首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zonation of fatty acid metabolism in rat liver.   总被引:1,自引:2,他引:1  
Fatty acid metabolism was studied in periportal and perivenous hepatocytes isolated by the method of Chen & Katz [Biochem. J. (1988) 255, 99-104]. The rate of fatty acid synthesis and the activity of acetyl-CoA carboxylase were markedly enhanced in perivenous hepatocytes as compared with periportal cells. However, the response of these two parameters to short-term modulation by cellular effectors such as the hormones insulin and glucagon, the phorbol ester 4 beta-phorbol 12 beta-myristate 13 alpha-acetate and the xenobiotics ethanol and acetaldehyde was similar in the two zones of the liver. In addition, perivenous hepatocytes showed a higher capacity of esterification of exogenous fatty acids into both cellular and very-low-density-lipoprotein lipids. Nevertheless, no difference between the two cell sub-populations seemed to exist in relation to the secretion of very-low-density lipoproteins. On the other hand, the rate of fatty acid oxidation was increased in periportal cells. This could be accounted for by a higher activity of carnitine palmitoyltransferase I and a lower sensitivity of this enzyme to inhibition by malonyl-CoA in the periportal zone. No differences were observed between periportal and perivenous hepatocytes in relation to the short-term response of fatty acid oxidation and carnitine palmitoyltransferase I activity to the cellular modulators mentioned above. In conclusion, our results show that: (i) lipogenesis is achieved at higher rates in the perivenous zone of the liver, whereas the fatty-acid-oxidative process occurs with a certain preference in the periportal area of this organ; (ii) the short-term response of the different fatty-acid-metabolizing pathways to cellular effectors is quantitatively similar in the two zones of the liver.  相似文献   

2.
3.
4.
5.
Isolated liver cells prepared from starved sheep converted palmitate into ketone bodies at twice the rate seen with cells from fed animals. Carnitine stimulated palmitate oxidation only in liver cells from fed sheep, and completely abolished the difference between fed and starved animals in palmitate oxidation. The rates of palmitate oxidation to CO2 and of octanoate oxidation to ketone bodies and CO2 were not affected by starvation or carnitine. Neither starvation nor carnitine altered the ratio of 3-hydroxybutyrate to acetoacetate or the rate of esterification of [1-14C]palmitate. Propionate, lactate, pyruvate and fructose inhibited ketogenesis from palmitate in cells from fed sheep. Starvation or the addition of carnitine decreased the antiketogenic effectiveness of gluconeogenic precursors. Propionate was the most potent inhibitor of ketogenesis, 0.8 mM producing 50% inhibition. Propionate, lactate, fructose and glycerol increased palmitate esterification under all conditions examined. Lactate, pyruvate and fructose stimulated oxidation of palmitate and octanoate to CO2. Starvation and the addition of gluconeogenic precursors stimulated apparent palmitate utilization by cells. Propionate, lactate and pyruvate decreased cellular long-chain acylcarnitine concentrations. Propionate decreased cell contents of CoA and acyl-CoA. It is suggested that propionate may control hepatic ketogenesis by acting at some point in the beta-oxidation sequence. The results are discussed in relation to the differences in the regulation of hepatic fatty acid metabolism between sheep and rats.  相似文献   

6.
7.
8.
9.
10.
Haloperidol, a typical antipsychotic, has been shown to inhibit cholesterol biosynthesis by affecting Δ7-reductase, Δ8,7-isomerase, and Δ14-reductase activities, which results in the accumulation of different sterol intermediates. In the present work, we investigated the effects of atypical or second-generation antipsychotics (SGA), such as clozapine, risperidone, and ziprasidone, on intracellular lipid metabolism in different cell lines. All the SGAs tested inhibited cholesterol biosynthesis. Ziprasidone and risperidone had the same targets as haloperidol at inhibiting cholesterol biosynthesis, although with different relative activities (ziprasidone > haloperidol > risperidone). In contrast, clozapine mainly affected Δ24-reductase and Δ8,7-isomerase activities. These amphiphilic drugs also interfered with the LDL-derived cholesterol egress from the endosome/lysosome compartment, thus further reducing the cholesterol content in the endoplasmic reticulum. This triggered a homeostatic response with the stimulation of sterol regulatory element-binding protein (SREBP)-regulated gene expression. Treatment with SGAs also increased the synthesis of complex lipids (phospholipids and triacylglycerides). Once the antipsychotics were removed from the medium, a rebound in the cholesterol biosynthesis rate was detected, and the complex-lipid synthesis further increased. In this condition, apolipoprotein B secretion was also stimulated as demonstrated in HepG2 cells. These effects of SGAs on lipid homeostasis may be relevant in the metabolic side effects of antipsychotics, especially hypertriglyceridemia.  相似文献   

11.
Rat liver microsomes contain phosphatidate phosphatases which split phosphatidic acid into inorganic phosphate and diacylglycerol and a system of phospholipases and lipases, which split phosphatidic acid into free fatty acids, glycerol and inorganic phosphate. In the presence of ATP,CoA and [1-14C]palmitate, part of the monoacyl-sn-glycerol 3-phosphate formed by phospholipase action is reesterified, yielding radioactive phosphatidic acid. The sum of di- and triacylglycerols formed from phosphatidic acid in the presence of ATP and CoA exceeded the amount of diacylglycerol formed in their absence. The yield of neutral lipids from sn-glycerol 3-phosphate and monoacyl-sn-glycerol 3-phosphate markedly exceeded that from phosphatidic acid. Comparison of the yields of di- and triacylglcerols from glycerol-labelled and fatty-acid-labelled phosphatidic acid was used to establish the extent of deacylation and reacylation. About 60% of the diacylglycerol was formed by direct dephosphorylation. The triacylglycerols, on the other hand, were formed almost exclusively from recycled phosphatidic acid.  相似文献   

12.
The early premalignant liver provides a model in which to study metabolic alterations that may be permissive for the development of full malignancy. Although there are biochemical changes in this model, there are no detectable morphological ones when compared with a normal, fully differentiated liver. The maintenance of cholesterol homeostasis, essential for proper functioning of mammalian cells, is known to be altered in malignancy. We used the ethionine-induced premalignant liver model to study the effects of the premalignant state on cellular parameters involved in the maintenance of hepatic cholesterol homeostasis. Cholesterol synthesis was elevated about twofold in the livers of rats treated with ethionine as was the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, its rate limiting enzyme. There was no change in reductase activation state. Acyl coenzyme A:cholesterol acyl-transferase (ACAT) was decreased about 30%, and cholesterol 7 alpha-hydroxylase, about 50%. There was no significant change in neutral cholesteryl ester hydrolase activity, but acid hydrolase activity was decreased. There was little change in low density lipoprotein receptor protein as determined by immunoblotting. Biliary lipid secretion was in the normal range when expressed per gram liver; however, bile flow was doubled. The ethionine-fed animals were mildly hypocholesterolemic and had an altered serum lipoprotein pattern. Cholesterol synthesis and HMG-CoA reductase activity exhibited decreased sensitivities to inhibition by dietary cholesterol when compared to control livers. However, sensitivity to intragastrically administered mevalonolactone was not altered. Although ACAT activity was increased by mevalonolactone administration to levels similar to those in untreated animals, it was not increased in the ethionine-fed animals by feeding cholesterol. The ethionine-induced premalignant liver responded to ethinyl estradiol treatment in a manner similar to that of the control, i.e., profound hypolipidemia, increased low density lipoprotein receptors, decreased reductase activity, and increased cholesterol esterification. Thus, these livers retained their estrogen responsiveness. Taken together, the data demonstrate that the major elements involved in maintaining hepatic cholesterol homeostasis are present in the premalignant liver, although in some cases at levels that are different from the control. However, the susceptibility to regulation was altered in these livers to suggest markedly decreased availability of cholesterol of exogenous origin to the regulatory compartment(s). Further, coupling of the different elements involved in maintenance of hepatic cholesterol homeostasis appeared to have been changed.  相似文献   

13.
Membrane fatty acid composition of CaCo-2 cells was modified by incubating the cells for 8 days in medium containing 100 microM eicosapentaenoic acid or palmitic acid. The effect of membrane fatty acid changes on cholesterol metabolism was then studied. Cells incubated with eicosapentaenoic acid had significant changes in membrane fatty acid composition with an accumulation of 20:5 and 22:5 and a reduction in monoenoic fatty acids compared to cells grown in palmitic acid. Intracellular cholesteryl esters could not be detected in CaCo-2 cells grown in the presence of the n-3 polyunsaturated fatty acid. In contrast, cells incubated with the saturated fatty acid contained 2 micrograms/mg protein of cholesteryl esters. Cells grown in eicosapentaenoic acid, however, accumulated significantly more triglycerides compared to cells modified with palmitic acid. The rate of oleic acid incorporation into triglycerides was significantly increased in cells incubated with eicosapentaenoic acid. CaCo-2 cells modified by eicosapentaenoic acid had lower rates of HMG-CoA reductase and ACAT activities compared to cells modified with palmitic acid. The incorporation of the two fatty acids into cellular lipids also differed. Palmitic acid was predominantly incorporated into cellular triglycerides, whereas eicosapentaenoic acid was preferentially incorporated into phospholipids with 60% of it in the phosphatidylethanolamine fraction. The data indicate that membrane fatty acid composition is significantly altered by growing CaCo-2 cells in eicosapentaenoic acid. These modifications in membrane fatty acid saturation are accompanied by a decrease in the rates of cholesterol synthesis and cholesterol esterification.  相似文献   

14.
15.
Recent studies have demonstrated that dietary fish oils rich in eicosapentaenoic acid (C20:5,omega 3) lower the content of arachidonic acid and its metabolites in plasma and tissue phospholipids. The present study examined the fatty acid composition of cholesterol ester and triacylglycerol fractions from plasma and livers of rats fed diets enriched with saturated fatty acids (beef tallow), alpha-linolenic acid (linseed oil) or eicosapentaenoic acid (fish oil). Feeding diets containing linseed oil or fish oil for 28 days increased arachidonic acid (C20:4,omega 6) levels in the cholesterol ester fraction of liver and in the triacylglycerol fraction of the plasma lipids. Plasma cholesterol esters were depleted of C20:4,omega 6 after feeding of the diet containing either linseed oil or fish oil. The changes in C20:4,omega 6 content cannot be explained by alterations in cholesterol ester or triacylglycerol pools of plasma and liver. These results suggest that the decrease in phospholipid C20:4,omega 6 content generally observed after fish oil consumption may be partly due to a shift of C20:4,omega 6 from phospholipid to the triacylglycerol and/or cholesterol ester pools in the same tissue. Triacylglycerols and cholesterol esters may therefore play a buffering role in the homeostatic maintenance of tissue phospholipid levels of arachidonic acid.  相似文献   

16.
17.
Although the intracellular fatty acid binding proteins have been investigated for nearly two decades and purified proteins are now available, little is known regarding the function of these proteins in intact cells. Therefore, L-cell fibroblasts transfected with cDNA encoding for rat liver fatty acid binding protein (L-FABP) were examined as to whether L-FABP expression in intact cells modifies plasma membrane enzyme activities, fluidity, and lipids. Plasma membrane Na/K-ATPase activity was 65.9 +/- 18.7 and 38.6 +/- 22.8 (P less than 0.001) nmol/mg protein x min for control and high-expression transfected cells, respectively. Consistent with this observation, [3H] ouabain binding to whole cells was significantly decreased from 3.7 +/- 0.3 to 2.0 +/- 0.8 pmol ouabain bound/mg cell protein in control and high-expression cells, respectively, whereas the cell's affinity for ouabain was not significantly altered. Unexpectedly, Western blot analysis indicated that transfected cells had higher levels of Na+, K(+)-ATPase protein; in contrast, the activities of 5'-nucleotidase and Mg-ATPase were unaltered. The effects of L-FABP expression on plasma membrane Na/K-ATPase function appeared to be mediated through alterations in plasma membrane lipids and/or structure. The plasma membrane cholesterol/phospholipid ratio decreased and the bulk plasma membrane fluidity increased in the high-expression cells. In conclusion, plasma membrane Na/K-ATPase activity in L cells may be regulated in part through expression of cytosolic L-FABP.  相似文献   

18.
19.
Although movement of fatty acids between bilayers can occur spontaneously, it has been postulated that intracellular movement is facilitated by a class of proteins named fatty acid binding proteins (FABP). In this study we have incorporated long chain fatty acids into multilamellar liposomes made of phosphatidylcholine, incubated them with rat liver microsomes containing an active acyl-CoA synthetase, and measured formation of acyl-CoA in the absence or presence of FABP purified from rat liver. FABP increased about 2-fold the accumulation of acyl-CoA when liposomes were the fatty acid donor. Using fatty acid incorporated into liposomes made either of egg yolk lecithin or of dipalmitoylphosphatidylcholine, it was found that the temperature dependence of acyl-CoA accumulation in the presence of FABP correlated with both the physical state of phospholipid molecules in the liposomes and the binding of fatty acid to FABP, suggesting that fatty acid must first desorb from the liposomes before FABP can have an effect. An FABP-fatty acid complex incubated with microsomes, in the absence of liposomes, resulted in greater acyl-CoA formation than when liposomes were present, suggesting that desorption of fatty acid from the membrane is rate-limiting in the accumulation of acyl-CoA by this system. Finally, an equilibrium dialysis cell separating liposomes from microsomes on opposite sides of a Nuclepore filter was used to show that liver FABP was required for the movement and activation of fatty acid between the compartments. These studies show that liver FABP interacts with fatty acid that desorbs from phospholipid bilayers, and promotes movement to a membrane-bound enzyme, suggesting that FABP may act intracellularly by increasing net desorption of fatty acid from cell membranes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号