine and 2-phenethylamine, which are essentially specific substrates for the A- and B-forms, respectively, under the conditions used in this work, were also determined. Noradreanline and adrenaline were substrates for both forms of the enzyme in all regions studied. The total MAO activity was found to be highest in the hypothalamus and lowest in the cerebellar cortex. Use of the selective MAO inhibitors clorgyline and (−)-deprenyl also showed adrenaline and noradrenaline to be substrates for both forms of the enzyme in rat brain. In human cerebral cortex and rat brain the two forms were found to have similar Km-values and maximum velocities towards adrenaline. These values for the two forms were also found to be similar in human cerebral cortex when noradrenaline was used as the substrate. In contrast MAO-A showed a significantly lower Km and a higher maximum velocity towards noradrenaline in rat brain. These results suggest that the rat may not provide a close model of the human for studies on the effects of MAO inhibitors on brain noradrenaline metabolism.  相似文献   

17.
Abstract: The effect of dopamine on the release of endogenous acetylcholine from striatal slices and synaptosomes and from cerebral cortex synaptosomes was studied. K+ (56 m M ) and veratrine (75 μM ) increased the release of acetylcholine from striatal slices by 3.7 and 3.3 times the resting release, respectively. The effect of veratrine was completely abolished by tetrodotoxin (1 μM ). Dopamine (10−6 to 10−3 M ) reduced the K+-evoked release of acetylcholine from striatal slices in a dose-dependent manner. The resting release of acetylcholine was also significantly reduced by dopamine. Apomorphine (20 μM ) significantly reduced the K+-evoked release of acetylcholine, and both this effect and the inhibition due to dopamine (1 m M ) were significantly antagonised by chlorpromazine (20 μM ). Dopamine had a similar effect on the release of acetylcholine from striatal synaptosome beds; the resting release was depressed 32% by the presence of dopamine (1 m M ). A greater effect of dopamine was seen on the release of acetylcholine from cerebral cortex synaptosome beds, the resting release being reduced by 54% and the K+-evoked release by 29%. These results are discussed in terms of the possible role of presynaptic dopamine receptors in controlling the release of acetylcholine and the magnitude of their contribution compared with that of the postsynaptic dopamine receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号