首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 138 毫秒
1.
2.
3.
4.
Despite numerous reports suggesting that beta(1) integrin receptors undergo differential glycosylation, the potential role of N-linked carbohydrates in modulating integrin function has been largely ignored. In the present study, we find that beta(1) integrins are differentially glycosylated during phorbol ester (PMA)-stimulated differentiation of myeloid cells along the monocyte/macrophage lineage. PMA treatment of two myeloid cell lines, U937 and THP-1, induces a down-regulation in expression of the ST6Gal I sialyltransferase. Correspondingly, the beta(1) integrin subunit becomes hyposialylated, suggesting that the beta(1) integrin is a substrate for this enzyme. The expression of hyposialylated beta(1) integrin isoforms is temporally correlated with enhanced binding of myeloid cells to fibronectin, and, importantly, fibronectin binding is inhibited when the Golgi disrupter, brefeldin A, is used to block the expression of the hyposialylated form. Consistent with the observation that cells with hyposialylated integrins are more adhesive to fibronectin, we demonstrate that the enzymatic removal of sialic acid residues from purified alpha(5)beta(1) integrins stimulates fibronectin binding by these integrins. These data support the hypothesis that unsialylated beta(1) integrins are more adhesive to fibronectin, although desialylation of alpha(5) subunits could also contribute to increased fibronectin binding. Collectively our results suggest a novel mechanism for regulation of the beta(1) integrin family of cell adhesion receptors.  相似文献   

5.
Iwamoto T  Senga T  Adachi K  Hamaguchi M 《Cytokine》2004,25(3):136-139
M1 mouse leukemia cells differentiate to macrophages/monocytes by the stimulation of interleukin-6 (IL-6)/leukemia inhibitory factor (LIF). To identify new LIF-induced genes, we have performed representational difference analysis using M1 cells and cloned mouse interleukin-3 (IL-3) receptor beta subunit gene. The mRNA expression of both IL-3 receptor (IL-3R) alpha and beta subunits is upregulated after 1 h stimulation of LIF and remains to be elevated along the differentiation of M1 cells. This induction is almost completely suppressed in M1 cells expressing a dominant negative form of Stat3. Furthermore, we show that IL-3-induced Stat5 phosphorylation increases in LIF-stimulated M1 cells. These results suggest that Stat3 may play a role in the differentiation of myeloid cells by regulating IL-3R expression.  相似文献   

6.
7.
The migratory behaviour of malignant gliomas relies on the interaction of integrins with extracellular matrix (ECM) components. Transforming growth factor-beta(1) (TGF-beta(1)) potently stimulates glioma cell motility whereas TGF-beta(2) is known for its immunosuppressive properties. Here, we show that both TGF-beta(1) and TGF-beta(2) promote migration of glioma cells. In parallel, TGF-beta(1) and TGF-beta(2) induce alpha(V) and beta(3) intergrin mRNA expression and enhance cell surface expression of alpha(V)beta(3) integrin. TGF-beta-mediated promotion of migration is abrogated by echistatin, a Arg-Gly-Asp (RGD) peptide antagonist of alpha(V)beta(3) integrin, and by a neutralizing anti-alpha(V)beta(3) integrin antibody. Taken together, we report a novel mechanism by which TGF-beta modulates cell ECM interactions and promotes glioma cell motility.  相似文献   

8.
We have explored the functional implications of inducible alpha4 integrin deletion during adult hematopoiesis by generating a conditional-knockout mouse model, and we show that alpha4 integrin-deficient hematopoietic progenitor cells accumulate in the peripheral blood soon after interferon-induced gene deletion. Although their numbers gradually stabilize at a lower level, progenitor cell influx into the circulation continues at above-normal levels for more than 50 weeks. Concomitantly, a progressive accumulation of progenitors occurs within the spleen. In addition, the regeneration of erythroid and myeloid progenitor cells is delayed during stress hematopoiesis induced by phenylhydrazine or by 5-fluorouracil, suggesting impairment in early progenitor expansion in the absence of alpha4 integrin. Moreover, in transplantation studies, homing of alpha4(-/-) cells to the bone marrow, but not to the spleen, is selectively impaired, and short-term engraftment is critically delayed in the early weeks after transplantation. Thus, conditional deletion of alpha4 integrin in adult mice is accompanied by a novel hematopoietic phenotype during both homeostasis and recovery from stress, a phenotype that is distinct from the ones previously described in alpha4 integrin-null chimeras and beta1 integrin-conditional knockouts.  相似文献   

9.
Combination of integrin siRNA and irradiation for breast cancer therapy   总被引:4,自引:0,他引:4  
Up-regulation of integrin alpha(v)beta(3) has been shown to play a key role in tumor angiogenesis and metastasis. In this study, we evaluated the role of integrin alpha(v)beta(3) in breast cancer cell resistance to ionizing irradiation (IR) and tested the anti-tumor efficacy of combining integrin alpha(v) siRNA and IR. Colonogenic survival assay, cell proliferation, apoptosis, and cell cycle analysis were carried out to determine the treatment effect of siRNA, IR, or combination of both on MDA-MB-435 cells (integrin alpha(v)beta(3)-positive). Integrin alpha(v)beta(3)-negative MCF-7 cells exert more radiosensitivity than MDA-MB-435 cells. IR up-regulates integrin alpha(v)beta(3) expression in MDA-MB-435 cells and integrin alpha(v) siRNA can effectively reduce both alpha(v) and alpha(v)beta(3) integrin expression, leading to increased radiosensitivity. Integrin alpha(v) siRNA also promotes IR-induced apoptosis and enhances IR-induced G2/M arrest in cell cycle progression. This study, with further optimization, may provide a simple and highly efficient treatment strategy for breast cancer as well as other integrin alpha(v)beta(3)-positive cancer types.  相似文献   

10.
Interleukin-1 alpha (IL-1alpha) and beta (IL-1beta) are well known factors that stimulate hematopoiesis, nevertheless there are reports that show that they can also inhibit this activity. While both IL-1alpha and IL-1beta induce the expression of hematopoietic cytokines, such as growth factors and their receptors on myeloid cells, helping thus to regulate hematopoiesis, it is not known if their inhibitory activity is also mediated through the induction of other specific cytokines. In this work we show that recombinant human IL-1beta (rhIL-1beta) inhibits the proliferation of a mouse IL-3-dependent myeloid multipotent cell line (32D cl3), without inducing its differentiation. We show that rhIL-1beta induces in 32D cl3 cells the expression of the tumor necrosis factor alpha (TNF-alpha) gene, a well known growth inhibitor, and that the rhIL-1beta growth inhibition property on 32D cl3 cells is partially due to this secreted TNF-alpha, hinting thus that the inhibition of hematopoiesis by IL-1 is mediated through other induced cytokines.  相似文献   

11.
Chondrocyte integrin expression and function   总被引:12,自引:0,他引:12  
Loeser RF 《Biorheology》2000,37(1-2):109-116
The extracellular matrix (ECM) is an "information rich" environment and interactions between the chondrocyte and ECM regulate many biological processes important to cartilage homeostasis and repair including cell attachment, growth, differentiation, and survival. The integrin family of cell surface receptors appears to play a major role in mediating cell-matrix interactions that are important in regulating these processes. Chondrocytes have been found to express several members of the integrin family which can serve as receptors for fibronectin (alpha 5 beta 1), types II and VI collagen (alpha 1 beta 1, alpha 2 beta 1, alpha 10 beta 1), laminin (alpha 6 beta 1), and vitronectin and osteopontin (alpha V beta 3). Integrin expression can be regulated by growth factors including IGF-I and TGF-beta. By providing a link between the ECM and the cytoskeleton, integrins may be important transducers of mechanical stimuli. Integrin binding stimulates intracellular signaling which can affect gene expression and regulate chondrocyte function. Further studies are needed to more clearly define the role of integrins in cartilage.  相似文献   

12.
Mesothelial cell intercellular adhesion molecule-1 (ICAM-1) has recently been shown to play a role in tumour cell adherence to the peritoneum. However, solid tumours poorly express its most ubiquitous ligand, beta2 integrin. The aim of this study was to investigate the role of the beta2 integrin subunit and CD43, a known ligand for ICAM-1, in the development of peritoneal metastases. beta2 Integrin subunit and CD43 expression was assessed on a number of tumour cell lines. Adhesion of SW1222 and PSN-1 cells to human peritoneal mesothelial cells was investigated using a fluorometric assay incorporating an inhibitory antibody to beta2 integrin and CD43. beta2 Integrin expression was not inducible on these tumour cell lines, but Western blotting demonstrated CD43 expression in all the cancer cell lines examined and cell surface expression was confirmed by flow cytometry. The anti-CD43 antibody significantly reduced adhesion of PSN-1 and SW1222 cells to HPMC, however beta2 integrin inhibition did not reduce tumour cell adhesion. CD43 is expressed by a variety of carcinoma cell lines, and plays a role in tumour cell-peritoneal adhesion probably via interactions with its putative ligand ICAM-1.  相似文献   

13.
Here we report that myeloid cells differentiating along the monocyte/macrophage lineage down-regulate the ST6Gal-I sialyltransferase via a protein kinase C/Ras/ERK signaling cascade. In consequence, the beta1 integrin subunit becomes hyposialylated, which stimulates the ligand binding activity of alpha5beta1 fibronectin receptors. Pharmacologic inhibitors of protein kinase C, Ras, and MEK, but not phosphoinositide 3-kinase, block ST6Gal-I down-regulation, integrin hyposialylation, and fibronectin binding. In contrast, constitutively active MEK stimulates these same events, indicating that ERK is both a necessary and sufficient activator of hyposialylation-dependent integrin activation. Consistent with the enhanced activity of hyposialylated cell surface integrins, purified alpha5beta1 receptors bind fibronectin more strongly upon enzymatic desialylation, an effect completely reversed by resialylation of these integrins with recombinant ST6Gal-I. Finally, we have mapped the N-glycosylation sites on the beta1 integrin to better understand the potential effects of differential sialylation on integrin structure/function. Notably, there are three N-glycosylated sites within the beta1 I-like domain, a region that plays a crucial role in ligand binding. Our collective results suggest that variant sialylation, induced by a specific signaling cascade, mediates the sustained increase in cell adhesiveness associated with monocytic differentiation.  相似文献   

14.
The tetraspanin CD151 forms a stoichiometric complex with integrin alpha3beta1 and regulates its endocytosis. We observed that down-regulation of CD151 in various epithelial cell lines changed glycosylation of alpha3beta1. In contrast, glycosylation of other transmembrane proteins, including those associated with CD151 (e.g. alpha6beta1, CD82, CD63, and emmprin/CD147) was not affected. The detailed analysis has shown that depletion of CD151 resulted in the reduction of Fucalpha1-2Gal and bisecting GlcNAc-beta(1-->4) linkage on N-glycans of the alpha3 integrin subunit. The modulatory activity of CD151 toward alpha3beta1 was specific, because stable knockdown of three other tetraspanins (i.e. CD9, CD63, and CD81) did not affect glycosylation of the integrin. Analysis of alpha3 glycosylation in CD151-depleted breast cancer cells with reconstituted expression of various CD151 mutants has shown that a direct contact with integrin is required but not sufficient for the modulatory activity of the tetraspanin toward alpha3beta1. We also found that glycosylation of CD151 is also critical; Asn(159) --> Gln mutation in the large extracellular loop did not affect interactions of CD151 with other tetraspanins or alpha3beta1 but negated its modulatory function. Changes in the glycosylation pattern of alpha3beta1 observed in CD151-depleted cells correlated with a dramatic decrease in cell migration toward laminin-332. Migration toward fibronectin or static adhesion of cells to extracellular matrix ligands was not affected. Importantly, reconstituted expression of the wild-type CD151 but not glycosylation-deficient mutant restored the migratory potential of the cells. These results demonstrate that CD151 plays an important role in post-translation modification of alpha3beta1 integrin and strongly suggest that changes in integrin glycosylation are critical for the promigratory activity of this tetraspanin.  相似文献   

15.
Cellular adhesions to other cells and to the extracellular matrix play crucial roles in the malignant progression of cancer. In this study, we investigated the role of protein kinase C (PKC) in the regulation of cell-substratum adhesion by the breast adenocarcinoma cell line MCF-7. A PKC activator, 12-O-tetradecanoylphorbol-l, 3-acetate (TPA), stimulated cell adhesion to laminin and collagen I in a dose-dependent manner over a 1- to 4-h interval. This enhanced adhesion was mediated by alpha2beta1 integrin, since both anti-alpha2 and anti-beta1 blocking antibodies each completely abrogated the TPA-induced adhesion. FACS analysis determined that TPA treatment does not change the cell surface expression of alpha2beta1 integrin over a 4-h time interval. However, alpha2beta1 levels were increased after 24 h of TPA treatment. Thus, the enhanced avidity of alpha2beta1-dependent cellular adhesion preceded the induction of alpha2beta1 cell surface expression. Northern blot analysis revealed that mRNA levels of both alpha2 and beta1 subunits were increased after exposure to TPA for 4 h, indicating that the induction of alpha2beta1 mRNA preceded that of its cell surface expression. This further suggested that the TPA-induced avidity of alpha2beta1 was independent of increased expression of alpha2beta1. Pretreatment of cells with the PKC inhibitor calphostin C partially antagonized the TPA-induced increase in expression of alpha2beta1 integrin expression and of alpha2beta1-mediated cellular adhesion. To identify a possible mechanism by which TPA could be acting to promote the rapid induction of alpha2beta1 adhesion, we treated the cells with the Rho-GTPase inhibitor Clostridium botulinumexotoxin C3. C3 inhibited TPA-induced adhesion to laminin and collagen I in a dose-dependant manner, suggesting a likely role for Rho in TPA-induced adhesion. Together, these results suggest that PKC can modulate the alpha2beta1-dependent adhesion of MCF-7 cells by two distinct mechanisms: altering the gene expression of integrins alpha2 and beta1 and altering the avidity of the alpha2beta1 integrin by a Rho-dependant mechanism.  相似文献   

16.
17.
Tumor cell binding to components of the basement membrane is well known to trigger intracellular signaling pathways. Signaling ultimately results in the modulation of gene expression, facilitating metastasis. Type IV collagen is the major structural component of the basement membrane and is known to be a polyvalent ligand, possessing sequences bound by the alpha1beta1, alpha2beta1, and alpha3beta1 integrins, as well as cell surface proteoglycan receptors, such as CD44/chondroitin sulfate proteoglycan (CSPG). The role of alpha2beta1 integrin and CD44/CSPG receptor binding on human melanoma cell activation has been evaluated herein using triple-helical peptide ligands incorporating the alpha1(IV)382-393 and alpha1(IV)1263-1277 sequences, respectively. Gene expression and protein production of matrix metalloproteinases-1 (MMP-1), -2, -3, -13, and -14 were modulated with the alpha2beta1-specific sequence, whereas the CD44-specific sequence yielded significant stimulation of MMP-8 and lower levels of modulation of MMP-1, -2, -13, and -14. Analysis of enzyme activity confirmed different melanoma cell proteolytic potentials based on engagement of either the alpha2beta1 integrin or CD44/CSPG. These results are indicative of specific activation events that tumor cells undergo upon binding to select regions of basement membrane collagen. Based on the present study, triple-helical peptide ligands provide a general approach for monitoring the regulation of proteolysis in cellular systems.  相似文献   

18.
The mechanisms and receptors involved in phagocytosis by nonhematopoietic cells are not well understood. The involvement of the alpha 3 beta 1 integrin in phagocytosis of the extracellular matrix by human breast cancer cells was studied. The possible role of this integrin was suggested since alpha 3 and beta 1 but not alpha 2 subunits are concentrated at membrane sites where local degradation of fluorescently labeled gelatin occurs. Strikingly, anti-alpha 3 integrin monoclonal antibodies (mAbs) stimulate the phagocytosis of fluorescently labeled gelatin films, gelatin beads, and Matrigel films in a quantitative phagocytosis assay. Stimulation of the gelatin uptake by the anti-alpha 3 mAb is dose responsive, saturable, and time dependent. Antibodies against other integrin subunits have a lower stimulatory effect (anti-beta 1) or no significant effect (anti-alpha 2, -alpha 5, -alpha 6, and -alpha v) on gelatin phagocytosis. The synthetic HGD-6 human laminin peptide that binds specifically the alpha 3 beta 1 integrin, but not the scrambled HSGD-6 control peptide, also markedly stimulates gelatin uptake in a dose-responsive way. Furthermore, the stimulatory effects of the HGD-6 peptide and the anti-alpha 3 mAb are additive, suggesting that they might promote phagocytosis in different ways. Other laminin (YIGSR, IKVAV) and fibronectin (GRGDS) peptides have no effect on gelatin phagocytosis. Immunofluorescence shows that the alpha 3 and the beta 1, but not the alpha 2 integrin subunit, concentrate into patches on the cell surface after treatment with their respective mAbs. And, both gelatin and the alpha 3 beta 1 but not the alpha 2 beta 1 integrin are cointernalized and routed to acidic vesicles such as lysosomes. In conclusion, we demonstrate that human breast cancer cells locally degrade and phagocytose the extracellular matrix and show for the first time that the alpha 3 beta 1 integrin participates in this phagocytosis. We hypothesize that the anti-alpha 3 antibodies and the laminin peptide HGD-6 activate the alpha 3 beta 1 integrin, which results in a downstream signaling cascade stimulating phagocytosis.  相似文献   

19.
Thrombospondin (TSP)-1 has been reported to modulate T cell behavior both positively and negatively. We found that these opposing responses arise from interactions of TSP1 with two different T cell receptors. The integrin alpha4beta1 recognizes an LDVP sequence in the NH2-terminal domain of TSP1 and was required for stimulation of T cell adhesion, chemotaxis, and matrix metalloproteinase gene expression by TSP1. Recognition of TSP1 by T cells depended on the activation state of alpha4beta1 integrin, and TSP1 inhibited interaction of activated alpha4beta1 integrin on T cells with its counter receptor vascular cell adhesion molecule-1. The alpha4beta1 integrin recognition site is conserved in TSP2. A recombinant piece of TSP2 containing this sequence replicated the alpha4beta1 integrin-dependent activities of TSP1. The beta1 integrin recognition sites in TSP1, however, were neither necessary nor sufficient for inhibition of T cell proliferation and T cell antigen receptor signaling by TSP1. A second TSP1 receptor, CD47, was not required for some stimulatory responses to TSP1 but played a significant role in its T cell antigen receptor antagonist and antiproliferative activities. Modulating the relative expression or function of these two TSP receptors could therefore alter the direction or magnitude of T cell responses to TSPs.  相似文献   

20.
It has been well established that hepatocyte growth factor (HGF) induces branching tubule formation of Madin-Darby canine kidney (MDCK) cells cultured in collagen gel. Tubulogenesis per se requires the involvement of cell proliferation, migration, focalization proteolysis, cell-cell interaction and differentiation. However, signaling pathways and proteins involved in HGF-induced tubulogenesis by MDCK cells have not been thoroughly studied. Because cell-matrix interactions play important roles in tubulogenesis, we analyzed whether HGF altered the expression of extracellular matrix receptor (alpha2, alpha3, beta1 and alphavbeta3 integrin). We found that among those proteins examined, alpha2beta1 integrin levels were enhanced by HGF. HGF-induced upregulation of alpha2beta1 integrin was mediated via upregulation of alpha2 integrin mRNA abundance. Cycloheximide blocked the HGF-induced increase in alpha2 integrin mRNA expression. To understand the signaling pathways leading to an HGF-induced increase in alpha2beta1 integrin levels, PD98059 (MEK1 inhibitor), LY294002 (PI3-kinase inhibitor), and GF109203X (PKC inhibitor) were used. We found that PD98059 blocked the HGF-induced increase in alpha2beta1 integrin expression. Furthermore, 5E8 (specific anti-alpha2beta1 integrin antibody) was employed to elucidate the potential role of HGF-induced upregulation of alpha2beta1 integrin in branching morphogenesis. 5E8 did not alter HGF-induced scattering effects but disrupted HGF-induced branching tubulogenesis in collagen gel via inhibition of cell-cell interactions and growth. Taken together, HGF upregulates alpha2beta1 integrin expression via an indirect pathway, the results of which contribute to the regulation of cell-cell interactions and cell growth during branching morphogenesis in collagen gel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号