首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Basic region leucine zipper (bZip) proteins contain a bipartite DNA-binding motif consisting of a coiled-coil leucine zipper dimerization domain and a highly charged basic region that directly contacts DNA. The basic region is largely unfolded in the absence of DNA, but adopts a helical conformation upon DNA binding. Although a coil --> helix transition is entropically unfavorable, this conformational change positions the DNA-binding residues appropriately for sequence-specific interactions with DNA. The N-terminal residues of the GCN4 DNA-binding domain, DPAAL, make no DNA contacts and are not part of the conserved basic region, but are nonetheless important for DNA binding. Asp and Pro are often found at the N-termini of alpha-helices, and such N-capping motifs can stabilize alpha-helical structure. In the present study, we investigate whether these two residues serve to stabilize a helical conformation in the GCN4 basic region, lowering the energetic cost for DNA binding. Our results suggest that the presence of these residues contributes significantly to helical structure and to the DNA-binding ability of the basic region in the absence of the leucine zipper. Similar helix-capping motifs are found in approximately half of all bZip domains, and the implications of these findings for in vivo protein function are discussed.  相似文献   

2.
3.
4.
Sequence-specific DNA binding of short peptide dimers derived from a plant basic leucine zipper protein EmBP1 was studied. A homodimer of the EmBP1 basic region peptide recognized a palindromic DNA sequence, and a heterodimer of EmBP1 and GCN4 basic region peptides targets a non-palindromic DNA sequence when a beta-cyclodextrin/adamantane complex is utilized as a dimerization domain. A homodimer of the EmBP1 basic region peptide binds the native EmBP1 binding 5'-GCCACGTGGC-3' and the native GCN4 binding 5'-ATGACGTCAT-3' sequences with almost equal affinity in the alpha-helical conformation, indicating that the basic region of EmBP1 by itself has a dual recognition codes for the DNA sequences. The GCN4 basic region peptide binds 5'-ATGAC-3' in the alpha-helical conformation, but it neither shows affinity nor helix formation with 5'-GCCAC-3'. Because native EmBP1 forms 100 times more stable complex with 5'-GCCACGTGGC-3' over 5'-ATGACGTCAT-3', our results suggest that the sequence-selectivity of native EmBP1 is dictated by the structure of leucine zipper dimerization domain including the hinge region spanning between the basic region and the leucine zipper.  相似文献   

5.
6.
Morii T  Sato S  Hagihara M  Mori Y  Imoto K  Makino K 《Biochemistry》2002,41(7):2177-2183
We have employed a structure-based design to construct a small folding domain from the F-actin bundling protein villin that contains the amino acids necessary for the DNA binding of the basic leucine zipper protein GCN4 and have compared its DNA binding with GCN4. The monomeric motif folds into a stable domain and binds DNA in a rigid-body mechanism, while its affinity is not higher than that of the basic region peptide. The addition of the leucine zipper region to the folded domain restored its sequence-specific DNA binding comparable to that of GCN4. Unlike the monomeric folded domain, its leucine zipper derivative undergoes a conformational change upon DNA binding. CD spectral and thermodynamic studies indicate that the DNA-contacting region is folded in the presence or absence of DNA and suggest that the junction between the DNA-contacting and the leucine zipper regions transits to a helix in the presence of DNA. These results demonstrate that the structural transition outside the direct-contacting region, which adjusts the precise location of the DNA-contacting region, plays a critical role in the specific complex formation of basic leucine zipper proteins.  相似文献   

7.
8.
K U Jooss  M Funk    R Müller 《The EMBO journal》1994,13(6):1467-1475
To date, three functional domains have been defined in c-Fos and v-Fos proteins and have been shown to play a role in transactivation: the leucine zipper mediating hetero-dimerization, the basic DNA contact site, and a C-terminally located transactivation domain (C-TA) harbouring the HOB1 and HOB2 motifs. While the bZip region, consisting of the leucine zipper and the DNA contact site, is indispensable for transformation, the C-TA domain is not required and is actually altered by internal deletions in the FBR-MuSV. We now show that the N-terminal regions of c-Fos and v-Fos contain a second transactivation domain (N-TA). A functionally crucial motif within the N-TA domain, termed NTM, was pinpointed to a approximately 25 amino acid stretch around positions 60-84 which is highly conserved in FosB. Analysis of LexA fusion proteins showed that the N-TA domains of both c-Fos and FosB function in an autonomous fashion in both fibroblasts and yeast. Most importantly, deletion of the NTM motif impairs the transforming properties of v-Fos. Apart from the bZip region, the N-TA domain is the only functional domain required for transformation by v-Fos, at least when its expression is driven by the strong FBR-MuSV-LTR promoter.  相似文献   

9.
10.

It has been recently proposed that certain DNA binding proteins (including C/EBP, GCN4 and themyc, jun, andfos oncogene proteins) share a common structural motif based on helix-promoting regions containing heptad repeat sequences of leucines. It has been suggested that this structure is critical to the biological activity of these proteins, since it facilitates the formation of functional dimers held together by interdigitating leucine side-chains along the hydrophobic interfaces between long α-helical regions of the polypeptide chains in a configuration termed the “leucine zipper.” In this paper, conformational energy analysis is used to determine the preferred three-dimensional structures of the leucine repeat regions of these proteins. The results indicate that, in all cases, the global minimum energy conformation for these regions is an amphipathic α-helix with the leucine side-chains arrayed on one side in such a way to favor “leucine zipper” dimerization. Furthermore, amino acid substitutions in these regions (such as Pro for Leu), that are known to inhibit dimer formation and prevent DNA binding, are found to produce significant conformational changes that disrupt the amphipathic helical structure. Thus, these results provide support for the proposed “leucine zipper” configuration as a critical structural feature of this class of DNA binding proteins.

  相似文献   

11.
12.
Knowledge of the structural properties of linker histones is important to the understanding of their role in higher-order chromatin structure and gene regulation. Here we study the conformational properties of the peptide Ac-EKTPVKKKARKAAGGAKRKTSG-NH(2) (NE-1) by circular dichroism and (1)H-NMR. This peptide corresponds to the positively charged region of the N-terminal domain, adjacent to the globular domain, of mouse histone H1e (residues 15-36). This is the most abundant H1 subtype in many kinds of mammalian somatic cells. NE-1 is mainly unstructured in aqueous solution, but in the presence of the secondary-structure stabilizer trifluoroethanol (TFE) it acquires an alpha-helical structure. In 90% TFE solution the alpha-helical population is approximately 40%. In these conditions, NE-1 is structured in two alpha-helices that comprise almost all the peptide, namely, from Thr17 to Ala27 and from Gly29 to Thr34. Both helical regions are highly amphipathic, with the basic residues on one face of the helix and the apolar ones on the other. The two helical elements are separated by a Gly-Gly motif. Gly-Gly motifs at equivalent positions are found in many vertebrate H1 subtypes. Structure calculations show that the Gly-Gly motif behaves as a flexible linker between the helical regions. The wide range of relative orientations of the helical axes allowed by the Gly-Gly motif may facilitate the tracking of the phosphate backbone by the helical elements or the simultaneous binding of two nonconsecutive DNA segments in chromatin.  相似文献   

13.
C/EBP and GCN4 are basic region-leucine zipper (bZIP) DNA-binding proteins that recognize the dyad-symmetric sequences ATTGCGCAAT and ATGAGTCAT, respectively. The sequence specificities of these and other bZIP proteins are determined by their alpha-helical basic regions, which are related at the primary sequence level. To identify amino acids that are responsible for the different DNA sequence specificities of C/EBP and GCN4, two kinds of hybrid proteins were constructed: GCN4-C/EBP chimeras fused at various positions in the basic region and substitution mutants in which GCN4 basic region amino acids were replaced by the corresponding residues from C/EBP. On the basis of the DNA-binding characteristics of these hybrid proteins, three residues that contribute significantly to the differences in C/EBP and GCN4 binding specificity were defined. These residues are clustered along one face of the basic region alpha helix. Two of these specificity residues were not identified as DNA-contacting amino acids in a recently reported crystal structure of a GCN4-DNA complex, suggesting that the residues used by C/EBP and GCN4 to make base contacts are not identical. A random binding site selection procedure also was used to define the optimal recognition sequences for three of the GCN4-C/EBP fusion proteins. These experiments identify an element spanning the hinge region between the basic region and leucine zipper domains that dictates optimal half-site spacing (either directly abutted for C/EBP or overlapping by one base pair for GCN4) in high-affinity binding sites for these two proteins.  相似文献   

14.
The Antennapedia homeodomain structure consists of four helices. The helices II and III are connected by a tripeptide that forms a turn, and constitute the well-known helix-turn-helix motif. The recognition helix penetrates the DNA major groove, gives specific protein-DNA contacts and forms direct, or water-mediated, intermolecular hydrogen bonds. It was suggested that helix III (and perhaps also helix IV) might represent the recognition helix of Antennapedia homeodomain, which makes contact with the surface of the major groove of the DNA. In an attempt to clarify the helix III capabilities of assuming an helical conformation when separated from the rest of the protein, we carried out the structural determination of the recognition helix III in different solvent media. The conformational study of fragments 42-53, where residues W48 and F49, not involved in the protein-DNA interaction, were substituted by two alanines, was conducted in sodium dodecyl sulfate (SDS), trifluoroethanol (TFE) and TFE/water, using circular dichroism, nuclear magnetic resonance (NMR) and distance geometry (DG) techniques. The fragment assumes a well-defined secondary structure in TFE and in TFE/water (90/10, v/v) with an alpha-helix encompassing residues 4-9, while in TFE/water (70/30, v/v) a less regular structure was found. The DG results in the micellar system evidence the presence of a distorted alpha-helical conformation involving residues 4-8. Our results reveal that the isolated Antennapedia recognition helix III tend to preserve in solution the alpha-helical conformation even if separated from the rest of the molecule.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号