首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In current models, ribosome release from the endoplasmic reticulum (ER) is coupled to the termination of protein translation. Thus, coincident with termination, membrane-bound ribosomes dissociate into their component subunits and are released into the cytosol. Here, we review past and current data and propose that the affinity of the ribosome for the ER membrane is decreased during translation, with ribosome release occurring when a membrane-bound ribosome is engaged in the synthesis of a protein lacking a signal sequence. Our model emphasizes a role for the conformation of the large ribosomal subunit in the regulation of membrane affinity and provides a mechanism for translation-coupled ribosome release.  相似文献   

2.
In current views, translation-coupled ribosome binding to the endoplasmic reticulum (ER) membrane is transient, with association occurring via the signal recognition particle pathway and dissociation occurring upon the termination of protein synthesis. Recent studies indicate, however, that ribosomal subunits remain membrane-bound following the termination of protein synthesis. To define the mechanism of post-termination ribosome association with the ER membrane, membrane-bound ribosomes were detergent-solubilized from tissue culture cells at different stages of the protein synthesis cycle, and the composition of the ribosome-associated membrane protein fraction was determined. We report that ribosomes reside in stable association with the Sec61alpha-translocon following the termination stage of protein synthesis. Additionally, in vitro experiments revealed that solubilized, gradient-purified ribosome-translocon complexes were able to initiate the translation of secretory and cytosolic proteins and were functional in assays of signal sequence recognition. Using this experimental system, synthesis of signal sequence-bearing polypeptides yielded a tight ribosome-translocon junction; synthesis of nascent polypeptides lacking a signal sequence resulted in a disruption of this junction. On the basis of these data, we propose that in situ, ribosomes reside in association with the translocon throughout the cycle of protein synthesis, with membrane release occurring upon translation of proteins lacking topogenic signals.  相似文献   

3.
In current models, protein translocation in the endoplasmic reticulum (ER) occurs in the context of two cycles, the signal recognition particle (SRP) cycle and the ribosome cycle. Both SRP and ribosomes bind to the ER membrane as a consequence of the targeting process of translocation. Whereas SRP release from the ER membrane is regulated by the GTPase activities of SRP and the SRP receptor, ribosome release from the ER membrane is thought to occur in response to the termination of protein synthesis. We report that ER-bound ribosomes remain membrane-bound following the termination of protein synthesis and in the bound state can initiate the translation of secretory and cytoplasmic proteins. Two principal observations are reported. 1) Membrane-bound ribosomes engaged in the synthesis of proteins lacking a signal sequence are released from the ER membrane as ribosome-nascent polypeptide complexes. 2) Membrane-bound ribosomes translating secretory proteins can access the translocon in an SRP receptor-independent manner. We propose that ribosome release from the ER membrane occurs in the context of protein translation, with release occurring by default in the absence of productive nascent polypeptide-membrane interactions.  相似文献   

4.
Studies on the distribution of isotopieally labeled ribosomal subunits between free and membrane-bound ribosomes from rat liver showed that, upon release of nascent polypeptides in vitro, the small subunits of membrane-bound ribosomes could exchange with small subunits derived from free polysomes. However, under the same conditions, the large subunits of membrane-bound ribosomes did not exchange efficiently with large subunits derived either from free or bound polysomes; instead, the addition of large subunits caused a transfer of microsomal small subunits into a newly formed pool of free monomers.The small subunit exchange required a macromolecular fraction of the cell sap, was stimulated by ATP or GTP, and occurred at low concentrations of magnesium ions.Sodium dodecyl sulfate, polyacrylamide gel electrophoresis revealed close similarities between the protein complement of subunits from free and membrane-bound ribosomes, with the exception of one protein band which was more intense in free large subunits.  相似文献   

5.
Intracellular sites of synthesis of cytochrome P-450 and the subsequent incorporation of it into membrane structures of the endoplasmic reticulum (ER) in rat hepatocytes have been studied using an antibody monospecific for phenobarbital-inducible cytochrome P-450. The cytochrome is synthesized mainly on the "tightly bound" type of membrane-bound ribosomes whose release from the membrane requires treatment with puromycin in a high salt buffer (500 mM KCI, 5mM MgCl2, and 50 mM Tris-HCL [pH 7.5]). Subsequently the cytochrome is incorporated directly into the rough ER membranes with its major part exposed to the outer surface to the membrane and accessible to proteolytic enzymes added externally. The newly synthesized molecules, which appeared first in the rough membrane, are translocated to the smooth membrane, and are then distributed evenly between the two types of microsomeal membranes in approximately 1 h. Administration of cycloheximide, an inhibitor of protein biosynthesis, did not significantly inhibit the transfer of the enzyme from the rough to the smooth ER. It is suggested, therefore, that the translocation of the newly synthesized cythochrome P-450 between the rough and smooth microsomes is mainly due to the lateral movement of the molecules in the plane of the membranes rather than to the attachment and detachment of the ribosomes on the microsomal membranes after the ribosomal cycle for protein synthesis.  相似文献   

6.
The Sec61p complex forms the core element of the protein translocation complex (translocon) in the rough endoplasmic reticulum (rough ER) membrane. Translating or nontranslating ribosomes bind with high affinity to ER membranes that have been stripped of ribosomes or to liposomes containing purified Sec61p. Here we present evidence that the beta subunit of the complex (Sec61beta) makes contact with nontranslating ribosomes. A fusion protein containing the Sec61beta cytoplasmic domain (Sec61beta(c)) prevents the binding of ribosomes to stripped ER-derived membranes and also binds to ribosomes directly with an affinity close to the affinity of ribosomes for stripped ER-derived membranes. The ribosome binding activity of Sec61beta(c), like that of native ER membranes, is sensitive to high salt concentrations and is not based on an unspecific charge-dependent interaction of the relatively basic Sec61beta(c) domain with ribosomal RNA. Like stripped ER membranes, the Sec61beta(c) sequence binds to large ribosomal subunits in preference over small subunits. Previous studies have shown that Sec61beta is inessential for ribosome binding and protein translocation, but translocation is impaired by the absence of Sec61beta, and it has been proposed that Sec61beta assists in the insertion of nascent proteins into the translocation pore. Our results suggest a physical interaction of the ribosome itself with Sec61beta; this may normally occur alongside interactions between the ribosome and other elements of Sec61p, or it may represent one stage in a temporal sequence of binding.  相似文献   

7.
Protein synthesis in eukaryotes is mediated by both cytoplasmic and membrane-bound ribosomes. During the co-translational translocation of secretory and membrane proteins, eukaryotic ribosomes dock with the protein conducting channel of the endoplasmic reticulum. An understanding of these processes will require the detailed structure of a eukaryotic ribosome. To this end, we have compared the three-dimensional structures of yeast and rabbit ribosomes at 24 A resolution. In general, we find that the active sites for protein synthesis and translocation have been highly conserved. It is interesting that a channel was visualized in the neck of the small subunit whose entrance is formed by a deep groove. By analogy with the prokaryotic small subunit, this channel may provide a conserved portal through which mRNA is threaded into the decoding center. In addition, both the small and large subunits are built around a dense tubular network. Our analysis further suggests that the nascent chain exit tunnel and the docking surface for the endoplasmic reticulum channel are formed by this network. We surmise that many of these features correspond to rRNA, based on biochemical and structural data.Ribosomal function is critically dependent on the specific association of small and large subunits. Our analysis of eukaryotic ribosomes reveals four conserved inter-subunit bridges with a geometry similar to that found in prokaryotes. In particular, a double-bridge connects the small subunit platform with the interface canyon on the large subunit. Moreover, a novel bridge is formed between the platform and the base of the L1 domain. Finally, size differences between mammalian and yeast large subunit rRNAs have been correlated with five expansion segments that form two large spines and three extended fingers. Overall, we find that expansion segments within the large subunit rRNA have been incorporated at positions distinct from the active sites for protein synthesis and translocation.  相似文献   

8.
Mild ribonuclease treatment of the membrane fraction of P3K cells released three types of membrane-bound ribosomal particles: (a) all the newly made native 40S subunits detected after 2 h of [3H]uridine pulse. Since after a 3-min pulse with [35S]methionine these membrane native subunits appear to contain at least sevenfold more Met-tRNA per particle than the free native subunits, they may all be initiation complexes with mRNA molecules which have just become associated with the membranes; (b) about 50% of the ribosomes present in polyribosomes. Evidence is presented that the released ribosomes carry nascent chains about two and a half to three times shorter than those present on the ribosomes remaining bound to the membranes. It is proposed that in the membrane-bound polyribosomes of P3K cells, only the ribosomes closer to the 3' end of the mRNA molecules are directly bound, while the latest ribosomes to enter the polyribosomal structures are indirectly bound through the mRNA molecules; (c) a small number of 40S subunits of polyribosomal origin, presumably initiation complexes attached at the 5' end of mRNA molecules of polyribosomes. When the P3K cells were incubated with inhibitors acting at different steps of protein synthesis, it was found that puromycin and pactamycin decreased by about 40% the proportion of ribosomes in the membrane fraction, while cycloheximide and anisomycin had no such effect. The ribosomes remaining on the membrane fraction of puromycin-treated cells consisted of a few polyribosomes, and of an accumulation of 80S and 60S particles, which were almost entirely released by high salt treatment of the membranes. The membrane-bound ribosomes found after pactamycin treatment consisted of a few polyribosomes, with a striking accumulation of native 60S subunits and an increased number of native 40S subunits. On the basis of the observations made in this and the preceding papers, a model for the binding of ribosomes to membranes and for the ribosomal cycle on the membranes is proposed. It is suggested that ribosomal subunits exchange between free and membrane-bound polyribosomes through the cytoplasmic pool of free native subunits, and that their entry into membrane-bound ribosomes is mediated by mRNA molecules associated with membranes.  相似文献   

9.
Aminoglycosides are widely used antibiotics that cause messenger RNA decoding errors, block mRNA and transfer RNA translocation, and inhibit ribosome recycling. Ribosome recycling follows the termination of protein synthesis and is aided by ribosome recycling factor (RRF) in bacteria. The molecular mechanism by which aminoglycosides inhibit ribosome recycling is unknown. Here we show in X-ray crystal structures of the Escherichia coli 70S ribosome that RRF binding causes RNA helix H69 of the large ribosomal subunit, which is crucial for subunit association, to swing away from the subunit interface. Aminoglycosides bind to H69 and completely restore the contacts between ribosomal subunits that are disrupted by RRF. These results provide a structural explanation for aminoglycoside inhibition of ribosome recycling.  相似文献   

10.
The kinetics of appearance of newly made 60S and 40S ribosomal subunits in the free and membrane-bound ribosomal particles of P3K cells were explored by determining the specific radioactivities of their 18S and 28S RNA after various lengths of [3H]uridine pulse. Both 40S and 60S subunits enter free and membrane-bound polyribosomes at comparable rates from the cytoplasmic pool of newly made, free native subunits, the 40S subunits entering the native subunit pool and the polyribosomes slightly earlier than the 60S subunits. At all times, the specific radioactivity of the membrane-bound native 60S subunits was slightly lower than that of the polyribosomal 60S subunits. This indicates that the membrane-bound native 60S subunits are not precursors destined to enter membrane-bound polyribosomes and suggests that they result from the dissociation of ribosomes after chain termination. The results observed also suggest that the membrane-bound native 60S subunits are not reutilized before their release from the membranes, which probably takes place shortly after dissociation from their 40S subunits. The monoribosomes, both free and membrane-bound, had the lowest specific radioactivities in their subunits. Finally, a small amount of newly made native 40S subunits, containing 18S RNA of high specific radioactivity, and apparently also newly made messenger RNA were detected on the membranes. The high turnover of these membrane-bound native 40S subunits suggests that they may represent initiation complexes formed with mRNA which has just reached the membranes and which has not yet given rise to polyribosomes.  相似文献   

11.
Thermally shocked cells of Staphylococcus aureus rapidly synthesized ribonucleic acid (RNA) during the early stages of recovery. During this period, protein synthesis was not observed and occurred only after RNA had reached a maximum level. Even in the absence of coordinated protein synthesis, a large portion of the RNA appeared in newly synthesized ribosomes. Although the 30S subunit was specifically destroyed by the heating process, both ribosomal particles were reassembled during recovery. The addition of chloramphenicol did not inhibit the formation of the ribosomal subunits, nor was the presence of immature chloramphenicol particles detected. Extended recovery with highly prelabeled cells showed that the original ribosomal proteins present before heating are conserved and recycled. Furthermore, the data indicate that the 50S subunit is turned over and used as a source of protein for new ribosome assembly. Kinetic studies of the assembly process by pulse labeling have not revealed the presence of the normally reported precursor particles. Rather, the data suggest that assembly may occur, in this system, in a manner similar to that reported for in vitro assembly of Escherichia coli subunits.  相似文献   

12.
During early stages of cotranslational protein translocation across the endoplasmic reticulum (ER) membrane the ribosome is targeted to the heterotrimeric Sec61p complex, the major component of the protein-conducting channel. We demonstrate that this interaction is mediated by the 28S rRNA of the eukaryotic large ribosomal subunit. Bacterial ribosomes also bind via their 23S rRNA to the bacterial homolog of the Sec61p complex, the SecYEG complex. Eukaryotic ribosomes bind to the SecYEG complex, and prokaryotic ribosomes to the Sec61p complex. These data indicate that rRNA-mediated interaction of ribosomes with the translocation channel occurred early in evolution and has been conserved.  相似文献   

13.
Analyses of ribosomes extracted from spores of Bacillus cereus T by a dryspore disruption technique indicated that previously reported defects in ribosomes from spores may arise during the ribosome extraction process. The population of ribosomes from spores is shown to cotain a variable quantity of free 50S subunits which are unstable, giving rise to slowly sedimenting particles in low-Mg2+ sucrose gradients and showing extremely low activity in in vitro protein synthesis. The majority of the ribosomal subunits in spores, obtained by dissociation of 70S ribosomes and polysomes, are shown to be as stable as subunits from vegetative cells, though the activity of spore polysomes was lower than that of vegetative ribosomes. In spite of the instability and inactivity of a fraction of the spore's ribosomal subunits, the activity of the total population obtained from spores by the dry disruption technique was 32% of vegetative ribosome activity, fivefold higher than previously obtained with this species. The improvement in activity and the observed variability of subunit destabilization are taken as evidence for partial degradation of spore ribosomes during extraction.  相似文献   

14.
In a medium of high ionic strength, rat liver rough microsomes can be nondestructively disassembled into ribosomes and stripped membranes if nascent polypeptides are discharged from the bound ribosomes by reaction with puromycin. At 750 mM KCl, 5 mM MgCl2, 50 mM Tris·HCl, pH 7 5, up to 85% of all bound ribosomes are released from the membranes after incubation at room temperature with 1 mM puromycin. The ribosomes are released as subunits which are active in peptide synthesis if programmed with polyuridylic acid. The ribosome-denuded, or stripped, rough microsomes (RM) can be recovered as intact, essentially unaltered membranous vesicles Judging from the incorporation of [3H]puromycin into hot acid-insoluble material and from the release of [3H]leucine-labeled nascent polypeptide chains from bound ribosomes, puromycin coupling occurs almost as well at low (25–100 mM) as at high (500–1000 mM) KCl concentrations. Since puromycin-dependent ribosome release only occurs at high ionic strength, it appears that ribosomes are bound to membranes via two types of interactions: a direct one between the membrane and the large ribosomal subunit (labile at high KCl concentration) and an indirect one in which the nascent chain anchors the ribosome to the membrane (puromycin labile). The nascent chains of ribosomes specifically released by puromycin remain tightly associated with the stripped membranes. Some membrane-bound ribosomes (up to 40%) can be nondestructively released in high ionic strength media without puromycin; these appear to consist of a mixture of inactive ribosomes and ribosomes containing relatively short nascent chains. A fraction (~15%) of the bound ribosomes can only be released from membranes by exposure of RM to ionic conditions which cause extensive unfolding of ribosomal subunits, the nature and significance of these ribosomes is not clear.  相似文献   

15.
The molecular weight distribution of the total protein of ribosomes and ribosomal subunits isolated from dry pea seeds was studied by electrophoresis in polyacrylamide gel, containing sodium dodecyl sulfate. It was demonstrated that overall protein of 80 S ribosomes is separated into a number of fractions with molecular weights of 10000-64000. Treatment of ribosomes with 0.5 per cent tritone, 0.5 per cent and 1 per cent deoxycholate does not change the general pattern of the molecular weight distribution of ribosomal proteins. The large subunit reveals 19 protein zones (14 major and 5 minor zones), their molecular weights are varying from 10000 to 54000. The majority of proteins of the large subunit have molecular weights of 14000--32000. The molecular weights of 17 protein zones of the small subunit (7 major and 10 minor zones) vary from 10000 to 64000. The majority of proteins of both large and small subunits have molecular weights of 14000--32000. Electrophoretic separation of proteins in the split gel confirmed the fact that the proteins of large subunit differ in molecular weights from those of the small subunit. Thus, ribosomal proteins of pea seeds are shown to produce a typical (for 80S ribosomes) pattern of molecular weight distribution under polyacrylamide gel electrophoresis in the presence of sodium dodecul sulphate.  相似文献   

16.
The translocation of tRNA coupled with mRNA in the ribosome is one of important steps during protein synthesis. Despite extensive experimental studies, the detailed mechanism of the translocation remains undetermined. Here, based on previous biochemical, cryo-electron microscopic and X-ray crystallographic studies, a thermal ratchet model is presented for this translocation. In the model, during one elongation cycle of the protein synthesis, two large conformational transitions of the ribosome are involved, with one being the relative rotation between the two ribosomal subunits following the peptide transfer, which is facilitated by the EF-G.GTP binding, and the other one being the reverse relative rotation between the two ribosomal subunits upon EF-G.GTP hydrolysis. The former conformational change plays an important role in ensuring the completion of the release of the deacylated tRNA from the ribosome before tRNA–mRNA translocation. The latter reverse conformational change upon GTP hydrolysis is followed by rapid tRNA–mRNA translocation and Pi release, both of which take place independently of each other. This is consistent with the previous biochemical experimental data. Also, the model is consistent with other available experimental results such as the suppression of EF-G-dependent translocation in cross-linked ribosomes and frameshifting under some conditions.  相似文献   

17.
Membrane-bound ribosomes and messenger RNA remained associated with the microsomal membranes of human fibroblasts after cultures were treated with Verrucarin A, an inhibitor of initiation which led to extensive run-off of ribosomes from polysomal structures. When a membrane fraction from Verrucarin-treated cells containing such inactive ribosomes and mRNA was suspended in a medium of high salt concentration, extensive release of ribosomal subunits occurred without the need for puromycin. The mRNA nevertheless remained associated with the membranes. These results add support to the conclusion that, in human fibroblasts, mRNA is bound directly to ER membranes, independently of the ribosomes and nascent polypeptide chains.  相似文献   

18.
The large and small subunits of the ribosome are joined by a series of bridges that are conserved among mitochondrial, bacterial, and eukaryal ribosomes. In addition to joining the subunits together at the initiation of protein synthesis, a variety of other roles have been proposed for these bridges. These roles include transmission of signals between the functional centers of the two subunits, modulation of tRNA-ribosome and factor-ribosome interactions, and mediation of the relative movement of large and small ribosomal subunits during translocation. The majority of the bridges involve RNA-RNA interactions, and to gain insight into their function, we constructed mutations in the 23 S rRNA regions involved in forming 7 of the 12 intersubunit bridges in the Escherichia coli ribosome. The majority of the mutants were viable in strains expressing mutant rRNA exclusively but had distinct growth phenotypes, particularly at 30 degrees C, and the mutant ribosomes promoted a variety of miscoding errors. Analysis of subunit association activities both in vitro and in vivo indicated that, with the exception of the bridge B5 mutants, at least one mutation at each bridge site affected 70 S ribosome formation. These results confirm the structural data linking bridges with subunit-subunit interactions and, together with the effects on decoding fidelity, indicate that intersubunit bridges function at multiple stages of protein synthesis.  相似文献   

19.
The amount of chloroplast ribosomal RNAs of Chlamydomonas reinhardtii which sediment at 15,000 g is increased when cells are treated with chloramphenicol. Preparations of chloroplast membranes from chloramphenicol-treated cells contain more chloroplast ribosomal RNAs than preparations from untreated cells. The membranes from treated cells also contain more ribosome-like particles, some of which appear in polysome-like arrangements. About 50% of chloroplast ribosomes are released from membranes in vitro as subunits by 1 mM puromycin in 500 mM KCl. A portion of chloroplast ribosomal subunits is released by 500 mM KCl alone, a portion by 1 mM puromycin alone, and a portion by 1 mM puromycin in 500 mM KCl. Ribosomes are not released from isolated membranes by treatment with ribonuclease. Membranes in chloroplasts of chloramphenicol-treated cells show many ribosomes associated with membranes, some of which are present in polysome-like arrangements. This type of organization is less frequent in chloroplasts of untreated cells. Streptogramin, an inhibitor of initiation, prevents chloramphenicol from acting to permit isolation of membrane-bound ribosomes. Membrane-bound chloroplast ribosomes are probably a normal component of actively growing cells. The ability to isolate membrane-bound ribosomes from chloramphenicol-treated cells is probably due to chloramphenicol-prevented completion of nascent chains during harvesting of cells. Since chloroplasts synthesize some of their membrane proteins, and a portion of chloroplast ribosomes is bound to chloroplast membranes through nascent protein chains, it is suggested that the membrane-bound ribosomes are synthesizing membrane protein.  相似文献   

20.
Summary Antibodies were prepared in rabbits and sheep to rat liver ribosomes, ribosomal subunits, and to mixtures of proteins from the particles. The antisera were characterized by quantitative immunoprecipitation, by passive hemagglutination, by immunodiffusion on Ouchterlony plates, and by immunoelectrophoresis. While all the antisera contained antibodies specific for ribosomal proteins, none had precipitating antibodies against ribosomal RNA. Rat liver ribosomal proteins were more immunogenic in sheep than rabbits, and the large ribosomal subunit and its proteins were more immunogenic than those of the 40S subparticle. Antisera specific for one or the other ribosomal subunit could be prepared; thus it is unlikely that there are antigenic determinants common to the proteins of the two subunits. When ribosomes, ribosomal subunits, or mixtures of proteins were used as antigens the sera contained antibodies directed against a large number of the ribosomal proteins.Abbreviations TP total proteins—used to designate mixtures of proteins from ribosomal particles, hence TP80 is a mixtures of all the proteins from 80S ribosomes - TP60 the proteins from 60S subunits - TP40 the proteins from 40S particles  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号