首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leptin-induced signal transduction pathways   总被引:22,自引:0,他引:22  
Leptin is a multifunctional cytokine and hormone that primarily acts in the hypothalamus and plays a key role in the regulation of food intake and energy expenditure. In addition, it has direct effects on many cell types on the periphery. Leptin acts through its receptor, the product of the db gene, which has six isoforms. Only one of them (OB-Rb) has full signalling capabilities and is able to activate the Jak/STAT pathway, the major pathway used by leptin to exert its effects. However, some signalling events can be initiated by the short isoforms. Besides Jak/STAT, other pathways, such as MAPK and the 5'-AMP-activated protein kinase (AMPK) pathway, are also involved in leptin signalling. Leptin also interacts with insulin signalling. In this paper, we give an overview of the signal transduction mechanisms that are related to the actions of leptin.  相似文献   

2.
Rin1 regulates insulin receptor signal transduction pathways   总被引:1,自引:0,他引:1  
Rin1 is a multifunctional protein containing several domains, including Ras binding and Rab5 GEF domains. The role of Rin1 in insulin receptor internalization and signaling was examined by expressing Rin1 and deletion mutants in cells utilizing a retrovirus system. Here, we show that insulin-receptor-mediated endocystosis and fluid phase insulin-stimulated endocytosis are enhanced in cells expressing the Rin1:wild type and the Rin1:C deletion mutant, which contain both the Rab5-GEF and GTP-bound Ras binding domains. However, the Rin1:N deletion mutant, which contains both the SH2 and proline-rich domains, blocked insulin-stimulated receptor-mediated and insulin-stimulated fluid phase endocytosis. In addition, the expression of Rin1:delta (429-490), a natural occurring splice variant, also blocked both receptor-mediated and fluid phase endocystosis. Furthermore, association of the Rin1 SH2 domain with the insulin receptor was dependent on tyrosine phosphorylation of the insulin receptor. Morphological analysis indicates that Rin1 co-localizes with insulin receptor both at the cell surface and in endosomes upon insulin stimulation. Interestingly, the expression of Rin1:wild type and both deletion mutants blocks the activation of Erk1/2 and Akt1 kinase activities without affecting either JN or p38 kinase activities. DNA synthesis and Elk-1 activation are also altered by the expression of Rin1:wild type and the Rin1:C deletion mutant. In contrast, the expression of Rin1:delta stimulates both Erk1/2 and Akt1 activation, DNA synthesis and Elk-1 activation. These results demonstrate that Rin1 plays an important role in both insulin receptor membrane trafficking and signaling.  相似文献   

3.
Raf-1 is a key protein involved in the transmission of developmental and proliferative signals generated by receptor and nonreceptor tyrosine kinases. Biochemical and genetic studies have demonstrated that Raf-1 functions downstream of activated tyrosine kinases and Ras and upstream of mitogen-activated protein kinase (MAPK) and MAPK kinase (MKK or MEK) in many signaling pathways. A major objective of our laboratory has been to determine how Raf-1 becomes activated in response to signaling events. Using mammalian, baculovirus, and Xenopus systems, we have examined the roles that phosphorylation and protein-protein interactions play in regulating the biological and biochemical activity of Raf-1. Our studies have provided evidence that the activity of Raf-1 can be modulated by both Ras-dependent and Ras-independent pathways. Recently, we reported that Arg89 of Raf-1 is a residue required for the association of Raf-1 and Ras. Mutation of this residue disrupted interaction with Ras and prevented Ras-mediated, but not protein kinase C-or tyrosine kinase-mediated, enzymatic activation of Raf-1 in the baculovirus expression system. Further analysis of this mutant demonstrated that kinase-defective Raf-1 proteins interfere with the propagation of proliferative and developmental signals by binding to Ras and blocking Ras function. Our findings have also shown that phosphorylation events play a role in regulating Raf-1. We have identified sites of in vivo phosphorylation that positively and negatively alter the biological and enzymatic activity of Raf-1. In addition, we have found that some of these phosphorylation sites are involved in mediating the interaction of Raf-1 with potential activators (Fyn and Src) and with other cellular proteins (14-3-3). Results from our work suggest that Raf-1 is regulated at multiple levels by several distinct mechanisms. © 1995 wiley-Liss, Inc.  相似文献   

4.
Signal transduction networks are crucial for inter- and intra-cellular signaling. Signals are often transmitted via covalent modification of protein structure, with phosphorylation/dephosphorylation as the primary example. In this paper, we apply a recently described method of computational algebra to the modeling of signaling networks, based on time-course protein modification data. Computational algebraic techniques are employed to construct next-state functions. A Monte Carlo method is used to approximate the Deegan-Packel Index of Power corresponding to the respective variables. The Deegan-Packel Index of Power is used to conjecture dependencies in the cellular signaling networks. We apply this method to two examples of protein modification time-course data available in the literature. These experiments identified protein carbonylation upon exposure of cells to sub-lethal concentrations of copper. We demonstrate that this method can identify protein dependencies that might correspond to regulatory mechanisms to shut down glycolysis in a reverse, step-wise fashion in response to copper-induced oxidative stress in yeast. These examples show that the computational algebra approach can identify dependencies that may outline signaling networks involved in the response of glycolytic enzymes to the oxidative stress caused by copper.  相似文献   

5.
Transient dynamics of signal transduction pathways play an important role in many biological processes, including cell differentiation, apoptosis, metabolism and DNA damage response. Recent examples of quantitative methods to characterize transient signals include transient metabolic control coefficients and finite time Lyapunov exponents. In our work we compare these quantitative methods to characterize transient phenomena and specifically discuss their predictive power for three examples. We focus on the identification of thresholds that separate different transient dynamic behaviors. Our investigation leads to the following results: The spectrum of the finite-time Lyapunov exponents unambiguously and reliably identifies putative thresholds in transient dynamics. Metabolic control coefficients do not reliably detect all thresholds and suffer from false positives.  相似文献   

6.
Isoforms of the receptor tyrosine kinase, c-KIT, differ in the presence or absence of a GNNK tetrapeptide in the extracellular juxtamembrane region. When expressed in murine NIH3T3 cells, these isoforms of c-KIT showed differential activation of signaling pathways and proliferation in response to Stem Cell Factor (SCF). However, c-KIT is not normally expressed by fibroblasts, but plays a key role in hematopoiesis. Because signaling pathways and cellular responses mediated by c-KIT differ in different cell types, we studied the effects of SCF stimulation on factor-dependent murine early myeloid cells expressing human GNNK+ or GNNK− c-KIT. As in fibroblasts, SCF activation of the GNNK− isoform resulted in stronger, more rapid receptor phosphorylation, and activation of Src kinases, while only a minor effect on the phosphatidylinositol 3-kinase pathway was observed. Similarly, more rapid Src kinase-dependent internalisation of the GNNK− isoform occurred in response to SCF. In contrast to fibroblasts, only minor differences in ERK activation were seen indicating that early hematopoietic cells, unlike fibroblasts, are not dependent on Src kinases for activation of this pathway in response to SCF. Enhanced SCF-dependent growth was observed in GNNK− c-KIT expressing cells due to lower cell attrition. The rate of cell division was similar. Importantly, cells expressing the GNNK− isoform showed a greater chemotactic response to SCF.  相似文献   

7.
As experimental evidence suggests that leptin may have direct effects on peripheral tissues, we investigated some of the transductional molecules induced by leptin in C2C12 cells. In immunoprecipitation experiments using anti-p85 antibodies (a regulatory subunit of phosphatidylinositol-3-kinase; PI3K), we observed a significant increase in PI3K activity. Immunoblot analyses showed that Akt, GSK3, ERK1, ERK2, and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation significantly increased after leptin treatment. Protein kinase C (PKC)-zeta was also activated by leptin, as documented by an immunocomplex kinase assay and immunoblotting experiments. The treatment of C2C12 cells with Wortmannin before leptin administration inhibited induction of the phosphorylation of ERKs (extracellular signal-regulated kinases) but not that of p38 MAPK, whereas pre-treatment with a PKC-zeta inhibitor partially decreased ERK phosphorylation. Taken together, our in vitro results further support the hypothesis that leptin acts acutely on skeletal muscle tissue through some of the components of insulin signalling, including PKC-zeta.  相似文献   

8.
Nitric oxide (NO) is a signal molecule involved in regulation of physiological and pathophysiological functions of the vascular endothelium such as apoptosis. We examined whether NO-modulates marker gene expression of signal transduction pathways in cultured pulmonary artery endothelial cell (PAEC). Cells were exposed to a NO donor, 1 mM NOC-18, for 0.5, 5, and 24 h, thereafter, expression levels of 96 marker genes associated with 18 signal transduction pathways were assessed using a signal transduction pathway-finder microarray analysis system. NO modulation of apoptotic pathways and nuclear factor (NF) microarray were further analyzed. Gene array analyses revealed that 17 genes in 13 signal pathways were up- or down-regulated in cells exposed to NO, four of which were significantly altered by NO and are associated with apoptotic pathways. Apoptotic pathways resulted in identification of 11 genes in this group. Nuclear factor microarray studies demonstrated that NO-modulated expression of these signal transduction genes was associated with regulation of NF-binding activities. Gel shift analysis verified the effects of NO on DNA-binding activity of NF. These results demonstrated that NO signaling modulates at least 13 signal transduction pathways including apoptosis-related families in PAEC.  相似文献   

9.
Integrins are composed of noncovalently bound dimers of an alpha- and a beta-subunit. They play an important role in cell-matrix adhesion and signal transduction through the cell membrane. Signal transduction can be initiated by the binding of intracellular proteins to the integrin. Binding leads to a major conformational change. The change is passed on to the extracellular domain through the membrane. The affinity of the extracellular domain to certain ligands increases; thus at least two states exist, a low-affinity and a high-affinity state. The conformations and conformational changes of the transmembrane (TM) domain are the focus of our interest. We show by a global search of helix-helix interactions that the TM section of the family of integrins are capable of adopting a structure similar to the structure of the homodimeric TM protein Glycophorin A. For the alpha(IIb)beta(3) integrin, this structural motif represents the high-affinity state. A second conformation of the TM domain of alpha(IIb)beta(3) is identified as the low-affinity state by known mutational and nuclear magnetic resonance (NMR) studies. A transition between these two states was determined by molecular dynamics (MD) calculations. On the basis of these calculations, we propose a three-state mechanism.  相似文献   

10.
神经营养素信号转导研究进展   总被引:5,自引:0,他引:5  
Yang QF  Fan M  Wan XC 《生理科学进展》1997,28(3):209-213
神经营养素(NTs)与其膜受体相结合,促成trk同源二聚体的形成,激发Ras信号转导途径,启动即早基因和延迟反应基因的转录,或直接参与各种生理反应。靶源性NTs的作用由轴突末端trk受体介导,以磷酸化状态的trk或NT-trk复合物或被活化的其它信使分子等形式沿轴突逆行运输至胞浆胞核,实现其信号转导。NTs的作用除了靶源性方式外,也存在局部的自分泌与旁分泌。损伤情况下,NTs及其受体表达均增加,轴  相似文献   

11.
Protein network analysis has witnessed a number of advancements in the past for understanding molecular characteristics for important network topologies in biological systems. The signaling pathway regulates cell cycle progression and anti-apoptotic molecules. This pathway is also involved in maintaining cell survival by modulating the activity of apoptosis through RAS, P13K, AKT and BAD activities. The importance of protein-protein interactions to improve usability of the interactome by scoring and ranking interaction data for proteins in signal transduction networks is illustrated using available data and resources.  相似文献   

12.
13.
Capacitation has been correlated with the activation of a cAMP-PKA-dependent signaling pathway leading to protein tyrosine phosphorylation. The ability to exhibit this response to cAMP matures during epididymal maturation in concert with the ability of the spermatozoa to capacitate. In this study, we have addressed the mechanisms by which spermatozoa gain the potential to activate this signaling pathway during epididymal maturation. In a modified Tyrode's medium containing 1.7 mM calcium, caput spermatozoa had significantly higher [Ca2+]i than caudal cells and could not tyrosine phosphorylate in response to cAMP. However, in calcium-depleted medium both caput and caudal cells could exhibit a cAMP-dependent phosphorylation response. The inhibitory effect of calcium on tyrosine phosphorylation was also observed in caudal spermatozoa using thapsigargin, a Ca(2+)-ATPase inhibitor that increased [Ca2+]i and precipitated a corresponding decrease in phosphotyrosine expression. We also demonstrate that despite the activation of tyrosine phosphorylation in caput spermatozoa, these cells remain nonfunctional in terms of motility, sperm-egg recognition and acrosomal exocytosis. These results demonstrate that the signaling pathway leading to tyrosine phosphorylation in mouse spermatozoa is negatively regulated by [Ca2+]i, and that maturation mechanisms that control [Ca2+]i within the spermatozoon are critically important during epididymal transit.  相似文献   

14.
Archaebacterial photoreceptors mediate phototaxis by regulating cell motility through two-component signalling cascades. Homologs of this sensory pathway occur in all three kingdoms of life, most notably in enteric bacteria in which the chemotaxis has been extensively studied. Recent structural and functional studies on the sensory rhodopsin II/transducer complex mediating the photophobic response of Natronomonas pharaonis have yielded new insights into the mechanisms of signal transfer across the membrane. Electron paramagnetic resonance data and the atomic resolution structure of the receptor molecule in complex with the transmembrane segment of its cognate transducer provided a model for signal transfer from the receptor to the cytoplasmic side of the transducer. This mechanism might also be relevant for eubacterial chemoreceptor signalling.  相似文献   

15.
胰岛素信号转导障碍与胰岛素抵抗的形成   总被引:4,自引:0,他引:4  
Huang DM  Lu FE 《生理科学进展》2003,34(3):212-216
胰岛素生理作用的发挥,起始于胰岛素与其受体的结合,并由此引起细胞内一系列信号转导,最终到达各效应器产生各种生理效应。胰岛素信号转导在胰岛素生理作用的发挥中起着至关重要的作用。胰岛素信号转导减弱或受阻,使得胰岛素生理作用减弱,导致胰岛素抵抗形成。本文综述了胰岛素信号转导失调在胰岛素抵抗形成中的作用。  相似文献   

16.
RGS与G蛋白信号转导的调节   总被引:3,自引:0,他引:3  
RGSs(regulators of G-protein signaling)是最近发现的G-蛋白信号转导的负调节子,大部分RGSs通过GAPs(GTPase activating proteins)方式发挥作用,RGS的作用具有高度特异性,在体内受到严密的调节。对RGS的深入研究有利于对信号转导调节的了解。  相似文献   

17.
Mitochondria are intracellular organelles thought to have evolved from an alphaproteobacterium engulfed by the ancestor of the eukaryotic cell, an archeon, two billion years ago. Although mitochondria are frequently recognised as the “power plant” of the cell, the function of these organelles go beyond the simple generation of ATP. In fact, mounting evidence suggests that mitochondria are involved in several cellular processes, from regulation of cell death to signal transduction. Given this important role in cell physiology, mitochondrial dysfunction has been frequently associated with human diseases including cancer. Importantly, recent evidence suggests that mitochondrial function is directly regulated by oncogenes and tumour suppressors. However, the consequences of deregulation of mitochondrial function in tumour formation are still unclear. In this review, I propose that mitochondria play a pivotal role in shaping the oncogenic signalling cascade and that mitochondrial dysfunction, in some circumstances, is a required step for cancer transformation.  相似文献   

18.
Signal transduction is the process by which the cell converts one kind of signal or stimulus into another. This involves a sequence of biochemical reactions, carried out by proteins. The dynamic response of complex cell signalling networks can be modelled and simulated in the framework of chemical kinetics. The mathematical formulation of chemical kinetics results in a system of coupled differential equations. Simplifications can arise through assumptions and approximations. The paper provides a critical discussion of frequently employed approximations in dynamic modelling of signal transduction pathways. We discuss the requirements for conservation laws, steady state approximations, and the neglect of components. We show how these approximations simplify the mathematical treatment of biochemical networks but we also demonstrate differences between the complete system and its approximations with respect to the transient and steady state behavior.  相似文献   

19.
20.
心肌细胞肥大的信号转导通路   总被引:9,自引:0,他引:9  
心肌肥厚是肥大刺激诱导核内基因异常表达的结果,细胞内信号转导通路是肥大刺激与核内基因转录活化的偶联环节。然而,淡同刺激诱导的心肌肥大可能具有不同的“分子表型”,这主要取决于它们启动的信号转导通路。对心肌肥大信号转导通路的深入认识,不仅胡助于阐明心肌肥厚的细胞分子机制,而且可为药物干预防治心肌肥厚提供新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号