首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The synthesis and bronchodilator activity in the guinea pig of several 15-deoxy-16-hydroxy-16-methylprostaglandin analogs is described. The E2 (VIa) and E1 (VIb) analogs are potent bronchodilators comparable in activity to the natural prostaglandins, but possessing a longer duration of effect. Replacement of the C13-C14 trans double bond by a cis double bond or an ethylene linkage causes a substantial diminishment of this activity.  相似文献   

2.
The structural components essential for activity of the aphid alarm pheromone, (E)-β-farnesene were determined through the synthesis of related farnesene and nor-farnesene analogs. Biological activity was determined with three aphid species belonging to the subfamily Aphidinae. Structural requirements determined to be important for alarm pheromone activity are: The presence of a π-bond (1.34 to 1.39 Å) adjacent to a special free rotational single bond, a (E)-configurational double bond in the central position of the molecule, and a third double bond in the terminal isoprene end of the compound.  相似文献   

3.
In order to improve the modest oral activity of PGE2 as an inhibitor of gastric acid secretion, analogs were prepared and tested orally in histamine-challenged rats. Insertion of a double bond at C-4, resulting in the 4,5-allene analog of PGE1, gave a small increase in activity. Introduction of the omega-tetranor-16-phenoxy lower sidechain, a modification known to enhance activity in the PGF series, gave an eight-fold increase in activity. The analog having both modifications (enprostil, 2) showed a six hundred-fold increase in oral antisecretory activity over PGE2, which may reflect a potentiation effect. Modification of enprostil at C-1 (various esters) and at C-11 (11-methyl, 11-deoxy) generally resulted in compounds of high activity while modifications at other sites generally resulted in significant reductions in activity.  相似文献   

4.
Zhu BT  Kosh JW  Fu J  Cai MX  Xu S  Conney AH 《Steroids》2000,65(9):521-527
In recent years, development of potent inhibitors for estrogen sulfatases has become an actively pursued strategy for chemoprevention and/or chemotherapy of estrogen-dependent human breast cancers. We report here our findings that pregnenolone 16alpha-carbonitrile (PCN) is a potent inhibitor of estrone-3-sulfatase activity of rats and also humans. PCN inhibited in a concentration-dependent manner the desulfation of estrone-3-sulfate catalyzed by liver microsomal and nuclear fractions of female Sprague-Dawley rats. The inhibition of estrone-3-sulfatase activity in these two subcellular fractions showed a biphasic pattern, with a highly sensitive phase seen at 78 nM to 1.25 microm of PCN followed by a markedly less-sensitive phase at > 2.5 microm of PCN. Interestingly, several of PCN's structural analogs without a 16alpha-nitrile group showed little or no inhibitory effect on rat liver microsomal E(1)-3-sulfatase activity. Double-reciprocal analysis showed that the inhibition of rat liver microsomal E(1)-3-sulfatase activity by PCN was essentially competitive in nature. When microsomes from six human term placentas were tested for their E(1)-3-sulfatase activity, PCN showed a similar biphasic inhibition of placental E(1)-3-sulfatase. Likewise, several of its structural analogs showed little or no inhibitory effect on placental E(1)-3-sulfatase activity. Computational analysis of the D-ring structure of PCN and other structurally similar analogs used in the study suggests that the potent sulfatase-inhibiting activity of PCN may be partly due to its unique steric orientation and size of the 16alpha-nitrile group. This knowledge may be useful for the rational design of more potent steroidal inhibitors of E(1)-3-sulfatase by introducing an additional nitrile group to their C16alpha-position.  相似文献   

5.
In order to improve the modest oral activity of PGE2 as an inhibitor of gastric acid secretion, analogs were prepared and tested orally in histamine-challenged rats. Insertion of a double bond at C-4, resulting in the 4,5-allene analog of PGE1, gave a small increase in activity. Introduction of the ω-tetranor-16-phenoxy lower sidechain, a modification know to enhance activity in the PGF series, gave an eight-fold increase in activity. The analog having both modifications (enprostil, ) showed a six hundred-fold increase in oral antisecretory activity over PGE2, which may reflect a potentiation effect. Modification of enprostil at C-1 (various esters) and at C-11 (11-methyl, 11-deoxy) generally resulted in compounds of high activity while modifications at other sites generally resulted in significant reductions in activity.  相似文献   

6.
ABA analog structure-function relationships were determined by testing an array of 19 different ABA analogs on 1-year-old clonal white spruce ( Picea glauca [Moench.] Voss) raised from somatic embryos. The contribution of specific structural features to analog activity was determined from the relative effect of aeroponically applied analog solutions (10−3 M ) on seedling gas exchange. Seedling transpiration rate (E) and carbon assimilation rate (A) were measured continuously during treatment by means of a whole plant cuvette system. The analogs were racemic about the C-1' chiral center and were derived from changes imposed on six regions of the ABA molecule. The activity of optically pure (+)-S-ABA and (−)-R-ABA were also determined. Analog activity was reduced by changing the oxidation level at C-1 from the carboxylic acid. The ring C-2', C-3' double bond was important but not essential to activity. The activity lost through changes in ring structure and C-1 oxidation level was, in many cases, almost fully restored by replacing the C-4, C-5 double bond with a triple bond. Therefore, analogs with a triple bond at C-4 were more active than their equivalents with a dienoic side chain. Fluorination of the C-7' methyl caused a relatively moderate reduction in analog activity. Truncation of C-1 and C-2 from the side chain reduced activity to near zero. The unnatural (−)-ABA enantiomer was inactive.  相似文献   

7.
The properties of the Delta6 desaturase/acetylenase from the moss Ceratodon purpureus and the Delta12 acetylenase from the dicot Crepis alpina were studied by expressing the encoding genes in Arabidopsis thaliana and Saccharomyces cerevisiae. The acetylenase from C. alpinaDelta12 desaturated both oleate and linoleate with about equal efficiency. The desaturation of oleate gave rise to 9(Z),12(E)- and 9(Z),12(Z)-octadecadienoates in a ratio of approximately 3 : 1. Experiments using stereospecifically deuterated oleates showed that the pro-R hydrogen atoms were removed from C-12 and C-13 in the introduction of the 12(Z) double bond, whereas the pro-R and pro-S hydrogen atoms were removed from these carbons during the formation of the 12(E) double bond. The results suggested that the Delta12 acetylenase could accommodate oleate having either a cisoid or transoid conformation of the C(12)-C(13) single bond, and that these conformers served as precursors of the 12(Z) and 12(E) double bonds, respectively. However, only the 9(Z),12(Z)-octadecadienoate isomer could be further desaturated to 9(Z)-octadecen-12-ynoate (crepenynate) by the enzyme. The evolutionarily closely related Delta12 epoxygenase from Crepis palaestina had only weak desaturase activity but could also produce 9(Z),12(E)-octadecadienoate from oleate. The Delta6 acetylenase/desaturase from C. purpureus, on the other hand, produced only the 6(Z) isomers using C16 and C18 acyl groups possessing a Delta9 double bond as substrates. The Delta6 double bond was efficiently further converted to an acetylenic bond by a second round of desaturation but only if the acyl substrate had a Delta12 double bond and that this was in the Z configuration.  相似文献   

8.
The induction of freezing tolerance in bromegrass (Bromus inermis Leyss) cell culture was used to investigate the activity of absisic acid (ABA) analogs. Analogs were either part of an array of 32 derived from systematic alterations to four regions of the ABA molecule or related, pure optical isomers. Alterations were made to the functional group at C-1 (acid replaced with methyl ester, aldehyde, or alcohol), the configuration at C-2, C-3 (cis double bond replaced with trans double bond), the bond order at C-4, C-5 (trans double bond replaced with a triple bond), and ring saturation (C-2′, C-3′ double bond replaced with a single bond so that the C-2′ methyl and side chain were cis). All deviations in structure from ABA reduced activity. A cis C-2, C-3 double bond was the only substituent absolutely required for activity. Overall, acids and esters were more active than aldehydes and alcohols, cyclohexenones were more active than cyclohexanones, and dienoic and acetylenic analogs were equally active. The activity associated with any one substituent was, however, markedly influenced by the presence of other substituents. cis, trans analogs were more active than their corresponding acetylenic analogs unless the C-1 was an ester. Cyclohexenones were more active than cyclohexanones regardless of oxidation level at C-1. An acetylenic side chain decreased the activity of cyclohexenones but increased the activity of cyclohexanones relative to their cis, trans counterparts. Trends suggested that for activity the configuration at C-1′ has to be the same as in (S)-ABA, in dihydro analogs the C-2′-methyl and the side chain must be cis, small positional changes of the 7′-methyl are tolerable, and the C-1 has to be at the acid oxidation level.  相似文献   

9.
16-Dehydroprogesterone reductase (16-DHPR) activity was present in cell extracts of Eubacterium sp. strain 144 only when the organism was grown in the presence of steroids containing a delta 16-17 double bond and C-20-ketone. Cells grown with 16-dehydropregnenolone contained 16-DHPR activity but lacked delta 4-5-3-keto steroid reductase activity. Pyruvate or sodium dithionite served as electron donors for 16-DHPR and both reactions required methyl viologen as an electron carrier. Neither NADH nor NADPH, with or without flavin nucleotides, were used by 16-DHPR. Enzyme activity was detected in the cytoplasmic fraction (40%) and membrane fraction (20%) of crude cell extracts, but 40% of the activity was unaccounted for following ultracentrifugation. 16-DHPR activity was unaffected by pH in potassium phosphate buffer over the range 5.0 to 8.5, but was inhibited by Tris-HCl above pH 7.0. 16-DHPR activity was inhibited by sulfhydryl reagents, but inhibitors of electron transport reactions or metal chelators did not affect the enzyme.  相似文献   

10.
Analogs of deamino-oxytocin wherein the Leu-Gly peptide bond has been replaced by a tetrazole moiety or by a double bond of trans configuration were synthesized and their biological activities evaluated. Trans double bond was found to be the most appropriate substitution for the amide bond (uterotonic activity 24% of the deamino-oxytocin). In the case of all three analogs low but prolonged galactogogic activity was found and the ratio of uterotonic in vitro and in vivo activity was surprisingly high (ranging from 4.5 to 20).  相似文献   

11.
A series of 16-en-22-oxa-derivatives of vitamin D3 based on the structure of maxacalcitol (2) were prepared. Maxacalcitol is currently used topically for the treatment of psoriasis and is recognized as the most successful antedrug of natural vitamin D(3) because it retains the original antiproliferative activity of calcitriol without increased calcemic activity. We introduced 16-olefinic functionality to accelerate the oxidative metabolism of the drug in liver, presumed to be essential for the reduction of calcemic activity, and modified the side-chain moiety by placing the 22-oxygen on the more labile allylic carbon center. Novel 22-oxa analogs (7a-i), carrying either the 24-alkynyl bond or 24-hydroxy functionality in addition to the 16-double bond were synthesized and their pharmacokinetics were evaluated.  相似文献   

12.
We have successfully prepared E- and Z- isomers of 17-20 dehydro analogs of 2-methylene-19-nor-(20S)-1alpha,25-dihydroxyvitamin D3 (2MD). Both isomers bind to the recombinant rat vitamin D receptor (VDR) with high affinity. The Z-isomer (Vit-III 17-20Z) displays activity in vivo and in vitro that is similar to 2MD. The in vitro activity of the E-isomer (Vit-III 17-20E) is comparable to the natural hormone, though in vivo this analog is significantly less calcemic. Crystal structures of the rat VDR ligand binding domain complexed with the analogs demonstrate that the Vit-III 17-20Z analog is oriented almost identically to 2MD, with only minor differences induced by the planar configuration around the C17-C20 double bond. The Vit-III 17-20E analog is oriented in a conformation distinct from both 2MD and the natural hormone. The structural comparisons suggest that the position of C21 in the ligand binding site may be an important determinant of biological activity.  相似文献   

13.
Epoxyeicosatrienoic acids (EETs) are endothelium-derived eicosanoids that activate potassium channels, hyperpolarize the membrane, and cause relaxation. We tested 19 analogs of 14,15-EET on vascular tone to determine the structural features required for activity. 14,15-EET relaxed bovine coronary arterial rings in a concentration-related manner (ED(50) = 10(-6) M). Changing the carboxyl to an alcohol eliminated dilator activity, whereas 14,15-EET-methyl ester and 14,15-EET-methylsulfonimide retained full activity. Shortening the distance between the carboxyl and epoxy groups reduced the agonist potency and activity. Removal of all three double bonds decreased potency. An analog with a Delta8 double bond had full activity and potency. However, the analogs with only a Delta5 or Delta11 double bond had reduced potency. Conversion of the epoxy oxygen to a sulfur or nitrogen resulted in loss of activity. 14(S),15(R)-EET was more potent than 14(R),15(S)-EET, and 14,15-(cis)-EET was more potent than 14,15-(trans)-EET. These studies indicate that the structural features of 14,15-EET required for relaxation of the bovine coronary artery include a carbon-1 acidic group, a Delta8 double bond, and a 14(S),15(R)-(cis)-epoxy group.  相似文献   

14.
M Chodynski  A Kutner 《Steroids》1991,56(6):311-315
A novel synthesis of side-chain homologated analogs of vitamin D isomers has been described. The synthesis allows for the insertion of the double bond into the C-24 position of the side chain. The key synthetic step involves the coupling of a new C24-vitamin D synthon with the respective side-chain fragment. The method is illustrated by the preparation of (24E)-24,24a-dehydro-24,24-dihomo-1,25-dihydroxycholecalcife rol (1) and (24b R)- and (24b S)-24,24-dihomo-1,25-dihydroxyergocalciferols (2 and 3). Trans geometry of the newly formed double bond in the side chain was confirmed by high field nuclear magnetic resonance spectra.  相似文献   

15.
16.
The ability of abscisic acid (ABA) and abscisic acid analogs to induce freezing tolerance in fall rye (Secale cereale cv Puma) seedlings grown at nonhardening temperatures was investigated. Analogs were constructed with systematic alterations at C-1 (acid replaced with methyl ester, aldehyde or alcohol), at C-4, C-5 (trans double bond replaced with a triple bond), and at C-2, C-3 (double bond replaced with a single bond so that the side chain and C-2 methyl groups were cis). Freezing tolerance (LT50) was determined 3, 4 and 6 days after the first of two consecutive applications of chemical (100 µM) to either the leaves or roots. All analogs were more effective when applied to the plant roots than when applied to the leaves. ABA, acetylenic ABA and 2,3-dihydroacetylenic ABA decreased the LT50 from –3 °C (control) to –9 °C. Consistent structure-activity relationships were only detected following root application. No single functional group altered was absolutely required for activity. The effect of any given change to the molecule was modified by the presence of other functional groups. For example, substituting the double bond in the ring with a single bond decreased activity, but concomitant substitution of the trans double bond in the side chain with a triple bond restored activity. In general, analogs with a cis, trans side chain were more active initially but rapidly lost activity, whereas acetylenic analogs maintained or gained activity over the three sampling times. The application of gibberellin biosynthesis inhibitors (100 µM; tetcyclacis or mefluidide) did not increase freezing tolerance beyond that induced by ABA, either alone or in combination with ABA. It can be concluded that ABA and certain ABA analogs can induce limited freezing tolerance in whole rye seedlings, and partially substitute for low temperature acclimation.  相似文献   

17.
The synthesis of novel N-acylethanolamines and their use as inhibitors of the aCDase is reported here. The compounds are either 2-oxooctanamides or oleamides of sphingosine analogs featuring a 3-hydroxy-4,5-hexadecenyl tail replaced by ether or thioether moieties. It appears that, within the 2-oxooctanamide family, the C3-OH group of the sphingosine molecule is required for inhibition both in vitro and in cultured cells. Furthermore, although the (E)-4 double bond is not essential for inhibitory activity, the (E) configuration is required, since the analogue with a (Z)-4 unsaturation was not inhibitory. None of the oleamides inhibited the aCDase in vitro. Conversely, with the exception of N-oleoylethanolamine and its analogs with S-decyl and S-hexadecyl substituents, all the synthesized oleamides inhibited the aCDase in cultured cells, although with a relatively low potency. We conclude that novel aCDase inhibitors can evolve from N-acylation of sphingoid bases with electron deficient-acyl groups. In contrast, chemical modification of the N-oleoylsphingosine backbone does not seem to offer an appropriate strategy to obtain aCDase inhibitors.  相似文献   

18.
A number of enediyne prodrugs 1-5 possessing an (E)-3-hydroxy-4-(2'-hydroxy-1'-phenylethylidene)cyclodeca-1,5-diyne scaffold have been synthesized via the Sonogashira coupling and an intramolecular Nozaki-Hiyama-Kishi reaction as the key steps. Upon incubation with enediyne prodrugs 4 and 5 possessing a free hydroxymethyl group on the exocyclic double bond, circular supercoiled DNA (Form I) underwent single strand cleavage into circular relaxed DNA (Form II) in buffer solution at pH 8.5, while the silylated analogs 1-3 showed very weak DNA cleavage activity. Alternatively, the silylated analogs 1-3 could be activated by UV irradiation via a photochemical alkene isomerization followed by an allylic rearrangement to form the putative epoxy enediyne, resulting in efficient DNA cleavage similar to the level observed with the prodrugs 4 and 5.  相似文献   

19.
Chimeric analogs of cecropin P1 and melittin with normal and retro sequences were synthesized to explore the effect of sequence, amide bond direction (helical dipole), charge, amphipathicity and hydrophobicity on their antibacterial activity and channel-forming ability. When viewed from the opposite end by rotation in the plane 180 degrees retro analogs have the same sequence as the parent with reversed amide bond and helical dipole directions. The expected activities were related to the important structural features and a series of assumptions were made. Retro analogs are expected to be inactive if both sequence and amide bond direction make critical contributions to the activity. CP1(1-10)M(2-9) amide, (SWLSKTAKKLIGAVLKVL), showed a broad antibacterial spectrum with high activity against the two Gram-negative and three Gram-positive bacteria tested. Retro-CP1(1-10)M(2-9) was less active compared to its normal peptide. CP1(1-9)M(1-8) and CP1(1-9)M(2-8) amides were found to be active against Gram-negative Escherichia coli and also Gram-positive Streptococcus pyogenes, but inactive against the other test organisms. The corresponding retro analogs were inactive against all the five bacteria tested. These results suggest that both sequence and amide bond direction (helix dipole) are important structural requirements for the activity of CP1-M hybrids. Acetylation of the N-terminal amine in both normal and retro analogs lowered their activity, indicating the contribution of free amine to the activity. These analogs form ion-conducting channels in lipid bilayers. The action of the peptides may be explained by self-aggregation and formation of ion-conducting pores across bacterial membranes. Conformational analysis obtained from CD measurements showed that all analogs form amphipathic alpha-helices in presence of 12-20% hexafluoro isopropanol. The retro CP1(1-10)M(2-9) amide showed higher helicity and is more potent compared to other retro analogs synthesized. These studies show the effect of small sequence modifications on the biological activity of the peptides and on their alpha-helical conformation in HFIP, the structure-inducing organic solvent.  相似文献   

20.
Chemical substitutions at pharmacologically relevant sites such as C-5, C-13, C-22,23, and C-25 were examined in ivermectin, doramectin, selamectin, and a series of 11 other intermediates using a larval development assay with Haemonchus contortus. A range of activities spanning 5 orders of magnitude were manifest with small changes in the substituents to the 14 avermectins. Within this compound series, there was no major potency advantage or disadvantage to a disaccharide over a monosaccharide substituent at C-13. Ivermectin and doramectin were each fully effective at a concentration of 0.001 microg/ml, and both were similar to their respective monosaccharide homologs. Specific patterns emerged among the analogs with substituents at C-5. Analogs possessing hydroxyl groups at C-5 were superior in activity by several orders of magnitude over those with oxo substituents. Replacement of the oxo with an oxime (NOH) restored activity to some degree but did not restore it to the level of those possessing the hydroxyl substituent. Consequently, ivermectin and doramectin that possess hydroxyl moieties at C-5 were superior against H. contortus to those like selamectin that have oxime substituents. There was no advantage for analogs with a single or double bond at C-22,23 within the cyclohexyl series, and these analogs had equivalent activity as those with a single bond at C-22,23 in the sec-butyl/isopropyl series. However, there was superior activity for the analog series that possessed the combination of a double-bond at C-22,23 and a sec-butyl/isopropyl substituent at C-25. As a result, the most potent compound in this test was not any of the 3 commercialized avermectins but was a monosaccharide with a double bond at C-22,23, an hydroxyl at C-5, and a sec-butyl/isopropyl moiety at C-25.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号