首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
J Welch  S Fogel  C Buchman    M Karin 《The EMBO journal》1989,8(1):255-260
The yeast CUP1 gene codes for a copper-binding protein similar to metallothionein. Copper sensitive cup1s strains contain a single copy of the CUP1 locus. Resistant strains (CUP1r) carry 12 or more multiple tandem copies. We isolated 12 ethyl methane sulfonate-induced copper sensitive mutants in a wild-type CUP1r parental strain, X2180-1A. Most mutants reduce the copper resistance phenotype only slightly. However, the mutant cup2 lowers resistance by nearly two orders of magnitude. We cloned CUP2 by molecular complementation. The smallest subcloned fragment conferring function was approximately 2.1 kb. We show that CUP2, which is on chromosome VII, codes for or controls the synthesis or activity of a protein which binds the upstream control region of the CUP1 gene on chromosome VIII. Mutant cup2 cells produced extremely low levels of CUP1-specific mRNA, with or without added copper ions and lacked a factor which binds to the CUP1 promoter. Integrated at the cup2 site, the CUP2 plasmid restored the basal level and inducibility of CUP1 expression and led to reappearance of the CUP1-promoter binding factor. Taken collectively, our data establish CUP2 as a regulatory gene for expression of the CUP1 metallothionein gene product.  相似文献   

9.
To improve wine taste and flavor stability, a novel indigenous strain of Saccharomyces cerevisiae with enhanced glycerol and glutathione (GSH) production for winemaking was constructed. ALD6 encoding an aldehyde dehydrogenases of the indigenous yeast was replaced by a GPD1 and CUP1 gene cassette, which are responsible for NAD-dependent glycerol-3-phosphatase dehydrogenase and copper resistance, respectively. Furthermore, the α-acetohydroxyacid synthase gene ILV2 of the indigenous yeast was disrupted by integration of the GSH1 gene which encodes γ-glutamylcysteine synthetase and the CUP1 gene cassette. The fermentation capacity of the recombinant was similar to that of the wild-type strain, with an increase of 21 and 19?% in glycerol and GSH production. No heterologous DNA was harbored in the recombinant in this study.  相似文献   

10.
11.
The mechanism of copper uptake in Saccharomyces cerevisiae has been investigated using a combination of 64Cu2+ and atomic absorption spectrophotometry. A wild type copper-resistant CUP 1R-containing strain and a strain carrying a deletion of the CUP1 locus (yeast copper metallothionein) exhibited quantitatively similar saturable energy-dependent 64Cu2+ uptake when cultures were pregrown in copper-free media (medium [Cu] approximately 15 nM). The kinetic constants for uptake by the wild type strain were Vmax = 0.21 nmol of copper/min/mg of protein and Km = 4.4 microM. This accumulation of 64Cu2+ represented net uptake as confirmed by atomic absorption spectrophotometry. This uptake was not seen in glucose-starved cells, but was supported in glycerol- and ethanol-grown ones. Uptake was inhibited by both N3- and dinitrophenol and was barely detectable in cultures at 4 degrees C. When present at 50 microM, Zn2+ and Ni2+ inhibited by 50% indicating that this uptake process was relatively selective for Cu2+. 64Cu2+ accumulation was qualitatively and quantitatively different in cultures either grown in or preincubated with cold Cu2+. Either treatment resulted in the appearance of a fast phase (t 1/2 approximately 1 min) of 64Cu2+ accumulation which represented isotopic exchange since it did not lead to an increase in the mass of cell-associated copper; also, it was not energy-dependent. Exchange of 64Cu2+ into this pool was not inhibited by Zn2+. Pretreatment with Cu2+ caused a change in the rate of net accumulation as well; a 3-h incubation of cells in 5 microM medium Cu2+ caused a 1.6-fold increase in the velocity of energy-dependent uptake. Prior addition of cycloheximide abolished this Cu2(+)-dependent increase and, in fact, inhibited the 64Cu2+ uptake velocity by greater than 85%. The exchangeable pool was also absent in cycloheximide, Cu2(+)-treated cells suggesting that exchangeable Cu2+ derived from the copper taken up initially by the energy-dependent process. The thionein deletion mutant was similar to wild type in response to medium Cu2+ and cycloheximide indicating that copper metallothionein is not directly involved in Cu2+ uptake (as distinct from retention) in yeast.  相似文献   

12.
A series of yeast expression vectors and cassettes utilizing the CUP1 gene of Saccharomyces cerevisiae have been constructed. The cassettes contain multiple cloning sites for gene fusions and were created by inserting a 27-bp polylinker at the +14 position of the CUP1 gene. The cassettes are portable as restriction fragments and enable copper-regulated expression of foreign proteins in S. cerevisiae. In copper sensitive yeast, multiple copies of the CUP1 cassettes confer copper resistance due to the production of the copper metallothionein. Genes cloned into the CUP1 cassettes, however, usually prevent translation of the metallothionein leading to a loss of resistance. This could be useful for one-step cloning into yeast.  相似文献   

13.
14.
15.
Chemical synthesis and expression of a cassette adapted ubiquitin gene   总被引:27,自引:0,他引:27  
A gene encoding the yeast ubiquitin was chemically synthesized and expressed in yeast under regulatory control of the copper metallothionein (CUP1) promoter. The gene was assembled in a one-step ligation reaction from eight oligonucleotide fragments ranging in length from 50 to 64 nucleotides. To facilitate mutagenesis and gene fusion studies, eight unique 6-base-cutting restriction enzyme sites were placed in the reading frame which did not alter the encoded protein sequence or force the utilization of rare codons. In a copper-resistant yeast strain (CUP1r), expression of the gene was induced by copper to approximately 5% of the total yeast proteins, as determined by Coomassie-stained polyacrylamide gels. The protein, purified from yeast, reacted with ubiquitin-specific antibodies and was found to be biologically active in supporting ubiquitin-dependent protein degradation in vitro.  相似文献   

16.
Copper is required for structural and catalytic properties of a variety of enzymes participating in many vital biological processes for growth and development. Feeds provide most of the copper as an essential micronutrient consumed by animals, but inorganic copper could not be utilized effectively. In the present study, we aimed to develop transgenic mouse models to test if copper utilization will be increased by providing the animals with an exogenous gene for generation of copper chelatin in saliva. Considering that the S. cerevisiae CUP1 gene encodes a Cys-rich protein that can bind copper as specifically as copper chelatin in yeast, we therefore constructed a transgene plasmid containing the CUP1 gene regulated for specific expression in the salivary glands by a promoter of gene coding pig parotid secretory protein. Transgenic CUP1 was highly expressed in the parotid and submandibular salivary glands and secreted in saliva as a 9-kDa copper-chelating protein. Expression of salivary copper-chelating proteins reduced fecal copper contents by 21.61% and increased body-weight by 12.97%, suggesting that chelating proteins improve the utilization and absorbed efficacy of copper. No negative effects on the health of the transgenic mice were found by blood biochemistry and histology analysis. These results demonstrate that the introduction of the salivary CUP1 transgene into animals offers a possible approach to increase the utilization efficiency of copper and decrease the fecal copper contents.  相似文献   

17.
G Wiederrecht  D Seto  C S Parker 《Cell》1988,54(6):841-853
  相似文献   

18.
19.
The first microbial biosensor to detect Cu2+ by an amperometric method has been developed. For this purpose, recombinant Saccharomyces cerevisiae strains are suitable as the microbial component. These strains contain plasmids with the Cu2+-inducible promoter of the CUP1-gene from Saccharomyces cerevisiae fused to the lacZ-gene from E. coli. On this sensor the CUP1 promoter is first induced by the Cu2+-containing probe and subsequently lactose is used as a deputy substrate to make the measurement. If Cu2+ is present in the sample, these recombinant strains are able to utilize lactose as a carbon source, which leads to alterations in the oxygen consumption of the cells. The sensor measured Cu2+ in a concentration range between 0.5 and 2 mM CuSO4. In addition, an indirect amperometric measurement principle was developed which allows the detection of samples containing Cu2+ and fast biodegradable substances.  相似文献   

20.
Saccharomyces cerevisiae SOD2and CUP1genes were used to maintain high-copy number plasmids (YEp) in laboratory and industrial yeast strains. The plasmid, YEpS , containing the SOD2 gene was unstable in a sod2° mutant. However when Paraquat (0.5 mM) was used as a selective agent, the plasmid was maintained in the sod2° mutant but lost in the wild-type strain. When the CUP1 gene was inserted into YEpS 1 , the resulting plasmid (YEpCuS ) was 100% stable in the sod2° mutant grown in Cu -containing medium. In the absence of Cu , the proportion of plasmid-containing cells fell to 20%. YEpS was also transformed into an industrial strain, transformants could be selected in Paraquat-containing medium but showed poor stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号