首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Heparin-derived pentasaccharides with the general structures GlcN-GlcA/IdoA-GlcN-GlcA/IdoA-GlcN (where GlcA represents D-glucuronic acid and IdoA represents L-iduronic acid) and GlcNSO3-GlcA/IdoA-GlcNSO3-GlcA/IdoA- GlcNSO3 (where -NSO3 represents an N-sulfate group) were tested as exogenous sulfate acceptors in incubations with adenosine 3'-phosphate 5'-[35S]phosphosulfate and microsomal enzymes from a heparin-producing mouse mastocytoma. No transfer occurred to the N-unsubstituted pentasaccharide containing only L-iduronic acid, but the other three isomers incorporated various amounts of 35S, which was totally present in N-sulfate groups. After complete chemical N-sulfation, all four pentasaccharides served as acceptors in O-sulfotransferase reactions and incorporated from 20 to greater than 200 times as much radioactivity as did the nonsulfated parent compounds. The C-6 position of the internal glucosamine unit was labeled preferentially, irrespective of the structures of the adjacent hexuronic acid units. Significant 2-O-35S-sulfation of IdoA units occurred in both -IdoA-Glc-NSO3-GlcA- and -GlcA-GlcNSO3-IdoA- sequences, whereas no significant sulfation of GlcA residues was detected. The pentasaccharide GlcNSO3-GlcA-Glc-NSO3-GlcA-GlcNSO3 thus can be used as a selective substrate in assays for glucosaminyl-6-O-sulfotransferase activity. The antithrombin-binding region, essential for the blood anticoagulant activity of heparin, has been identified as a pentasaccharide sequence with the predominant structure GlcNR(6-OSO3)-GlcA-GlcNSO3(3,6-di-OSO3)-++ +IdoA(2-OSO3)-GlcNSO3(6-OSO3) (where R represents either a sulfate or an acetyl group and -OSO3 represents an O-sulfate/ester sulfate group, with locations of O-sulfate groups indicated in parentheses) (Lindahl U., Thunberg, L., B?ckstr?m, G., Riesenfeld, J., Nordling, K., and Bj?rk, I. (1984) J. Biol. Chem. 259, 12368-12376). The products of [35S]sulfate transfer to the pentasaccharide GlcNSO3-GlcA-GlcNSO3-IdoA-GlcNSO3 contained molecules with high affinity for antithrombin, corresponding to 0.3-0.5% of the total label. Structural analysis suggested the occurrence of O-[35S]sulfate groups at both C-6 of the nonreducing terminal glucosamine unit and C-3 of the internal glucosamine unit. No products with high affinity for antithrombin were formed from the pentasaccharides that had a different monosaccharide sequence than the binding region; and moreover, these oligosaccharides appeared unable to incorporate glucosaminyl 3-O-sulfate groups. These findings point to the importance of the uronic acid sequence in the generation of the antithrombin-binding region of heparin.  相似文献   

2.
The glycosaminoglycans heparin and heparan sulfate (HS) bind to fibroblast growth factor FGF1 and promote its dimerization, a proposed prerequisite for binding to a cellular receptor and triggering mitogenic signals. The problem of minimal structural requirements for heparin/HS sequences to bind FGF1 was approached by surface plasmon resonance (SPR), NMR spectroscopy, and MALDI mass spectrometry studies using the three synthetic tetrasaccharides GlcNSO(3)6OR-IdoA2SO(3)-GlcNSO(3)6OR'-IdoA2SO(3)OPr (AA, R = R' = SO(3); BA, R = H, R' = SO(3); BB, R = R' = H; Pr, propyl). AA and BA significantly interact with the protein, whereas BB is practically inactive. The NMR spectra show that, whereas the interaction of AA primarily involves the GlcNSO(3)6SO(3)IdoA2SO(3) disaccharide moiety at its nonreducing end, residues at both the nonreducing (NR) and reducing side (R) appear to be involved in the weaker complex of BA. Furthermore, MALDI experiments show that, in addition to 1:1 protein:tetrasaccharide complexes, AA and BA are able to form 2:1 complexes, indicating that heparin/HS-induced dimerization of FGF1 requires only one 6-OSO(3) group per tetrasaccharide.  相似文献   

3.
Fibroblast growth factors FGF-1 and FGF-2 mediate their biological effects via heparan sulfate-dependent interactions with cell surface FGF receptors. While the specific heparan sulfate domain binding to FGF-2 has been elucidated in some detail, limited information has been available concerning heparan sulfate structures involved in the recognition of FGF-1. In the current study we present evidence that the minimal FGF-1 binding heparan sulfate sequence comprises 5-7 monosaccharide units and contains a critical trisulfated IdoA(2-OSO3)-GlcNSO3(6-OSO3) disaccharide unit. N-Sulfated heparan sulfate decasaccharides depleted of FGF-1 binding domains showed dose-dependent and saturable binding to FGF-2. These data indicate that the FGF-1 binding domain is distinct from the minimal FGF-2 binding site, previously shown to contain an IdoA(2-OSO3) residue but no 6-O-sulfate groups. We further show that the FGF-1 binding heparan sulfate domain is expressed in human aorta heparan sulfate in an age-related manner in contrast to the constitutively expressed FGF-2 binding domain. Reduction of heparan sulfate O-sulfation by chlorate treatment of cells selectively impedes binding to FGF-1. The present data implicate the 6-O-sulfation of IdoA(2-OSO3)-GlcNSO3 units in cellular heparan sulfate in the control of the biological activity of FGF-1.  相似文献   

4.
Biosynthesis of heparin. O-sulfation of the antithrombin-binding region   总被引:1,自引:0,他引:1  
The antithrombin-binding region in heparin is a pentasaccharide sequence with the predominant structure GlcNAc(6-OSO3)-GlcA-GlcNSO3(3,6-di-OSO3)-IdoA -(2-OSO3)-GlcNSO3(6-OSO3) (where GlcA and IdoA represent D-glucuronic and L-iduronic acid, respectively), in which the 3-O-sulfate residue on the internal glucosaminyl unit is a marker group for this particular region of the polysaccharide molecule. A heparin octasaccharide which contained the above pentasaccharide sequence was N/O-desulfated and re-N-sulfated and was then incubated with adenosine 3'-phosphate 5'-phospho[35S]sulfate in the presence of a microsomal fraction from mouse mastocytoma tissue. Fractionation of the resulting 35S-labeled octasaccharide on antithrombin-Sepharose yielded a high affinity fraction that accounted for approximately 2% of the total incorporated label. Structural analysis of this fraction indicated that the internal glucosamine unit of the pentasaccharide sequence was 3-O-35S-sulfated, whereas both adjacent glucosamine units carried 6-O-[35S]sulfate groups. In contrast, the fractions with low affinity for antithrombin (approximately 98% of incorporated 35S) showed no consistent O-35S sulfation pattern and essentially lacked glucosaminyl 3-O-[35S]sulfate groups. It is suggested that the 3-O-sulfation reaction concludes the formation of the antithrombin-binding region. This proposal was corroborated in a similar experiment using a synthetic pentasaccharide with the structure GlcNSO3(6-OSO3)-GlcA-GlcNSO3(6-OSO3)-Id oA (2-OSO3)-GlcNSO3(6-OSO3) as sulfate acceptor. This molecule corresponds to a functional antithrombin-binding region but for the lack of a 3-O-sulfate group at the internal glucosamine unit. The 35S-labeled pentasaccharide recovered after incubation bound with high affinity to antithrombin-Sepharose and contained a 3-O-[35S]sulfate group at the internal glucosamine residue as the only detectable labeled component. The use of this pentasaccharide substrate along with the affinity matrix provides a highly specific assay for the 3-O-sulfotransferase.  相似文献   

5.
Proteins that belong to the fibroblast growth factor (FGF) family regulate proliferation, migration, and differentiation of many cell types. Several FGFs, including the prototype factors FGF-1 and FGF-2, depend on interactions with heparan sulfate (HS) proteoglycans for activity. We have assessed tissue-derived HS fragments for binding to FGF-1 and FGF-2 to identify the authentic saccharide motifs required for interactions. Sequence information on a range of N-sulfated HS octasaccharides spanning from low to high affinity for FGF-1 was obtained. All octasaccharides with high affinity for FGF-1 (> or =0.5 m NaCl required for elution) contained an internal IdoUA(2-OSO(3))-GlcNSO(3)(6-OSO(3))-IdoUA(2-OSO(3))-trisaccharide motif. Octasaccharides with a higher overall degree of sulfation but lacking the specific trisaccharide motif showed lower affinity for FGF-1. FGF-2 was shown to bind to a mono-O-sulfated HS 6-mer carrying a single internal IdoUA(2-OSO(3))-unit. However, a di-O-sulfated -IdoUA(2-OSO(3))-GlcNSO(3)-IdoUA(2-OSO(3))-trisaccharide sequence within a HS 8-mer gave stronger binding. These findings show that not only the number but also the positions of individual sulfate groups determine affinity of HS for FGFs. Our findings support the notion that FGF-dependent processes can be modulated in vivo by regulated expression of distinct HS sequences.  相似文献   

6.
Monoclonal antibodies were raised against a conjugate between heparin oligosaccharides and human serum albumin. The oligosaccharides were prepared by partial nitrous acid degradation of heparin and were coupled to human serum albumin by reductive amination. Characterization of the antibodies secreted by one of the resulting clones showed that they recognize a determinant present in the oligosaccharide antigen, but not in intact heparin, nor in a variety of related polysaccharides. Degradation of heparin by nitrous acid generates a 2,5-anhydro-D-mannose residue at the reducing end of the resulting oligosaccharides, and it is concluded that this structure is essential for interaction with the antibodies. Reduced oligosaccharides (containing a terminal anhydromannitol residue) are also active. After gel chromatography of partially degraded heparin, the smallest components capable of binding to the antibodies were found in a tetrasaccharide fraction. Affinity chromatography on immobilized monoclonal antibodies separated this tetrasaccharide fraction into distinct populations of binding and nonbinding species. Structural analysis showed that the tetrasaccharide fraction that bound to the monoclonal antibodies contained one single component with the structure IdoA(2-OSO3)-GlcNSO3 (6-OSO3)-IdoA(2-OSO3)-aManR(6-OSO3), whereas the fraction that did not bind to the antibodies contained a mixture of different structures.  相似文献   

7.
Interactions of heparin with intact human thrombospondin-1 (TSP1) and with two heparin-binding fragments of TSP1 were characterized using chemically modified heparins, a vascular heparan sulfate proteoglycan, and a series of heparin oligosaccharides prepared by partial deaminative cleavage. The avidity of TSP1 binding increased with oligosaccharide size, with plateaus at 4 to 6 and at 8 to 10 monosaccharide units. The dependence on oligosaccharide size for binding to the recombinant amino-terminal heparin-binding domain of TSP1 was the same as that of the intact TSP1 molecule but differed from that of a synthetic heparin-binding peptide from the type 1 repeats, suggesting that the interaction between intact TSP1 and heparin is primarily mediated by the amino-terminal domain. Based on activities of chemically modified heparins, binding to TSP1 depended primarily on 2-N- and 6-O-sulfation of glucosamine and to a lesser degree on 2,3-O-sulfation and the carboxyl residues of the uronic acids. In contrast, all of these modifications were required for binding of heparin to the type 1 repeat peptides. Affinity purification of heparin octasaccharides on immobilized TSP1 type 1 repeat peptides revealed a preference for oligosaccharides containing the disaccharide sequence IdoA(2-OSO(3))alpha1-4-GlcNS(6-OSO(3)). Binding of these oligosaccharides to the peptide required the Trp residues. These data demonstrate that the heparin-binding specificities of intact TSP1 and peptides from the type 1 repeats overlap with that of basic fibroblast growth factor (FGF2) and are consistent with the ability of these TSP1-derived molecules to inhibit FGF2-stimulated angiogenesis.  相似文献   

8.
The biological activity of basic fibroblast growth factor (bFGF)is influenced greatly by direct binding to heparin and heparansulphate (HS). Heparin-derived oligosaccharides have been utilizedto determine the structural requirements present in the polymerthat account for bind ing to bFGF. We had previously demonstratedthat fragments >6 mer can inhibit the interaction betweencell surface heparan sulphate proteoglycan (HSPG) and bFGF,and bFGF-induced proliferation of adrenocortical endothelial(ACE) cells. In contrast, oligosaccharides > 10 mer can enhancethe binding of bFGF to its high-affinity receptor or supportbFGF-induced mitogenesis in ACE cells (Ishihara et al., J. Biol.Chem., 268, 4675–4683, 1993). We have extended these studiesto size- and structure-defined oligosaccharides from heparin,2-O-desulphated (2-O-DS-) heparin, 6-O-desulphated (6-O-DS-)heparin, carboxyreduced (CR-) heparin and carboxy-amidomethylsulphonated(AMS-) heparin. Oligosaccharides from these polymers were fractionatedon a bFGF-affinity column and were assessed as inhibitors orenhancers of specific bFGF-derived biological activities. Theresults of these studies indicate that both 2-O-sulphate andthe negative charge of the carboxy group [L-iduronic acid (IdoA)residues] are required for specific interactions of heparin-derivedoligosaccharides with bFGF and for modulation of bFGF mitogenicactivity. In addition, the charge of the carboxy groups in uronicacids can be replaced by other functional groups with a negativecharge, such as the amidomethyl sulphonate moiety describedhere. basic fibroblast growth factor heparan sulphate heparin oligosaccharides  相似文献   

9.
The binding to concanavalin A (Con A) by pyridylaminated oligosaccharides derived from bromelain (Man alpha 1,6(Xyl beta 1, 2) Man beta 1, 4GlcNAc beta 1, 4(Fuc alpha 1, 3)GlcNAc), horseradish peroxidase (Man alpha 1,6(Man alpha 1, 3) (Xyl beta 1, 2)Man beta 1, 4GlcNAc beta 1,4(Fuc alpha 1, 3) GlcNAc), bee venom phospholipase A2 (Man alpha 1,6Man beta 1,4GlcNAc beta 1,4GlcNAc and Man alpha 1,6(Man alpha 1, 3)Man beta 1,4GlcNAc beta 1, 4 (Fuc alpha 1, 3)GlcNAc) and zucchini ascorbate oxidase (Man alpha 1,6(Man alpha 1, 3) (Xyl beta 1, 2)Man beta 1, 4 GlcNAc beta 1, 4GlcNAc) was compared to the binding by Man3GlcNAc2, Man5GlcNAc2 and the asialo-triantennary complex oligosaccharide from bovine fetuin. While the fetuin oligosaccharide did not bind, bromelain, zucchini, Man2GlcNAc2 and horseradish peroxidase were retarded (in that order). The alpha 1, 3-fucosylated phospholipase, Man3GlcNAc2 and Man5GlcNAc2 structures were eluted with 15 M alpha -methylmannoside. It is concluded that core alpha 1,3-fucosylation has little or no effect on ConA binding while xylosylation decreases affinity for ConA. In a parallel study comparing the endoglycosidase D (Endo D) sensitivities of Man3GlcNAc2, IgG-derived GlcNAc beta 1, 2Man alpha 1,6(GlcNAc beta 1,2Man alpha 1,3)Man beta 1,4GlcNAc beta 1,4(Fuc alpha 1,6)GlcNAc, the phospholipase Man alpha 1,6(Man alpha 1, 3)Man beta 1, 4GlcNAc beta 1,4(Fuc alpha 1,3)GlcNAc, and horseradish and zucchini pyridylaminated N-linked oligosaccharides, it was found that only the Man3GlcNAc2 structure was cleaved. The IgG structure was sensitive only when beta -hexosaminidase was also present. Thus, in contrast to core alpha 1,6-fucosylated structures, such as those present in mammals, the presence of core alpha 1,3-fucose, as found in structures from plants and insects, and/or beta 1,2-xylose, as found in plants, causes resistance to Endo D.  相似文献   

10.
To investigate the factors regulating the biosynthesis of poly-N-acetyllactosamine chains containing the repeating disaccharide [3Gal beta 1,4GlcNAc beta 1] in animal cell glycoproteins, we have examined the structures and terminal sequences of these chains in the complex-type asparagine-linked oligosaccharides from the mouse lymphoma cell line BW5147. Cells were grown in medium containing [6-3H]galactose, and radiolabeled glycopeptides were prepared and fractionated by serial lectin affinity chromatography. The glycopeptides containing the poly-N-acetyllactosamine chains in these cells were complex-type tri- and tetraantennary asparagine-linked oligosaccharides. The poly-N-acetyllactosamine chains in these glycopeptides had four different terminal sequences with the structures: I, Gal beta 1,4GlcNAc beta 1,3Gal-R; II, Gal alpha 1,3Gal beta 1,4GlcNac beta 1,3Gal-R; III, Sia alpha 2,3Gal beta 1,4GlcNAc beta 1,3Gal-R; and IV, Sia alpha 2,6Gal beta 1,4GlcNAc beta 1,3Gal-R. We have found that immobilized tomato lectin interacts with high affinity with glycopeptides containing three or more linear units of the repeating disaccharide [3Gal beta 1,4GlcNAc beta 1] and thereby allows for a separation of glycopeptides on the basis of the length of the chain. A high percentage of the long poly-N-acetyllactosamine chains bound by immobilized tomato lectin were not sialylated and contained the simple terminal sequence of Structure I. In addition, a high percentage of the sialic acid residues that were present in the long chains were linked alpha 2,3 to penultimate galactose residues (Structure III). In contrast, a high percentage of the shorter poly-N-acetyllactosamine chains not bound by the immobilized lectin were sialylated, and most of the sialic acid residues in these chains were linked alpha 2,6 to galactose (Structure IV). These results indicate that there is a relationship in these cells between poly-N-acetyllactosamine chain length and the degree and type of sialylation of these chains.  相似文献   

11.
Analysis of the Sephacryl S-200 fractionated type IV collagen domains from bovine and human glomerular basement membranes (GBM) and calf anterior lens capsule (ALC) indicated that Asn-linked oligosaccharides are primarily or exclusively localized in the 7 S region, whereas the hydroxylysine-linked Glc alpha 1----2Gal disaccharides (Glc-Gal-Hyl) are present in all the major segments of the molecule (7 S, NC1, and helical domain); no Ser/Thr-linked saccharide were detected. The Asn-linked carbohydrate units observed in the 7 S domain (Mr approximately 300,000) occurred in a number equal to the 12 polypeptide chains constituting this cross-linked region, and this was consistent with lectin blots of the reduced electrophoretically resolved 7 S components. Fractionation of the N-glycanase and endo-beta-N-acetylglucosaminidase-released oligosaccharides by concanavalin A affinity and high performance liquid chromatography indicated that the Asn-linked carbohydrate occurred predominantly in the form of complex tri- and biantennary units, although submolar amounts of polymannose variants (Man5-7GlcNAc2) were also present in calf ALC and bovine GBM. Structural studies of the complex N-linked oligosaccharides employing hydrazine/nitrous acid fragmentation and glycosidase digestions indicated a pattern in which there was complete fucosylation of the innermost GlcNAc residue of the Man3GlcNAc2 core but only sparse substitution with capping groups of the nonrepeating N-acetyllactosamine branches. Whether tri- or biantennary, the oligosaccharides from bovine GBM contained only one capping residue, in the form of either NeuAc or alpha-D-Gal, whereas those from ALC had only a single alpha-D-Gal and no NeuAc; human GBM oligosaccharides were devoid of both NeuAc and alpha-D-Gal. The absence of terminal alpha-D-Gal in the human 7 S domain was reflected in its lack of reactivity with Bandeiraea simplicifolia I and from its failure to yield Gal alpha 1----3Gal beta 1----4 [3H]anhydromannitol after hydrazine/nitrous acid/NaB3H4 treatment. Application of the latter procedure to the collagen domains yielded, in addition to fragments from the N-linked oligosaccharides, a disaccharide (Glc alpha 1----2[3H]galactitol) derived from the Glc-Gal-Hyl units. The localization of Asn-linked carbohydrate units in the evolutionarily conserved 7S domain of type IV collagens suggests that these oligosaccharides may play a role in the assembly of the collagen network of basement membranes.  相似文献   

12.
The role of heparin and heparan sulfate in the binding and signaling of fibroblast growth factors (FGFs) has been subject to intense investigation, but the studies have largely been confined to two species (FGF1 and FGF2) of the family with approximately 20 members. We have investigated the structural requirements for heparin/heparan sulfate in binding and activation of FGF8 (splice variant b). We present evidence that the minimal FGF8b-binding saccharide domain encompasses 5-7 monosaccharide units. The N-, 2-O-, and 6-O-sulfate substituents of heparin/heparan sulfate (HS) are all involved in the interaction, preferentially in the form of trisulfated IdoUA(2-OSO(3))-GlcNSO(3)(6-OSO(3)) disaccharide constituents. These structural characteristics resemble those described earlier for FGF1. By contrast, the saccharide structures required for the biological activity of FGF8b differed significantly from those characteristic for FGF1 and FGF2. Experiments with cells lacking active HS indicated that extended >/=14-mer heparin domains were needed to enhance cell proliferation and Erk phosphorylation by FGF8b, whereas in cells stimulated with FGF1 or FGF2 the corresponding responses were achieved by much shorter, 6-8-mer, oligosaccharides. Furthermore, still longer domains were needed to activate FGF8b in cells with "non-optimal" FGF receptor expression. Collectively, our data suggest that the heparin/HS structures enhancing the biological activity of FGFs were influenced by the FGF species involved as well as by the cellular composition of FGF receptors.  相似文献   

13.
The antithrombin-binding region of heparin is a pentasaccharide sequence with the predominant structure -GlcNAc(6-OSO3)-GlcA-GlcNSO3(3,6-di-OSO3)-Ido A(2-OSO3)- GlcNSO3(6-OSO3)-. By using the 3-O-sulfated glucosamine residue as a marker for the anti-thrombin-binding sequence, the location of this sequence within the heparin chain was investigated. Heparin with high affinity for antithrombin (HA-heparin) contains few N-acetyl groups located outside the antithrombin-binding region, and cleavage at such groups was therefore expected to be essentially restricted to this region. HA-heparin was cleaved at N-acetylated glucosamine units by partial deacetylation followed by treatment with nitrous acid at pH 3.9, and the resulting fragments with low affinity for anti-thrombin (LA-fragments) were recovered after affinity chromatography on immobilized antithrombin. The LA-fragments were further divided into subfractions of different molecular size by gel chromatography and were then analyzed with regard to the occurrence of the nonreducing terminal GlcA-GlcNSO3(3,6-di-OS-O3)- sequence. Such units were present in small, intermediate-sized as well as large fragments, suggesting that the antithrombin-binding regions were randomly distributed along the heparin chains. In another set of experiments, HA-heparin was subjected to limited, random depolymerization by nitrous acid (pH 1.5), and the resulting reducing terminal anhydromannose residues were labeled by treatment with NaB3H4. The molecular weight distributions of such labeled LA-fragments, determined by gel chromatography, again conformed to a random distribution of the antithrombin-binding sequence within the heparin chains. These results are in apparent disagreement with previous reports (Radoff, S., and Danishefsky, I. (1984) J. Biol. Chem. 259, 166-172; Rosenfeld, L., and Danishefsky, I. (1988) J. Biol. Chem. 263, 262-266) which suggest that the antithrombin-binding region is preferentially located at the nonreducing terminus of the heparin molecule.  相似文献   

14.
The localization and characterization of oligosaccharide sequences in the cat testis was investigated using 12 lectins in combination with the beta-elimination reaction, N-Glycosidase F and sialidase digestion. Leydig cells expressed O-linked glycans with terminal alphaGalNAc (HPA reactivity) and N-glycans with terminal/internal alphaMan (Con A affinity). The basement membrane showed terminal Neu5Acalpha2,6Gal/GalNAc, Galbeta1,3GalNAc, alpha/betaGalNAc, and GlcNAc (SNA, PNA, HPA, SBA, GSA II reactivity) in O-linked oligosaccharides, terminal Galbeta1,4GlcNAc (RCA120 staining) and alphaMan in N-linked oligosaccharides; in addition, terminal Neu5acalpha2,3Galbeta1,4GlcNac, Forssman pentasaccharide, alphaGal, alphaL-Fuc and internal GlcNAc (MAL II, DBA, GSA I-B4, UEA I, KOH-sialidase-WGA affinity) formed both O- and N-linked oligosaccharides. The Sertoli cells cytoplasm contained terminal Neu5Ac-Galbeta1,4GlcNAc, Neu5Ac-betaGalNAc as well as internal GlcNAc in O-linked glycans, alphaMan in N-linked glycoproteins and terminal Neu5Acalpha2,6Gal/ GalNAc in both O- and N-linked oligosaccharides. Spermatogonia exhibited cytoplasmic N-linked glycoproteins with alphaMan residues. The spermatocytes cytoplasm expressed terminal Neu5Acalpha2,3Galbeta1,4 GlcNAc and Galbeta1,3GalNAc in O-linked oligosaccharides, terminal Galbeta1,4GlcNAc and alpha/betaGalNAc in N-linked glycoconjugates. The Golgi region showed terminal Neu5Acalpha2,3Galbeta1,4GlcNac, Galbeta1,4GlcNAc, Forssman pentasaccharide, and alphaGalNAc in O-linked oligosaccharides, alphaMan and terminal betaGal in N-linked oligosaccharides. The acrosomes of Golgi-phase spermatids expressed terminal Galbeta1,3GalNAc, Galbeta1,4GlcNAc, Forssmann pentasaccharide, alpha/betaGalNAc, alphaGal and internal GlcNAc in O-linked oligosaccharides, terminal alpha/betaGalNAc, alphaGal and terminal/internal alphaMan in N-linked glycoproteins. The acrosomes of cap-phase spermatids lacked internal Forssman pentasaccharide and alphaGal, while having increased alpha/betaGalNAc. The acrosomes of elongated spermatids did not show terminal Galbeta1,3GalNAc, displayed terminal Galbeta1,4GlcNAc and alpha/betaGalNAc in N-glycans and Neu5Ac-Galbeta1,3GalNAc in O-linked oligosaccharides.  相似文献   

15.
In the framework of a project aimed at generating heparin-like sulfation patterns and biological activities in biotechnological glycosaminoglycans, different approaches have been considered for simulating the alpha(1-->4)-linked 2-O-sulfated L-iduronic acid (IdoA2SO(3))-->N,6-O-sulfated D-glucosamine (GlcNSO(3)6SO(3)) disaccharide sequences prevalent in mammalian heparins. Since the direct approach of sulfating totally O-desulfated heparins, taken as model compounds for C-5-epimerized sulfaminoheparosan (N-deacetylated, N-sulfated Escherichia coli K5 polysaccharide), preferentially afforded heparins O-sulfated at C-3 instead than at C-2 of the iduronate residues, leading to products with low anticoagulant activities, the problem of re-generating a substantial proportion of the original IdoA2SO(3) residues was circumvented by performing controlled solvolytic desulfation (with 9:1 v/v DMSO-MeOH) of extensively sulfated heparins. The order of desulfation of major residues of heparin GlcN and IdoA and of the minor one D-glucuronic acid was: GlcNSO(3)>GlcN6SO(3)>IdoA3SO(3) congruent with GlcA2SO(3) congruent with GlcN3SO(3)>IdoA2SO(3) congruent with GlcA3SO(3). Starting from a 'supersulfated' low-molecular weight heparin, we obtained products with up to 40% of iduronate residues O-sulfated exclusively at C-2 and up to 40% of their glucosamine residues O-sulfated at both C-6 and C-3. Upon re-N-sulfation, these products displayed an in vitro antithrombotic activity (expressed as anti-factor Xa units) comparable with those of current low-molecular weight heparins.  相似文献   

16.
Dermatan sulfate increases the rate of inhibition of thrombin by heparin cofactor II (HCII) approximately 1000-fold by providing a catalytic template to which both the inhibitor and the protease bind. Dermatan sulfate is a linear polymer of D-glucuronic acid (GlcA) or L-iduronic acid (IdoA) alternating with N-acetyl-D-galactosamine (GalNAc) residues. Heterogeneity in dermatan sulfate results from varying degrees of O-sulfation and from the presence of the two types of uronic acid residues. To characterize the HCII-binding site in dermatan sulfate, we isolated the smallest fragment of dermatan sulfate that bound to HCII with high affinity. Dermatan sulfate was partially N-deacetylated by hydrazinolysis, cleaved with nitrous acid at pH 4, and reduced with [3H]NaBH4. The resulting fragments, containing an even number of monosaccharide units with the reducing terminal GalNAc converted to [3H]2,5-anhydro-D-talitol (ATalR), were size-fractionated and then chromatographed on an HCII-Sepharose column. The smallest HCII-binding fragments were hexasaccharides, of which approximately 6% bound. Based on ion-exchange chromatography, the bound material appeared to comprise a heterogeneous mixture of molecules possessing four, five, or six sulfate groups per hexasaccharide. Subsequently, hexasaccharides with the highest affinity for HCII were isolated by overloading the HCII-Sepharose column. The high-affinity hexasaccharides were fractionated by strong anion-exchange chromatography, and one major peak representing approximately 2% of the starting hexasaccharides was isolated. The high-affinity hexasaccharide was cleaved to disaccharides that were analyzed by anion-exchange chromatography, paper electrophoresis, and paper chromatography. A single disulfated disaccharide, IdoA(2-SO4)----ATalR(4-SO4) was observed, indicating that the hexasaccharide has the following structure: IdoA(2-SO4)----GalNAc(4-SO4)----IdoA(2-SO4)---- GalNAc(4-SO4)----IdoA(2-SO4)----ATalR(4-SO4). Since IdoA(2-SO4)----GalNAc(4-SO4) comprises only approximately 5% of the disaccharides present in intact dermatan sulfate, clustering of these disaccharides must occur during biosynthesis to form the high-affinity binding site for HCII.  相似文献   

17.
Fragmentation of the heparan sulfate chains from bovine glomerular basement membrane (GBM) by hydrazine/nitrous acid treatment followed by NaB3H4-reduction yielded a mixture of six sulfated disaccharides containing D-glucuronic (GlcUA) or L-iduronic acid (IdUA) and terminating in 2,5-anhydro[3H]mannitol (AnManH2), in addition to the nonsulfated component GlcUA beta 1----4AnManH2. Among these products two novel disaccharide units were identified as IdUA alpha 1----4AnManH2(3-SO4) and IdUA(2-SO4)alpha 1----4AnManH2(3-SO4); these accounted for 22% of the total sulfated species indicating that there are 2-3 residues of 3-O-sulfated glucosamine/heparan sulfate chain. The disulfated disaccharide was shown through its release by direct nitrous acid treatment to be situated in a GlcNSO3-IdUA(2-SO4)-GlcNSO3(3-SO4) sequence which is distinct from that in which 3-O-sulfated glucosamine is located in the antithrombin-binding region of heparins. Analyses of heparan sulfate from lens capsule, a nonvascular basement membrane, indicated the absence of sequences containing 3-O-sulfated glucosamine, although otherwise the sulfated disaccharides produced by hydrazine/nitrous acid/Na-B3H4 treatment (GlcUA beta 1----4AnManH2(6-SO4), IdUA alpha 1----4AnManH2(6-SO4), IdUA(2-SO4)alpha 1----4AnManH2 and IdUA(2-SO4)alpha 1----4AnManH2(6-SO4] were the same as from GBM. Examination of the GBM heparan sulfate domains after nitrous acid treatment indicated that the O- as well as N-sulfate groups are clustered in an iduronic acid-rich 10-disaccharide peripheral segment, while the internal region (approximately 20 disaccharides) is composed primarily of repeating GlcUA beta 1----4GlcNAc units. The localization of chain diversity to the outer region may facilitate interactions of the heparan sulfate with other macromolecular components.  相似文献   

18.
Human immunoglobulin G is known to contain 16 different biantennary complex-type asparagine-linked sugar chains, each of which occurs in a nonsialylated, monosialylated, or disialylated form. These oligosaccharides can be separated into 14 fractions by sequential affinity chromatography with Aleuria aurantia lectin (AAL)-Sepharose, RCA120-WG003, and E4-phytohemagglutinin-agarose columns. Twelve of them were found to contain a single oligosaccharide, while the fraction which passed through all three columns was shown to contain two oligosaccharides, GlcNAc beta 1----2Man alpha 1----6(+/- GlcNAc beta 1----4) (GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4GlcNAcOT. The fraction, which bound to the AAL-Sepharose column and passed through the remaining two lectin columns, also contained two oligosaccharides, GlcNAc beta 1----2Man alpha 1----6(+/- GlcNAc beta 1----4) (GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4 (Fuc alpha 1----6)GlcNAcOT. These results indicated that serial affinity chromatography with the three lectin columns can be used effectively to detect changes in the sugar chains of IgG resulting from diseases such as rheumatoid arthritis.  相似文献   

19.
Cell surface-associated heparan sulfate proteoglycans, predominantly perlecan, are involved in the process of binding and endocytosis of thrombospondin-1 (TSP-1) by vascular endothelial cells. To investigate the structural properties of heparan sulfate (HS) side chains that mediate this interaction, the proteoglycans were isolated from porcine endothelial cells and HS chains obtained thereof by beta-elimination. To characterize the structural composition of the HS chains and to identify the TSP-1-binding sequences, HS was disintegrated by specific chemical and enzymatic treatments. Cell layer-derived HS chains revealed the typical structural heterogeneity with domains of non-contiguously arranged highly sulfated disaccharides separated by extended sequences containing predominantly N-acetylated sequences of low sulfation. Affinity chromatography on immobilized TSP-1 demonstrated that nearly all intact HS chains possessed binding affinity, whereas after heparinase III treatment only a small proportion of oligosaccharides were bound with similar affinity to the column. Size fractioning of the bound and unbound oligosaccharides revealed that only a specific portion of deca- to tetradecasaccharides possessed TSP-1-binding affinity. The binding fraction contained over 40% di- and trisulfated disaccharide units and was enriched in the content of the trisulfated 2-O-sulfated L-iduronic acid-N-sulfated-6-O-sulfated glucosamine disaccharide unit. Comparison with the disaccharide composition of the intact HS chains and competition experiments with modified heparin species indicated the specific importance of N- and 6-O-sulfated glucosamine residues for binding. Further depolymerization of the binding oligosaccharides revealed that the glucosamine residues within the TSP-1-binding sequences are not continuously N-sulfated. The present findings implicate specific structural properties for the HS domain involved in TSP-1 binding and indicate that they are distinct from the binding sequence described for basic fibroblast growth factor, another HS ligand and a potential antagonist of TSP-1.  相似文献   

20.
T Endo  M Kasahara  A Kobata 《Biochemistry》1990,29(39):9126-9134
The asparagine-linked sugar chain of glucose transporter from human erythrocytes was quantitatively released as oligosaccharides from the polypeptide backbone by hydrazinolysis. They were converted to radioactive oligosaccharides by NaB3H4 reduction after N-acetylation and fractionated by anion-exchange column chromatography and Bio-Gel P-4 column chromatography after sialidase treatment. Structural study of each oligosaccharide by exo- and endoglycosidase digestion and methylation analysis indicated that the glycoprotein contains a high-mannose-type oligosaccharide, Man9.GlcNAc.GlcNAc, and biantennary complex-type oligosaccharides with Man alpha 1----6(+/- GlcNAc beta 1----4)(Man alpha 1----3) Man beta beta 1----4GlcNAc beta 1----4(+/- Fuc alpha 1----6)GlcNAc as their cores and the poly-N-acetyllactosamine composed of about 16 N-acetyllactosaminyl units as their outer chains. These structural features of the sugar moiety of glucose transporter are quite different from those of two major intrinsic glycoproteins of human erythrocytes, glycophorin A and band 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号