首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
J Welch  S Fogel  C Buchman    M Karin 《The EMBO journal》1989,8(1):255-260
The yeast CUP1 gene codes for a copper-binding protein similar to metallothionein. Copper sensitive cup1s strains contain a single copy of the CUP1 locus. Resistant strains (CUP1r) carry 12 or more multiple tandem copies. We isolated 12 ethyl methane sulfonate-induced copper sensitive mutants in a wild-type CUP1r parental strain, X2180-1A. Most mutants reduce the copper resistance phenotype only slightly. However, the mutant cup2 lowers resistance by nearly two orders of magnitude. We cloned CUP2 by molecular complementation. The smallest subcloned fragment conferring function was approximately 2.1 kb. We show that CUP2, which is on chromosome VII, codes for or controls the synthesis or activity of a protein which binds the upstream control region of the CUP1 gene on chromosome VIII. Mutant cup2 cells produced extremely low levels of CUP1-specific mRNA, with or without added copper ions and lacked a factor which binds to the CUP1 promoter. Integrated at the cup2 site, the CUP2 plasmid restored the basal level and inducibility of CUP1 expression and led to reappearance of the CUP1-promoter binding factor. Taken collectively, our data establish CUP2 as a regulatory gene for expression of the CUP1 metallothionein gene product.  相似文献   

2.
3.
4.
5.
Extracts from lexC113 cells could not support phage G4 DNA-dependent replication unless supplemented with single-stranded DNA-binding protein. Purified lexC113 binding protein supported synthesis in a reconstituted replication assay, using purified proteins at 30 but not at 42 degrees C, indicating that the product of the lexC113 gene is an altered single-stranded DNA-binding protein.  相似文献   

6.
7.
8.
9.
Cloning and expression of a yeast copper metallothionein gene   总被引:12,自引:0,他引:12  
T R Butt  E Sternberg  J Herd  S T Crooke 《Gene》1984,27(1):23-33
  相似文献   

10.
11.
12.
The synthesis of a variety of proteins, including the well characterized degradative enzymes, which occurs during the transition state between vegetative growth and the onset of sporulation in Bacillus subtilis is controlled by a class of molecules known as transition state regulators. One of these regulators is the product of the hpr gene, first identified by mutations affecting the synthesis of extracellular proteases. We have purified the Hpr protein and found that it binds specifically to DNA fragments carrying the promoters and the upstream regions of the alkaline (aprE) and neutral (nprE) protease genes of B. subtilis. DNase I protection experiments revealed that the Hpr protein is able to bind at four and two regions of the aprE and nprE promoters, respectively. We have also located two Hpr binding sites in the promoter region of a gene of unknown function which is nevertheless known to be developmentally regulated during the transition state and which occurs in the same operon as the gene encoding another transition state regulator, Sin. The location of one of the Hpr binding sites on the aprE gene occurs adjacent to a region to which the Sin protein binds. However, in mixing competition experiments we have shown that Hpr and Sin binding occurred independently, and no visible alterations of protected regions were detected.  相似文献   

13.
14.
The SEC17 gene of Saccharomyces cerevisiae is required for vesicular transport between the endoplasmic reticulum and the Golgi apparatus. Here we report that the product of the SEC17 gene has the exact biochemical properties expected for a yeast homologue of the mammalian transport factor, alpha-SNAP. The DNA sequence of SEC17 codes for a protein of predicted molecular mass of 33 kDa. Immunoblotting indicates that Sec17p fractionates as a peripheral membrane protein and is mostly soluble when overexpressed, suggesting the presence of a saturable membrane receptor for Sec17p. Sec17p was purified from yeast cytosol using a SNAP-dependent in vitro mammalian Golgi transport assay. Kinetic analysis using this assay shows Sec17p acts temporally close to the fusion of transport vesicles with the medial Golgi compartment. In yeast extracts, Sec17p binds to Sec18p with a 1:1 stoichiometry. The interaction between Sec17p and Sec18p requires an activity provided by yeast membranes, and this putative membrane receptor activity is not extracted by high salt treatment of membranes.  相似文献   

15.
16.
17.
18.
The yeast metallothionein gene CUP1 was cloned into a bacterial expression system to achieve efficient, controlled expression of the stable, unprocessed protein product. The Escherichia coli-synthesized yeast metallothionein bound copper, cadmium, and zinc, indicating that the protein was functional. Furthermore, E. coli cells expressing CUP1 acquired a new, inducible ability to selectively sequester heavy metal ions from the growth medium.  相似文献   

19.
DrrC, a daunorubicin resistance protein with a strong sequence similarity to the UvrA protein involved in excision repair of DNA, is induced by daunorubicin in Streptomyces peucetius and behaves like an ATP-dependent, DNA binding protein in vitro. The refolded protein obtained from expression of the drrC gene in Escherichia coli was used to conduct gel retardation assays. DrrC bound a DNA segment containing the promoter region of a daunorubicin production gene only in the presence of ATP and daunorubicin. This result suggests that DrrC is a novel type of drug self-resistance protein with DNA binding properties like those of UvrA. Western blotting analysis with a polyclonal antiserum generated against His-tagged DrrC showed that the appearance of DrrC in S. peucetius is coincident with the onset of daunorubicin production and that the drrC gene is induced by daunorubicin. These data also showed that the DnrN and DnrI regulatory proteins are required for drrC expression. The level of DrrA, another daunorubicin resistance protein that resembles ATP-dependent bacterial antiporters, was regulated in the same way as that of DrrC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号