首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
beta-Mannanase (endo-1,4-beta-mannanase; mannan endo-1,4-beta-mannosidase; EC 3.2.1.78) catalyzes endo-wise hydrolysis of the backbone of mannan and heteromannans, including hemicellulose polysaccharides, which are among the major components of plant cell walls. The gene man1, which encodes beta-mannanase, of the filamentous fungus Trichoderma reesei was isolated from an expression library by using antiserum raised towards the earlier-purified beta-mannanase protein. The deduced beta-mannanase consists of 410 amino acids. On the basis of hydrophobic cluster analysis, the beta-mannanase was assigned to family 5 of glycosyl hydrolases (cellulase family A). The C terminus of the beta-mannanase has strong amino acid sequence similarity to the cellulose binding domains of fungal cellulases and is preceded by a serine-, threonine-, and proline-rich region. Consequently, the beta-mannanase is probably organized similarly to the T. reesei cellulases, having a catalytic core domain separated from the substrate-binding domain by an O-glycosylated linker. Active beta-mannanase was expressed and secreted by using the yeast Saccharomyces cerevisiae as the host. The results indicate that the man1 gene encodes the two beta-mannanases with different isoelectric points (pIs 4.6 and 5.4) purified earlier from T. reesei.  相似文献   

2.
L-Sorbose, an excellent cellulase and xylanase inducer from Trichoderma reesei PC-3-7, also induced alpha-L-arabinofuranosidase (alpha-AF) activity. An alpha-AF induced by L-sorbose was purified to homogeneity, and its molecular mass was revealed to be 35 kDa (AF35), which was not consistent with that of the previously reported alpha-AF. Another species, with a molecular mass of 53 kDa (AF53), which is identical to that of the reported alpha-AF, was obtained by a different purification procedure. Acid treatment of the ammonium sulfate-precipitated fraction at pH 3.0 in the purification steps or pepsin treatment of the purified AF53 reduced the molecular mass to 35 kDa. Both purified enzymes have the same enzymological properties, such as pH and temperature effects on activity and kinetic parameters for p-nitrophenyl-alpha-L-arabinofuranoside (pNPA). Moreover, the N-terminal amino acid sequences of these enzymes were identical with that of the reported alpha-AF. Therefore, it is obvious that AF35 results from the proteolytic cleavage of the C-terminal region of AF53. Although AF35 and AF53 showed the same catalytic constant with pNPA, the former showed drastically reduced specific activity against oat spelt xylan compared to the latter. Furthermore, AF53 was bound to xylan rather than to crystalline cellulose (Avicel), but AF35 could not be bound to any of the glycans. These results suggest that AF53 is a modular glycanase, which consists of an N-terminal catalytic domain and a C-terminal noncatalytic xylan-binding domain.  相似文献   

3.
Intergeneric fusants of Trichoderma reesei QM 9414/Saccharomyces cerevisiae NCIM 3288 developed in the authors' laboratory can convert cellulosic materials directly to ethanol in a single step process. The production of endoglucanase in this case is a key factor. The production profile of this enzyme by the intergeneric fusants is different from Trichoderma reesei QM 9414 (WT). The production of endoglucanase was studied seperately by Trichoderma reesei (WT) using optimal production medium which was designed as per the combined screening approach of Plackett-Burman followed by a central composite experimental plan and the intergeneric fusants using optimal production medium obtained by Box-Behnken optimization procedure. Dried grass was used as the cellulosic substance whose concentration was kept constant during the statistical optimization procedure. The concentration of dried grass was later varied keeping the other optimized medium constituents constant to find the final optimum medium composition for endoglucanase production.  相似文献   

4.
The beta-xylosidase-encoding xlnD gene of Aspergillus niger 90196 was amplified by the PCR technique from first-strand cDNA synthesized on mRNA isolated from the fungus. The nucleotide sequence of the cDNA fragment was verified to contain a 2,412-bp open reading frame that encodes a 804-amino-acid propeptide. The 778-amino-acid mature protein, with a putative molecular mass of 85.1 kDa, was fused in frame with the Saccharomyces cerevisiae mating factor alpha1 signal peptide (MFalpha1(s)) to ensure correct posttranslational processing in yeast. The fusion protein was designated Xlo2. The recombinant beta-xylosidase showed optimum activity at 60 degrees C and pH 3.2 and optimum stability at 50 degrees C. The K(i(app)) value for D-xylose and xylobiose for the recombinant beta-xylosidase was determined to be 8.33 and 6.41 mM, respectively. The XLO2 fusion gene and the XYN2 beta-xylanase gene from Trichoderma reesei, located on URA3-based multicopy shuttle vectors, were successfully expressed and coexpressed in the yeast Saccharomyces cerevisiae under the control of the alcohol dehydrogenase II gene (ADH2) promoter and terminator. These recombinant S. cerevisiae strains produced 1,577 nkat/ml of beta-xylanase activity when expressing only the beta-xylanase and 860 nkat/ml when coexpressing the beta-xylanase with the beta-xylosidase. The maximum beta-xylosidase activity was 5.3 nkat/ml when expressed on its own and 3.5 nkat/ml when coexpressed with the beta-xylanase. Coproduction of the beta-xylanase and beta-xylosidase enabled S. cerevisiae to degrade birchwood xylan to D-xylose.  相似文献   

5.
Cellobiohydrolase II of Trichoderma reesei was produced in laboratory and pilot scale using a transformant strain of Saccharomyces cerevisiae harbouring a multicopy expression plasmid. Different strategies were compared for concentration and partial purification of the enzyme produced in a 200 1 pilot cultivation. After efficient separation of biomass and sub-cellular particulate matter, a combination of ultrafiltration and adsorbent treatment for removal of protein impurities was used to provide a concentrate for chromatographic purification. Effective purification of the CBH II protein was obtained by passing the concentrate through a column of DEAE Sepharose, on which almost all the yeast proteins were adsorbed. The purified enzyme reacted with antibodies prepared against T. reesei CBH II and catalyzed partial solubilization of crystalline cellulose to soluble sugars.  相似文献   

6.
β-葡萄糖苷酶在酿酒酵母表面的表达   总被引:1,自引:0,他引:1  
应用表面表达技术对来自Trichodermareesei的β-葡萄糖苷酶在酿酒酵母表面的表达及后期性质进行了研究。实验结果表明酵母表面表达酶有活性,该酶的最佳诱导时间为24h,最适温度是70℃,而酶活的最适pH是5.5。使异源表面表达了Bgl1的酵母在以纤维二糖为唯一碳源的培养基中生长,发酵结果表明纤维二糖被明显利用了,但在培养186h后,发酵液中仍残留一定量的纤维二糖。这种技术对纤维素发酵系统中纤维二糖酶活性低的现状有所帮助。  相似文献   

7.
T Leustek  M Murillo    M Cervantes 《Plant physiology》1994,105(3):897-902
ATP sulfurylase, the first enzyme in the sulfate assimilation pathway of plants, catalyzes the formation of adenosine phosphosulfate from ATP and sulfate. Here we report the cloning of a cDNA encoding ATP sulfurylase (APS1) from Arabidopsis thaliana. APS1 was isolated by its ability to alleviate the methionine requirement of an ATP sulfurylase mutant strain of Saccharomyces cerevisiae (yeast). Expression of APS1 correlated with the presence of ATP sulfurylase enzyme activity in cell extracts. APS1 is a 1748-bp cDNA with an open reading frame predicted to encode a 463-amino acid, 51,372-D protein. The predicted amino acid sequence of APS1 is similar to ATP sulfurylase of S. cerevisiae, with which it is 25% identical. Two lines of evidence indicate that APS1 encodes a chloroplast form of ATP sulfurylase. Its predicted amino-terminal sequence resembles a chloroplast transit peptide; and the APS1 polypeptide, synthesized in vitro, is capable of entering isolated intact chloroplasts. Several genomic DNA fragments that hybridize with the APS1 probe were identified. The APS1 cDNA hybridizes to three species of mRNA in leaves (1.85, 1.60, and 1.20 kb) and to a single species of mRNA in roots (1.85 kb).  相似文献   

8.
瑞氏木霉EG Ⅰ 3‘—UTR对基因在酿酒酵母中表达的影响   总被引:1,自引:1,他引:1  
将纤维素降解菌丝状真菌瑞氏木霉内切葡聚糖酶Ⅰ(EGⅠ)全长cDNA克隆于酿酒酵母H158中得到表达。重组酿酒酵母产生的EIⅠ的最适pH值为5.0,最适作用温度为50℃-60℃。EGⅠcDNA中的3‘- 非翻译区(3‘-UTR)序列的删除导致EGI基因在酵母菌中没有活性产物表达。通过RT-PCR技术检测EGⅠmRNA转录水平的结果表明,带有3‘-UTA的EGⅠcDNA在酿酒酵母中具有明显的转录产物生成,但删除3‘-UTR之后的EGⅠcDNA去检测不到转录产物。这说明EGⅠ的3‘-UTA对基因在酵母菌中的表达具有重要作用。  相似文献   

9.
Trichoderma reesei endoglucanase I (EGI) was used as a reporter enzyme for screening mutagenized yeast strains for increased ability to produce protein. Sixteen haploid Saccharomyces cerevisiae strains, transformed with a yeast multicopy vector pALK222, containing the EGI cDNA under the ADH1 promoter, produced EGI activity of 10-5–10-4 g/l. On the average 93% of the total activity was secreted into the culture medium. Two strains with opposite mating types were mutagenized, and several mutants were isolated possessing up to 45-fold higher EGI activity. The best mutants were remutagenized and a second-generation mutant, strain 2804, with an additional twofold increase in EGI activity was selected. The mutant strain 2804 grew more slowly and reached a lower final cell density than the parental strain. In the selective minimal medium, the 2804 strain produced 40 mg/l immunoreactive EGI protein, but only 2% was active enzyme. In the rich medium the secreted EGI enzyme stayed active, but without selection pressure the EGI production ceased after 2 days of cultivation, when the strain 2804 had produced 10 mg/l of EGI. A sevenfold difference was found between the parental and the 2804 strain in their total EGI production relative to cell density. The difference in favour of the mutant strain was also detected on the mRNA level. The 2804 mutant was found to be more active than the parental strain also in the production of T. reesei cellulases, cellobiohydrolase I, and cellobiohydrolase II. Received: 22 December 1995/Received revision: 26 February 1996/Accepted: 17 March 1996  相似文献   

10.
Pichia pastoris was transformed with the Trichoderma reesei cbh1 gene, and the recombinant enzyme was purified and analyzed kinetically and by circular dichroism. The P. pastoris rCBH I was recognized by MoAb raised to T. reesei CBH I but was found in multiple molecular weight species on SDS-PAGE gels. Carbohydrate content determination and SDS-PAGE western analysis indicated that the recombinant protein was hyperglycosylated, although a species very similar in molecular weight to the T. reesei enzyme could be isolated chromatographically. The P. pastoris rCBH I also demonstrated activity toward soluble and insoluble substrates (i.e., pNPL and Sigmacell), although at a level significantly lower than the wild-type enzyme. More seriously, the yeast-expressed enzyme showed non-wild-type secondary structure by circular dichroism. We conclude that P. pastoris may not serve as an adequate host for the site-directed mutagenesis of T. reesei CBH I.  相似文献   

11.
M Gómez  P Isorna  M Rojo  P Estrada 《Biochimie》2001,83(10):961-967
The variation of kinetic parameters of beta-xylosidase from Trichoderma reesei QM 9414 with pH was used to elucidate the chemical mechanism of the p-nitrophenyl beta-D-xylopyranoside hydrolysis. The pH-dependence of V and V/K(m) showed that a group on the enzyme with a pK value of 3.20 must be unprotonated and a group with a pK value of 5.20 must be protonated for activity and both are involved in catalysis. Solvent-perturbation studies indicated that these groups are neutral acid type. Temperature dependence of kinetic parameters suggested the stickiness of the substrate at lower temperatures than the optimum and the calculated ionization enthalpies pointed to carboxyl groups as responsible for both pKs. Chemical modification with triethyloxonium tetrafluoroborate and protection with the substrate studies demonstrated essential carboxyl groups on the enzyme. Profiles of pK(i) for D-gluconic acid lactone indicated that a group with a pK value of 3.45 must be protonated for binding and it has been assigned to the carboxyl group of D-gluconic acid formed by lactone ring breakdown in solution.  相似文献   

12.
The XYN2 gene encoding the main Trichoderma reesei QM 6a endo-beta-1,4-xylanase was amplified by PCR from first-strand cDNA synthesized on mRNA isolated from the fungus. The nucleotide sequence of the cDNA fragment was verified to contain a 699-bp open reading frame that encodes a 223-amino-acid propeptide. The XYN2 gene, located on URA3-based multicopy shuttle vectors, was successfully expressed in the yeast Saccharomyces cerevisiae under the control of the alcohol dehydrogenase II (ADH2) and phosphoglycerate kinase (PGK1) gene promoters and terminators, respectively. The 33-amino-acid leader peptide of the Xyn2 beta-xylanase was recognized and cleaved at the Kex2-like Lys-Arg residues, enabling the efficient secretion and glycosylation of the heterologous beta-xylanase. The molecular mass of the recombinant beta-xylanase was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be 27 kDa. The construction of fur1 ura3 S. cerevisiae strains allowed for the autoselection of the URA3-based XYN2 shuttle vectors in nonselective complex medium. These autoselective S. cerevisiae strains produced 1,200 and 160 nkat of beta-xylanase activity per ml under the control of the ADH2 and PGK1 promoters in rich medium, respectively. The recombinant enzyme showed highest activity at pH 6 and 60 degrees C and retained more than 90% of its activity after 60 min at 50 degrees C.  相似文献   

13.
Two Neurospora crassa genes, trk-1 and hak-1, encode K+ transporters that show sequence similarities to the TRK transporters described in Saccharomyces cerevisiae and Schizosaccharomyces pombe, and to the HAK transporters described in Schwanniomyces occidentalis and barley. The N. crassa TRK1 and HAK1 transporters expressed by the corresponding cDNAs in a trk1 delta trk2 delta mutant of S. cerevisiae exhibited a high affinity for Rb+ and K+. Northern blot analysis and comparison of the kinetic characteristics of the two transporters in the trk1 delta trk2 delta mutant with the kinetic characteristics of K+ uptake in N. crassa cells allowed TRK1 to be identified as the dominant K+ transporter and HAK1 as a transporter that is only expressed when the cells are K+ starved. The HAK1 transporter showed a high concentrative capacity and is identified as the K(+)-H+ symporter described in N. crassa, whereas TRK1 might be a K+ uniporter. Although the co-existence of K+ transporters of the TRK and HAK types in the same species had not been reported formerly, we discuss whether this co-existence may be the normal situation in soil fungi.  相似文献   

14.
Two endo-β-1,4-xylanase-encoding genes were amplified from Aspergillus niger ATCC 90196 mRNA, inserted between the yeast ADH2 promoter and terminator sequences (genes designated XYN4 and XYN5) and expressed in Saccharomyces cerevisiae. The nucleotide sequences of the XYN4 and XYN5 genes revealed that both genes encode 211-amino acid proteins that are 92% identical to each other. Both the Xyn4 and Xyn5 enzymes have pH and temperature optima of pH 4 and 60°C, respectively. Autoselective S. cerevisiae strains were developed that allowed β-xylanase production and secretion in complex medium. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

15.
S Aho 《FEBS letters》1991,291(1):45-49
The function of the domains of Trichoderma reesei endoglucanase I (EGI) has been studied. Truncated EGI proteins were expressed from the 3'-end deleted cDNAs in the yeast Saccharomyces cerevisiae under the control of the ADC1 expression cassette. EGI protein was detected by monoclonal antibody EI-2 and EGI activity as cleared zones around growing colonies on agar plates containing hydroxyethylcellulose (HEC) covalently stained with Ostazin brilliant red (OBR). The results showed that the The-Ser-rich hinge region and the conserved 'tail' are not necessary for the efficient synthesis and secretion of EGI in yeast, but the intact core region is necessary for the enzymatic activity.  相似文献   

16.
17.
In Saccharomyces cerevisiae, the transport of ammonium across the plasma membrane for use as a nitrogen source is mediated by at least two functionally distinct transport systems whose respective encoding genes are called MEP1 and MEP2. Mutations in the MEP2 gene affect high affinity, low capacity ammonium transport while mutations in the MEP1 gene disrupt a lower affinity, higher capacity system. In this work, the MEP1 gene has been cloned and sequenced and its expression analyzed. The predicted amino acid sequence reveals a highly hydrophobic, 54 kDa protein with 10 or 11 putative membrane-spanning regions. The predicted Mep1p protein shares high sequence similarity with several bacterial proteins of unknown function, notably the product of the nitrogen-regulated nrgA gene of Bacillus subtilis, and with that of a partial cDNA sequence derived from Caenorhabditis elegans. The Mep1p and related proteins appear to define a new family of transmembrane proteins evolutionarily conserved in at least bacteria, fungi and animals. The MEP1 gene is most highly expressed when the cells are grown on low concentrations of ammonium or on 'poor' nitrogen sources like urea or proline. It is down-regulated, on the other hand, when the concentration of ammonium is high or when other 'good' nitrogen sources like glutamine or asparagine are supplied in the culture medium. The overall properties of Mep1p indicate that it is a transporter of ammonium. Its main function appears to be to enable cells grown under nitrogen-limiting conditions to incorporate ammonium present at relatively low concentrations in the growth medium.  相似文献   

18.
Sulfur isotope effects during the oxidation of thiosulfate by Thiobacillus versutus were found to be negligible. This result is considered in relation to other oxidative and reductive processes to assess which reactions are most likely to control the isotopic compositions of sulfur compounds in microbial sulfureta.  相似文献   

19.
从拟康氏木霉3.3002基因组中克隆了内切葡聚糖酶EGI基因,该基因全长1566 bp,由3个外显子2个内含子组成,编码461个氨基酸.编码蛋白EGI的N端为22aa组成的信号肽,其后依次为催化结构域、连接肽和结合结构域.采用重叠PCR法获得无内含子的内切葡聚糖酶基因eg1,并将其成熟肽编码序列插入酿酒酵母分泌型表达载...  相似文献   

20.
The combined effect of pH and temperature on carboxymethyl cellulase from two intergeneric fusants (M 14 and M 62) of Trichoderma reesei QM 9414/Saccharomyces cerevisiae NCIM 3288 was studied using response surface methodology. A central composite design for two variables was employed for the optimization studies. This study was compared with similar studies carried out with Trichoderma reesei QM 9414. The optimal pH and temperature for the enzymes derived from these organisms were: for the fusant M 14—pH 5.7 and 41.7°C, for the fusant M 62—pH 5.3 and 43°C, and for Trichoderma reesei QM 9414—pH 4.31 and 38.3°C. Received 5 May 1997/ Accepted in revised form 17 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号