首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Partial pressure of oxygen and carbon dioxide in alveolar air and arterial blood, lung diffusion capacity and its components, ventilation parameters, ventilation-perfusion ratio were determined in healthy people aged 60-89 (45 subjects) and aged 20-31 (19 subjects, controls). In elderly and old people PO2 in arterial blood was found to decrease with increasing alveolar-arterial PO2 gradient. In other words, arterial hypoxemia was determined by the disturbance in gas exchange between alveolar air and blood of lung capillaries. The diffusion capacity of lung decreased at the expense of membrane factor. Its age-related dynamics was mainly due to a decrease in the pulmonary diffusion surface occurring because of improper coordination of ventilation and perfusion in the lungs. The discrepancy of pulmonary ventilation and perfusion proved to be the leading factor of arterial hypoxemia in late ontogenesis.  相似文献   

2.
It was found that the partial oxygen tension in the capillary blood in astronauts during a space flight was 12–30% lower than that before the space flight. Analysis of the possible causes and mechanisms of hypoxemia was performed, which made it possible to conclude that an increase in the venous blood flow that passes through the lungs and does not undergo complete gas exchange in the pulmonary capillaries is most likely to be the main cause of the decrease in the oxygen tension in the blood in astronauts under conditions of weightlessness.  相似文献   

3.
We previously reported in weanling guinea pigs raised at high altitude (HA; 3,800 m) an elevated lung diffusing capacity estimated by morphometry from alveolar-capillary surface area, harmonic mean blood-gas barrier thickness, and pulmonary capillary blood volume (Vc) compared with litter-matched control animals raised at an intermediate altitude (IA; 1,200 m) (Hsia CCW, Polo Carbayo JJ, Yan X, Bellotto DJ. Respir Physiol Neurobiol 147: 105-115, 2005). To determine if HA-induced alveolar ultrastructural changes are associated with improved alveolar function, we measured lung diffusing capacity for carbon monoxide (DLCO), membrane diffusing capacity for carbon monoxide (DMCO), Vc, pulmonary blood flow, and lung volume by a rebreathing technique in litter-matched male weanling Hartley guinea pigs raised at HA or IA for 4 or 12 mo. Separate control animals were also raised and studied at sea level (SL). Resting measurements were obtained in the conscious nonsedated state. In HA animals compared with corresponding IA or SL controls, lung volume and hematocrit were significantly higher while pulmonary blood flow was lower. At a given pulmonary blood flow, DLCO and DMCO were higher in HA-raised animals than in control animals without a significant change in Vc. We conclude that 1) HA residence enhanced physiological diffusing capacity corresponding to that previously estimated on the basis of structural adaptation, 2) adaptation in diffusing capacity and its components should be interpreted with respect to pulmonary blood flow, and 3) this noninvasive rebreathing technique could be used to follow adaptive responses in small animals.  相似文献   

4.
To model lung nitric oxide (NO) and carbon monoxide (CO) uptake, a membrane oxygenator circuit was primed with horse blood flowing at 2.5 l/min. Its gas channel was ventilated with 5 parts/million NO, 0.02% CO, and 22% O2 at 5 l/min. NO diffusing capacity (Dno) and CO diffusing capacity (Dco) were calculated from inlet and outlet gas concentrations and flow rates: Dno = 13.45 ml.min(-1).Torr(-1) (SD 5.84) and Dco = 1.22 ml.min(-1).Torr(-1) (SD 0.3). Dno and Dco increased (P = 0.002) with blood volume/surface area. 1/Dno (P < 0.001) and 1/Dco (P < 0.001) increased with 1/Hb. Dno (P = 0.01) and Dco (P = 0.004) fell with increasing gas flow. Dno but not Dco increased with hemolysis (P = 0.001), indicating Dno dependence on red cell diffusive resistance. The posthemolysis value for membrane diffusing capacity = 41 ml.min(-1).Torr(-1) is the true membrane diffusing capacity of the system. No change in Dno or Dco occurred with changing blood flow rate. 1/Dco increased (P = 0.009) with increasing Po2. Dno and Dco appear to be diffusion limited, and Dco reaction limited. In this apparatus, the red cell and plasma offer a significant barrier to NO but not CO diffusion. Applying the Roughton-Forster model yields similar specific transfer conductance of blood per milliliter for NO and CO to previous estimates. This approach allows alteration of membrane area/blood volume, blood flow, gas flow, oxygen tension, red cell integrity, and hematocrit (over a larger range than encountered clinically), while keeping other variables constant. Although structurally very different, it offers a functional model of lung NO and CO transfer.  相似文献   

5.
The distribution of red blood cells in alveolar capillaries is typically nonuniform, as shown by intravital microscopy and in alveolar tissue fixed in situ. To determine the effects of red cell distribution on pulmonary diffusive gas transport, we computed the uptake of CO across a two-dimensional geometric capillary model containing a variable number of red blood cells. Red blood cells are spaced uniformly, randomly, or clustered without overlap within the capillary. Total CO diffusing capacity (DLCO) and membrane diffusing capacity (DmCO) are calculated by a finite-element method. Results show that distribution of red blood cells at a fixed hematocrit greatly affects capillary CO uptake. At any given average capillary red cell density, the uniform distribution of red blood cells yields the highest DmCO and DLCO, whereas the clustered distribution yields the lowest values. Random nonuniform distribution of red blood cells within a single capillary segment reduces diffusive CO uptake by up to 30%. Nonuniform distribution of red blood cells among separate capillary segments can reduce diffusive CO uptake by >50%. This analysis demonstrates that pulmonary microvascular recruitment for gas exchange does not depend solely on the number of patent capillaries or the hematocrit; simple redistribution of red blood cells within capillaries can potentially account for 50% of the observed physiological recruitment of DLCO from rest to exercise.  相似文献   

6.
Single-breath carbon monoxide diffusing capacity (DLco), pulmonary capillary blood volume (Vc), and membrane diffusing capacity (Dm) were measured in 24 beagle dogs aged 289-3,882 days. DLco and Vc were a function of age and alveolar volume (Va). Vc decreased with age resulting in changes in DLco. Changes in Vc may have been due to pulmonary morphological changes or to an exaggerated decrease in pulmonary blood flow in old dogs in response to 20-30 cmH-2O transpulmonary pressure. There was no age-related change in Dm.  相似文献   

7.
We hypothesized that increasing exercise intensity recruits dormant arteriovenous intrapulmonary shunts, which may contribute to the widened alveolar-arterial oxygen difference seen with exercise. Twenty-three healthy volunteers (13 men and 10 women, aged 23-48 yr) with normal lung function and a wide range of fitness (mean maximal oxygen uptake = 126% predicted; range = 78-200% predicted) were studied by agitated saline contrast echocardiography (4-chamber apical view). All 23 subjects had normal resting contrast echocardiograms without evidence of intracardiac or intrapulmonary shunting. However, with cycle ergometer exercise, 21 of 23 (91%) of the subjects showed a delayed (>3 cardiac cycles) appearance of contrast bubbles in the left heart. This pattern is consistent with passage of contrast bubbles through the pulmonary circulation. Because the contrast bubbles are known to be significantly larger than pulmonary capillaries, we propose that they are traveling through direct arteriovenous intrapulmonary shunts. In all cases, the intrapulmonary shunting developed at submaximal oxygen uptakes [%maximal oxygen uptake = 59 +/- 20 (SD)] and once evident persisted at all subsequent work rates. Within 3 min of exercise termination, the contrast echocardiograms with bubble injection showed no evidence of intrapulmonary shunting. These dynamic shunts will contribute significantly to the widened alveolar-arterial oxygen difference seen with exercise. They may also act as a protective parallel vascular network limiting the rise in regional pulmonary vascular pressure while preserving cardiac output during exercise.  相似文献   

8.
Using in vivo microscopy, we made direct measurements of pulmonary capillary transit time by determining the time required for fluorescent dye to pass from an arteriole to a venule on the dependent surface of the dog lung. Concurrently, in the same animals, pulmonary capillary transit time was measured indirectly in the entire lung using the diffusing capacity method (capillary blood volume divided by cardiac output). Transit times by each method were the same in a group of five dogs [direct: 1.75 +/- 0.27 (SE) s; indirect: 1.85 +/- 0.33 s; P = 0.7]. The similarity of these transit times is important, because the widely used indirect determinations based on diffusing capacity are now shown to coincide with direct measurements and also because it demonstrates that measurements of capillary transit times on the surface of the dependent lung bear a useful relationship to measurements on the capillaries in the rest of the lung.  相似文献   

9.
The lungs of five female domestic Muscovy ducks, mean body weight 1.627 kg, total lung volume 48.07 cm3, were analysed by standard morphometric methods. Principal results obtained are: lung volume per unit body weight, 30.17 cm3/g; volume densities of exchange tissue relative to lung volume, 49.24%, blood capillaries relative to exchange tissue, 29.63%, tissue of the blood gas (tissue) barrier relative to exchange tissue, 5.88%; surface area of the blood-gas (tissue) barrier per unit body weight, 30.04 cm2/g; ratios of the surface area of the blood-gas (tissue) barrier per unit volume of the lung and per unit volume of exchange area, 979 cm2/cm3 and 200.06 mm2/mm3, respectively; harmonic and arithmetic mean thicknesses of the tissue barrier, 0.199 μm and 0.303 μm, respectively. The anatomical diffusing capacity of the tissue barrier for oxygen ( DtO2 ) and the total pulmonary diffusing capacity ( DLO2 ), 49.58 ml O2/min/mmHg/kg and 4.55 ml O2/min/mm Hg/kg, respectively. The lungs of the domestic Muscovy duck appear to be about as well adapted anatomically for gas exchange as the lungs of wild anatid species, and there is no clear evidence that domestication has been associated with any deterioration in the anatomical capacity for oxygen uptake. The weight-specific anatomical diffusing capacity of the lung for oxygen ( DLO2/W ) was about 3.6 times greater than the weight-specific physiological value, a factor which falls within the expected range.  相似文献   

10.
The objective of this study was to investigate the effects of capillary network anastomoses and tortuosity on oxygen transport in skeletal muscle, as well as the importance of muscle fibers in determining the arrangement of parallel capillaries. Countercurrent flow and random capillary blockage (e.g. by white blood cells) were also studied. A general computational model was constructed to simulate oxygen transport from a network of blood vessels within a rectangular volume of tissue. A geometric model of the capillary network structure, based on hexagonally packed muscle fibers, was constructed to produce networks of straight unbranched capillaries, capillaries with anastomoses, and capillaries with tortuosity, in order to examine the effects of these geometric properties. Quantities examined included the tissue oxygen tension and the capillary oxyhemoglobin saturation. The computational model included a two-phase simulation of blood flow. Appropriate parameters were chosen for working hamster cheek-pouch retractor muscle. Our calculations showed that the muscle-fiber geometry was important in reducing oxygen transport heterogeneity, as was countercurrent flow. Tortuosity was found to increase tissue oxygenation, especially when combined with anastomoses. In the absence of tortuosity, anastomoses had little effect on oxygen transport under normal conditions, but significantly improved transport when vessel blockages were present.  相似文献   

11.
Microcirculatory changes in the window chamber preparation in Syrian golden hamsters, secondary to chronic hypoxia adaptation, are presented herein. Adaptation was attained by keeping animals in a 10% oxygen environment for 1 wk and 5% the following week. The following groups were studied: group 1, adapted to chronic hypoxia and kept in a 5% oxygen environment throughout the experiment; group 2, adapted to chronic hypoxia and kept in a 21% oxygen environment 24 h before and during the experiment; and group 3, control. Adaptation caused venule enlargement and hematocrit increase (68.6 +/- 2.44 in group 1, 70 +/- 2.66 in group 2, and 43.27 +/- 2.30 in group 3; P < 0.05). Whereas heart rate decreased in adapted animals, blood pressure remained constant. Group 1 presented alkalosis, hypocapnia, and hypoxemia. The adapted groups had decreased blood flow velocity in arterioles and veins. We found no difference in microvasculature oxygen tension between groups 2 and 3; however, the number of capillaries with flow was markedly reduced in group 1 but significantly increased in group 2. Our findings suggest that, as an adaptation to hypoxia, erythropoiesis may prove beneficial by increasing blood viscosity and shear stress, leading to vasodilatation, in addition to the increase in oxygen-carrying capacity. Calculations show that oxygen extraction in the tissue of the window chamber model was significantly lowered in adapted animals breathing 5% oxygen, but was unchanged from the control when breathing 21% oxygen, even though blood hemoglobin content was increased from 14.5 +/- 0.07 g/dl at control to 21.04 +/- 1.24 g/dl in the adapted animals (P < 0.05).  相似文献   

12.
Lung volumes, oxygen uptake (VO2), end-tidal PO2, and PCO2, diffusing capacity of the lungs for CO (DLCO), pulmonary blood flow (QL) and respiratory frequency were measured in the green sea turtle (Chelonia mydas) (49-127 kg body wt). Mean lung volume (VL) determined from helium dilution was 57 ml/kg and physiological dead space volume (VD) was about 3.6 ml/kg. QL, determined from acetylene uptake during rebreathing, increased in proportion to VO2 with temperature. Therefore, constant O2 content difference was maintained between pulmonary arterial and venous blood. DLCO, measured using a rebreathing technique, was 0.04 ml X kg-1 X min-1 X Torr-1 at 25 degrees C. Several cardiopulmonary characteristics in C. mydas are advantageous to diving: large tidal volume relative to functional residual capacity promotes fast exchange of the alveolar gas when the turtle surfaces for breathing: and the concomitant rise of pulmonary blood flow and O2 uptake with temperature assures efficient O2 transport regardless of wide temperature variations encountered during migrations.  相似文献   

13.
When alveoli are inflated, the stretched alveolar walls draw their capillaries into oval cross sections. This causes the disk-shaped red blood cells to be oriented near alveolar gas, thereby minimizing diffusion distance. We tested these ideas by measuring red blood cell orientation in histological slides from rapidly frozen rat lungs. High lung inflation did cause the capillaries to have oval cross sections, which constrained the red blood cells within them to flow with their broad sides facing alveolar gas. Low lung inflation stretched alveolar walls less and allowed the capillaries to assume a circular cross section. The circular luminal profile permitted the red blood cells to have their edges facing alveolar gas, which increased the diffusion distance. Using a finite-element method to calculate the diffusing capacity of red blood cells in the broad-side and edge-on orientations, we found that edge-on red blood cells had a 40% lower diffusing capacity. This suggests that, when capillary cross sections become circular, whether through low-alveolar volume or through increased microvascular pressure, the red blood cells are likely to be less favorably oriented for gas exchange.  相似文献   

14.
We evaluated the effect of prone positioning on gas-transfer characteristics in normal human subjects. Single-breath (SB) and rebreathing (RB) maneuvers were employed to assess carbon monoxide diffusing capacity (DlCO), its components related to capillary blood volume (Vc) and membrane diffusing capacity (Dm), pulmonary tissue volume (Vti), and cardiac output (Qc). Alveolar volume (Va) was significantly greater prone than supine, irrespective of the test maneuver used. Nevertheless, Dl(CO) was consistently lower prone than supine, a difference that was enhanced when appropriately corrected for the higher Va prone. When adequately corrected for Va, diffusing capacity significantly decreased by 8% from supine to prone [SB: Dl(CO,corr) supine vs. prone: 32.6 +/- 2.3 (SE) vs. 30.0 +/- 2 ml x min(-1) x mmHg(-1) stpd; RB: Dl(CO,corr) supine vs. prone: 30.2 +/- 2.2 (SE) vs. 27.8 +/- 2.0 ml x min(-1) x mmHg(-1) stpd]. Both Vc and Dm showed a tendency to decrease from supine to prone, but neither reached significance. Finally, there were no significant differences in Vti or Qc between supine and prone. We interpret the lower diffusing capacity of the healthy lung in the prone posture based on the relatively larger space occupied by the heart in the dependent lung zones, leaving less space for zone 3 capillaries, and on the relatively lower position of the heart, leaving the zone 3 capillaries less engorged.  相似文献   

15.
Surgical intervention was found to intensify circulation in the limb and redistribute the blood flow. Leg lengthening led to arterial inflow limitation due to the magisterial artery strain. The changes were accompanied both by increase of functioning capillaries in number and increase of venous outflow dependence on blood inflow. The decreased after surgery oxygen tension in m. gastrocnemius did not change throughout distraction. The increase of functioning capillaries in number in resting contributed to maintenance of tissue oxygenation in the initial period of distraction, and in case of maximal tissue tensioning hydrostatic pressure increased in the capillaries due to arterial pressure rise. Restoration of the circulation parameters in the fixation period started with an increase of circulation volumetric rate in vessels with preservation of the rest mechanisms of the tissue oxygenation maintenance.  相似文献   

16.
During the latter third of gestation, the number of resistance vessels in the lungs of the fetal sheep increases by 10-fold even after correction for lung growth. We measured pulmonary arterial pressure and blood flow directly and calculated total pulmonary resistance (pressure divided by flow) in intrauterine fetal lambs at 93-95 days and at 136 days of gestation (term is 145-148 days). In addition, we used a hyperbaric chamber to increase oxygen tension in the fetuses and measured the effect on the pulmonary circulation. When corrected for wet weight of the lungs, pulmonary blood flow did not change with advancing gestation (139 +/- 42 to 103 +/- 45 ml.100 g-1.min-1). Pulmonary arterial pressure increased (42 +/- 5 to 49 +/- 3 mmHg); thus total pulmonary resistance increased with advancing gestation from 0.32 +/- 0.12 to 0.55 +/- 0.21 mmHg.100 g.min.ml-1. If the blood flow is corrected for dry weight of the lungs, neither pulmonary blood flow nor total pulmonary resistance changed with advancing gestation. Increasing oxygen tension increased pulmonary blood flow 10-fold in the more mature fetuses but only 0.2-fold in the less mature fetuses. At the normal low oxygen tension of the fetus, pulmonary blood flow does not increase between these two points of gestation in the fetal lamb despite the increase in vessel density in the lungs. However, during elevated oxygen tension, pulmonary blood flow does increase in proportion to the increase in vessel density.  相似文献   

17.
A mathematical model of CO uptake from a single alveolus is modified to include stationary pulmonary blood arising from a pulmonary vascular obstruction. From this model an estimator model is developed that produces simultaneous estimations of the diffusing capacity of the lung for CO and the fraction of the pulmonary capillary blood that is stationary. The estimator model was tested using simulated data from uniform and non-uniform simulators and found to be only mildly sensitive to noise and incorrect values for the pulmonary capillary blood volume. Both the estimator model and breath-to-breath changes in the diffusing capacity of the lung for CO (exhaled) were found to be greatly affected by inhomogeneity of diffusing capacity and ventilation. At times both returned false positive results that limit their use as a screening test for stationary pulmonary blood. Although changes in CO uptake may at times indicate the presence of stationary pulmonary blood, the confounding effects of inhomogeneity of ventilation and diffusing capacity make the use of such changes impractical under most circumstances.  相似文献   

18.
Summary The blood oxygen binding properties and gill secondary lamellar structure of rainbow trout acclimated to several temperatures were studied. The blood oxygen carrying capacity decreased as acclimation temperature increased from 2 to 15 °C; the decrease was probably caused by an increase in plasma volume. Also the blood oxygen affinity decreased as the acclimation temperature increased from 2 to 15 °C. This change had no effect on the oxygen loading in gills, since the efferent arterial oxygen tension was adequate for approximately 100% erythrocytic O2 saturation at all acclimation temperatures, but facilitated the oxygen unloading in tissues. At the highest acclimation temperature (18 °C) the oxygen loading in gills was facilitated by the changes in the secondary lamellar structure; the proportion of erythrocytes in the secondary lamellar capillaries was higher than at the other acclimation temperatures (2 and 10 °C).  相似文献   

19.
We tested the hypothesis that blood flow is distributed among capillary networks in resting skeletal muscle in such a manner as to maintain uniform end-capillary PO2. Oxygen tension in venules draining two to five capillaries was obtained by using the phosphorescence decay methodology in rat spinotrapezius muscle. For 64 postcapillary venules among 18 networks in 10 animals, the mean PO2 was 30.1 Torr (range, 9.7-43.5 Torr) with a coefficient of variation (CV; standard deviation/mean) of 0.26. Oxygen levels of postcapillary venules within a single network or single animal, however, displayed a much smaller CV (0.064 and 0.094, respectively). By comparison, the CV of blood flow in 57 postcapillary venules of 17 networks in 9 animals was 1.27 with a mean flow of 0.011 +/- 0.014 nl/s and a range of 3.7 x 10(-4) to 6.5 x 10(-2) nl/s. Blood flow of postcapillary venules within single networks displayed a lower CV (mean, 0.51), whereas that in individual animals was 0.78. Results indicate that among venular networks, heterogeneity of oxygen tension is less than that of blood flow and within venular networks the heterogeneity of oxygen tension is much less than that of blood flow. In addition, postcapillary PO2 was independent of flow among venules in which both were measured. Results of this study may be attributable to three factors: 1) O2 diffusion between adjacent capillaries and venules, 2) structural remodeling in regions of lower PO2, and 3) O2-dependent local control mechanisms.  相似文献   

20.
THE glycolytic intermediate, 2,3-diphosphoglycerate, is an intracellular regulator of the oxygen affinity of haemoglobin1,2. At high altitudes there is a direct relationship between the decreased oxygen affinity of haemoglobin and the increased concentration of diphosphoglycerate in the blood3. This was explained by Benesch et al.4 and Chanutin et al.5, who found that the binding of diphosphoglycerate to haemoglobin reduces the oxygen affinity and by our finding that the concentration of diphosphoglycerate increases when the red cells are incubated under low oxygen tension6,7, thereby releasing oxygen from haemoglobin. For the same reason, the oxygen tension is reduced during the circulation of blood from the pulmonary alveoli to the tissues; the decreased level of the diphosphoglycerate facilitates the binding of oxygen to haemoglobin in the pulmonary alveoli and the increased level of the diphosphoglycerate in the blood of the capillaries decreases the affinity of haemoglobin for oxygen. We have measured the amount of 2,3-diphosphoglycerate and other glycolytic intermediates in arterial and venous blood to test this supposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号