首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nicotiana tabacum and Nicotiana alata plants were transformed with genomic clones of two S-RNase alleles from N. alata. Neither the S 2 clone, with 1.6 kb of 5 sequence, nor the S 6 clone, with 2.8 kb of 5 sequence, were expressed at detectable levels in transgenic N. tabacum plants. In N. alata, expression of the S 2 clone was not detected, however the S 6 clone was expressed (at low levels) in three out of four transgenic plants. An S 6-promoter-GUS fusion gene was also expressed in transgenic N. alata but not N. tabacum. Although endogenous S-RNase genes are expressed exclusively in floral pistils, the GUS fusion was expressed in both styles and leaves.  相似文献   

2.
Extracellular, stylar RNases (S-RNases) are produced by self-incompatible, solanaceous plants, such asNicotiana alata, and are thought to be involved in selfpollen rejection by acting selectively as toxins to selfpollen. In this study, the toxicity of RNases to other plant cells was tested by culturing cells ofN. alata andN. plumbaginifolia in the presence ofS-RNases fromN. alata. The growth of cultured cells ofN. plumbaginifolia was inhibited by theS-RNases, but viability was not affected. Growth of cultured cells of oneN. alata selfincompatibility genotype was inhibited by twoS-RNases, indicating that inhibition was not allele specific. Comparisons with the effects of inactivated RNase and other proteins, suggest that the inhibition of growth byS 2-RNase was partly, but not wholly, due to RNase activity. Heat-denaturedS 2-RNase was a very effective inhibitor of cell growth, but this inhibitory activity may be a cell surface phenomenon.  相似文献   

3.
4.
5.
6.
7.
Self-incompatibility RNases (S-RNases) are an allelic series of style glycoproteins associated with rejection of self-pollen in solanaceous plants. The nucleotide sequences of S-RNase alleles from several genera have been determined, but the structure of the gene products has only been described for those from Nicotiana alata. We report on the N-glycan structures and the disulfide bonding of the S3-RNase from wild tomato (Lycopersicon peruvianum) and use this and other information to construct a model of this molecule. The S3-RNase has a single N-glycosylation site (Asn-28) to which one of three N-glycans is attached. S3-RNase has seven Cys residues; six are involved in disulfide linkages (Cys-16-Cys-21, Cys-46-Cys-91, and Cys-166-Cys-177), and one has a free thiol group (Cys-150). The disulfide-bonding pattern is consistent with that observed in RNase Rh, a related RNase for which radiographic-crystallographic information is available. A molecular model of the S3-RNase shows that four of the most variable regions of the S-RNases are clustered on one surface of the molecule. This is discussed in the context of recent experiments that set out to determine the regions of the S-RNase important for recognition during the self-incompatibility response.  相似文献   

8.
S-RNases are implicated in both inter- and intra-specific pollen rejection in Nicotiana. At least two mechanisms contribute to S-RNase dependent rejection of pollen from self compatilble species such as Nicotiana plumbaginifolia and N. tabacum. Cloned S-RNases from self incompatible N. alata expressed in styles of self compatible N. tabacum cause rejection of N. tabacum pollen through a factor-independent mechanism. However, rejection of N. plumbaginifolia pollen occurs only when S-RNases are expressed in conjunction with non-S-RNase factors from N. alata (factor-dependent pollen rejection). Here, we compared the pollen rejection activity of four RNases in these two systems. Recombinant RNase expression levels in the factor-dependent N. plumbaginifolia system were insufficient to cause pollen rejection. However, three S-RNases were active in the factor-independent N. tabacum pollen rejection system. This system shows the broadest specificity of any system so far examined. However, RNaseI from E. coli could not cause N. tabacum pollen rejection. Thus, RNase activity alone is not sufficient for pollen rejection. Our results suggest that S-RNases are specially adapted to function in pollen rejection. Received: 15 December 2000 / Accepted: 1 May 2001  相似文献   

9.
Petunia inflata, a species with gametophytic self-incompatibility, has previously been found to contain a large number of ribonucleases in the pistil. The best characterized of the pistil ribonucleases are the products of the S alleles, the S proteins, which are thought to be involved in self-incompatibility interactions. Here we report the characterization of a gene encoding another pistil ribonuclease of P. inflata, RNase X2. Degenerate oligonucleotides, synthesized based on the amino-terminal sequence of RNase X2, were used as probes to isolate cDNA clones, one of which was in turn used as a probe to isolate genomic clones containing the gene for RNase X2, rnx2. The deduced amino acid sequence of RNase X2 shows 42% to 71% identity to the 20 solanaceous S proteins reported so far, with the highest degree of similarity being to S3 and S6 proteins of Nicotiana alata. The cDNA sequence predicts a leader peptide of 22 amino acids, suggesting that RNase X2, like S proteins, is an extracellular ribonuclease. Also, similar to the S gene, rnx2 is expressed only in the pistil, and contains a single intron comparable in size and identical in location to that of the S gene. However, rnx2 is not linked to the S locus, and, in contrast to the highly polymorphic S gene, it is monomorphic. The possible biological function of RNase X2 is discussed.  相似文献   

10.
Self-incompatibility is a mechanism developed by many plantsto prevent inbreeding. The products of the selfincompatibility(S)-locus in the styles of solanaceous plants are a series ofglycoproteins with ribonuclease activity. In this study, wereport on the N-glycans from the stylar selfincompatibilityS3- and S6-ribonucleases of Nicotiana alata, which were enzymicallyreleased and fractionated by high-pH anion-exchange HPLC. Atotal of 14 N-glycans were identified and characterized by acombination of electrospray-ionization mass-spectrometry, 1H-NMRspectroscopy, chemical degradation, and methylation analyses.This pattern of N-glycosylation is much more complex than thatpreviously found on the N.alata S1- and S2-RNases each of whichcontained only four N-glycans. N-glycan Nicotiana alata ribonuclease selfincompatibility  相似文献   

11.
12.
Solanaceous plants with gametophytic self-incompatibility produce ribonucleases in the transmitting tract of the style that interact with self-pollen and inhibit its growth. These ribonucleases are a series of allelic products of the S-locus, which controls self-incompatibility. Little is known about the pollen components involved in this interaction or whether a signal transduction pathway is activated during the self-incompatibility response. We have partially purified a soluble protein kinase from pollen tubes of Nicotiana alata that phosphorylates the self-incompatibility RNases (S-RNases) from N. alata but not Lycopersicon peruvianum. The soluble protein kinase (Nak-1) has several features shared by the calcium-dependent protein kinase (CDPK) class of plant protein kinases, including substrate specificity, calcium dependence, inhibition by the calmodulin antagonist calmidazolium, and cross-reaction with monoclonal antibodies raised to a CDPK from soybean. Phosphorylation of S 2-RNase by Nak-1 is restricted to serine residues, but the site(s) of phosphorylation has not been determined and there is no evidence for allele-specific phosphorylation. The microsomal fraction from pollen tubes also phosphorylates S-RNases and this activity may be associated with proteins of Mr60 K and 69 K that cross-react with the monoclonal antibody to the soybean CDPK. These results are discussed in the context of the involvement of phosphorylation in other self-incompatibility systems.  相似文献   

13.
Genomic clones encoding the S 2- and S 6-RNases of Nicotiana alata Link and Otto, which are the allelic stylar products of the self-incompatibility (S) locus, were isolated and sequenced. Analysis of genomic DNA by pulsed-field gel electrophoresis and Southern blotting indicates the presence of only a single S-RNase gene in the N. alata genome. The sequences of the open-reading frames in the genomic and corresponding cDNA clones were identical. The organization of the genes was similar to that of other S-RNase genes from solanaceous plants. No sequence similarity was found between the DNA flanking the S 2- and S 6-RNase genes, despite extensive similarities between the coding regions. The DNA flanking the S 6-RNase gene contained sequences that were moderately abundant in the genome. These repeat sequences are also present in other members of the Nicotianae.  相似文献   

14.
A summary of recent work on molecular aspects of self-incompatibility in Nicotiana alata is presented. The amino acid sequences of style proteins corresponding to different S-alleles of N. alata have a high level of homology in some regions and are variable in other regions. The regions of homology include N-terminal sequences as well as most of the glycosylation sites and cysteine residues. The glycosyl substituents may consist of a number of glycoforms. The isolated style S-glycoproteins inhibit in vitro growth of pollen tubes. The S-glycoproteins tested inhibited the growth of pollen of several S-genotypes, and there was some specificity in the interaction. Heat treatment of the isolated S-glycoproteins dramatically increased their activity as inhibitors of pollen tube growth, although the specificity in the interaction was lost. The nature of the S-allele products in pollen is not yet established.  相似文献   

15.
The cell walls of styles of Nicotiana alata Link et Otto (ornamental tobacco; Solanaceae) were analysed chemically and examined histochemically. Cell-wall preparations were obtained from whole styles and from isolated transmitting-tissue cells. The style epidermal cells were shown histochemically to have thick, lignified secondary walls. These walls probably constituted a large proportion of the cell-wall preparation from whole styles as analysis of whole-style walls indicated that the major polysaccharides were xylans and cellulose, which are typical of lignified secondary walls of Magnoliopsida (dicotyledons). Lignification of the style epidermal walls was also demonstrated histochemically in 10 other species (5 genera including Nicotiana) of the sub-family Cestroideae of the Solanaceae, but not in 15 species (9 genera) of the sub-family Solanoideae of the Solanaceae, nor in 3 other species of dicotyledons and 2 species of Liliopsida (monocotyledons). Analysis of the cell-wall preparation from isolated transmitting-tissue cells of N. alata indicated that these contained cellulose, xyloglucans, and pectic polysaccharides, which is typical of primary cell walls of dicotyledons. However, the analysis indicated that the walls also contained an unusually high proportion of Type II arabinogalactans. Staining of the transmitting-tissue cell-wall preparation with β-glucosyl Yariv reagent, a histochemical reagent specific for arabinogalactan proteins, confirmed their presence, which may be related to the role of these cells in secreting the stylar extracellular matrix.  相似文献   

16.
Four intracellular RNases were found to be induced in cultured tomato (Lycopersicon esculentum) cells upon phosphate starvation. Localization studies revealed three (RNases LV 1-3) in the vacuoles and one (RNase LX) outside these organelles. All of these RNases were purified to homogeneity and were shown to be type I RNases on the basis of type of splitting, substrate, and base specificity at the cleavage site, molecular weight, isoelectric point, and pH optimum. Moreover, RNase LV 3 was shown by fingerprinting of tryptic digests on reversed-phase high-performance liquid chromatography and sequencing the N terminus and two tryptic peptides to be structurally very similar to a recently characterized extracellular RNase LE which is also phosphate regulated (Nürnberger et al. [1990] Plant Physiol 92: 970-976; Jost et al. [1991] Eur J Biochem 198: 1-6). Expression of the four intracellular RNases is induced by depleting the cells of phosphate and repressed by adding phosphate. Our studies indicate that higher plants, in addition to secreting enzymes for scavanging phosphate under starvation conditions, also induce intracellularly emergency rescue systems.  相似文献   

17.
In self‐incompatible Solanaceae, the pistil protein S‐RNase contributes to S‐specific pollen rejection in conspecific crosses, as well as to rejecting pollen from foreign species or whole clades. However, S‐RNase alone is not sufficient for either type of pollen rejection. We describe a thioredoxin (Trx) type h from Nicotiana alata, NaTrxh, which interacts with and reduces S‐RNase in vitro. Here, we show that expressing a redox‐inactive mutant, NaTrxhSS, suppresses both S‐specific pollen rejection and rejection of pollen from Nicotiana plumbaginifolia. Biochemical experiments provide evidence that NaTrxh specifically reduces the Cys155‐Cys185 disulphide bond of SC10‐Rnase, resulting in a significant increase of its ribonuclease activity. This reduction and increase in S‐RNase activity by NaTrxh helps to explain why S‐RNase alone could be insufficient for pollen rejection.  相似文献   

18.
Summary The gametophytic self-incompatibility system of Solarium tuberosum is controlled by a single locus, designated as the S-locus. Protein extracts from potato styles of defined S-genotypes have been analysed by two-dimensional gel electrophoresis, and found to contain a group of basic glycoproteins. Each genetically determined allele S 1 to S 4 was associated with the presence of one of a number of these polypeptides differing slightly in isoelectric points (in the range 8.3–>9.1) and/or apparent molecular weight (ranging from 23,000 to 29,000). Two abundant basic polypeptides, one of which is apparently not glycosylated, were present in all genotypes examined. Amino-terminal protein sequence determinations revealed homologies of the S. tuberosum stylar proteins S2, S3 and S4 with SI-associated polypeptides from Nicotiana alata and Lycopersicon peruvianum. With an oligonucleotide generated to the potato-S2 N-terminal protein sequence, it was possible to detect a style-specific RNA species of 920 nucleotides. The oligonucleotide also behaved as an allele-specific probe when hybridized to total RNA of different S-genotypes.  相似文献   

19.
20.
Carnivorous pitcher plants host diverse microbial communities. This plant–microbe association provides a unique opportunity to investigate the evolutionary processes that influence the spatial diversity of microbial communities. Using next-generation sequencing of environmental samples, we surveyed microbial communities from 29 pitcher plants (Sarracenia alata) and compare community composition with plant genetic diversity in order to explore the influence of historical processes on the population structure of each lineage. Analyses reveal that there is a core S. alata microbiome, and that it is similar in composition to animal gut microfaunas. The spatial structure of community composition in S. alata (phyllogeography) is congruent at the deepest level with the dominant features of the landscape, including the Mississippi river and the discrete habitat boundaries that the plants occupy. Intriguingly, the microbial community structure reflects the phylogeographic structure of the host plant, suggesting that the phylogenetic structure of bacterial communities and population genetic structure of their host plant are influenced by similar historical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号