首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND AND OBJECTIVE: Ghrelin is a novel gastric peptide which stimulates GH secretion and has been demonstrated to have orexigenic and adipogenic properties. Insulin is a physiological and dynamic modulator of plasma ghrelin, and insulinemia possibly mediates the effect of the nutritional state on the plasma concentrations of ghrelin in adults. No data on the regulation of GH secretion by ghrelin have so far been reported, nor has the possible influence of hypoglycemia on the plasma ghrelin levels in children been reported. METHODS: Provocative studies were performed using a variety of stimuli, including insulin-induced hypoglycemia, and glucagon, arginine and L-dopa loading. We studied a group of 27 children with short stature being investigated for GH deficiency (10 F, 17 M; age 4-14 years; height SDS -0.92 to -3.27); the subjects were instructed to fast overnight, and the following morning, the relationships among the plasma ghrelin, GH and glucose levels were investigated by determining the plasma ghrelin profiles during those provocative tests. Using a new method for determining the two types of ghrelin, samples were obtained for determination of the plasma ghrelin, serum glucose and serum GH levels after the administration of the aforementioned stimulating agents. RESULTS: All the four stimuli caused a significant decrease in the circulating C- and N-ghrelin levels with a nadir at +30 min, with the exception of the N-ghrelin level following the L-dopa loading. During the same period, the plasma GH level increased following insulin, arginine and L-dopa loading, and the plasma glucose level increased significantly following glucagon loading. In the arginine and L-dopa load connected, a significant correlation was observed between the 30-min change in the serum GH level and the 30-min change in the plasma C-ghrelin level. In the multiple regression analysis to explain the 30-min change in the plasma level of C-ghrelin, the baseline plasma level of C-ghrelin (basal), height and % overweight were the only three significant parameters, accounting for 85.2% of the variance. CONCLUSION: This study demonstrated that the inverse relation between the circulating GH and ghrelin levels may indicate the existence of a feedback loop, and also lends support to the assumption of a GH-independent relationship between plasma ghrelin and glucose levels. These observations constitute further evidence to suggest that peripheral ghrelin is a direct growth-promoting hormone.  相似文献   

2.
We report the first identification of a circulating peptide from the amino-terminal end of proCNP. A specific radioimmunoassay was established based on antisera to the synthetic peptide proCNP(1-15). Extracts of plasma, drawn from patients with congestive heart failure or from sheep with experimental heart failure, were subjected to size exclusion and reverse-phase high-pressure liquid chromatography (HPLC) coupled to radioimmunoassay (RIA). These studies revealed the presence of an immunoreactive peptide with a molecular weight (M(r) approximately 5 kDa) similar to that expected for NT-proCNP(1-50), a potential fragment released during processing of pro(CNP). The same material was isolated from extracts of homogenized ovine pituitary, a tissue known to be a relatively enriched source of CNP. Plasma NT-proCNP levels in 22 patients with congestive heart failure (9.7 +/- 0.5 pmol/L, mean +/- SEM, range 5.4-13.7 pmol/L) were raised (P = 0.003) compared to those in 16 healthy volunteers (7.4 +/- 0.3 pmol/L, range 5.7-10.7 pmol/L) and were higher than levels reported for CNP in similar subjects. This first identification of circulating NT-proCNP opens the possibility of studying the factors regulating CNP production and metabolism in vivo.  相似文献   

3.
The gastric peptide ghrelin promotes energy storage, appetite, and food intake. Nutrient intake strongly suppresses circulating ghrelin via molecular mechanisms possibly involving insulin and gastrointestinal hormones. On the basis of the growing evidence that glucose-dependent insulinotropic polypeptide (GIP) is involved in the control of fuel metabolism, we hypothesized that GIP and/or insulin, directly or via changes in plasma metabolites, might affect circulating ghrelin. Fourteen obese subjects were infused with GIP (2.0 pmol·kg(-1)·min(-1)) or placebo in the fasting state during either euglycemic hyperinsulinemic (EC) or hyperglycemic hyperinsulinemic clamps (HC). Apart from analysis of plasma ghrelin and insulin levels, GC-TOF/MS analysis was applied to create a hormone-metabolite network for each experiment. The GIP and insulin effects on circulating ghrelin were analyzed within the framework of those networks. In the HC, ghrelin levels decreased in the absence (19.2% vs. baseline, P = 0.028) as well as in the presence of GIP (33.8%, P = 0.018). Ghrelin levels were significantly lower during HC with GIP than with placebo, despite insulin levels not differing significantly. In the GIP network combining data on GIP-infusion, EC+GIP and HC+GIP experiments, ghrelin was integrated into hormone-metabolite networks through a connection to a group of long-chain fatty acids. In contrast, ghrelin was excluded from the network of experiments without GIP. GIP decreased circulating ghrelin and might have affected the ghrelin system via modification of long-chain fatty acid pools. These observations were independent of insulin and offer potential mechanistic underpinnings for the involvement of GIP in systemic control of energy metabolism.  相似文献   

4.
BACKGROUND: Ghrelin has been reported to be the natural ligand of growth hormone (GH) secretagogue receptor, and it is known that exogenous ghrelin administration strongly stimulates GH release in humans. However, the effects of endogenous ghrelin on GH secretion and changes in ghrelin levels during dynamic changes in GH levels are not well understood. METHODS: Therefore, we measured circulating acylated ghrelin concentrations during oral glucose tolerance tests (OGTTs) in patients with active acromegaly (AA, n = 9) and in age/sex/BMI-matched group A controls (n = 12), and during insulin tolerance testing (ITT) in patients with GH deficiency (GHD, n = 10) and in group B controls (n = 10). Plasma acylated ghrelin, serum GH, insulin and glucose levels were measured during each test. RESULTS: Fasting plasma ghrelin levels correlated negatively with serum insulin levels in both group A and B controls (r = -0.665; p < 0.05) but not in patients with AA or GHD. During OGTTs, circulating ghrelin levels decreased significantly with a nadir at 30 min in both patients with AA (p < 0.05) and group A controls (p < 0.01). Also, ITTs were followed by a significant decrease in circulating ghrelin levels with a nadir at 30 min in patients with GHD (p < 0.05) and in group B controls (p < 0.05). CONCLUSION: The results of the study show that at baseline acylated ghrelin levels do not differ with respect to the GH status (GH excess or GH deficiency) and, furthermore, the suppression of acylated ghrelin levels during OGTT or ITT is independent of the GH response to the tests.  相似文献   

5.
目的:探讨基质细胞衍生因子-1与围生期心肌病患者心力衰竭的相关性。方法:采用前瞻性研究纳入59例围生期心肌病并发心力衰竭患者,33例单纯围生期心肌病患者作为对照组。患者均接受体检、实验室检查、心电图、心脏彩超评估。选取基质细胞衍生因子-1(SDF-1)、超敏C反应蛋白(hs-CRP)、氨基末端脑钠肽前体(NT-pro BNP)、血清肌钙蛋白(TNI)及心脏彩超相关参数为评价指标。结果:(l)围生期心肌病患者循环中基质细胞衍生因子-1水平明显高于对照组;(2)循环中基质细胞衍生因子-1与超敏C反应蛋白(CRP)、氨基末端脑钠肽前体(NT-pro BNP)呈正相关,与超声心动图左心室射血分数(LVEF)呈负相关。结论:基质细胞衍生因子-1与围生期心肌病患者心力衰竭具有显著相关性。  相似文献   

6.
We administered ghrelin, a novel growth hormone-releasing hormone, to isolated perfused rat hearts, coronary arterioles, and cultured neonatal cardiomyocytes to determine its effects on coronary vascular tone, contractility, and natriuretic peptide secretion and gene expression. We also determined cardiac levels of ghrelin and whether the heart is a source of the circulating peptide. Ghrelin dose dependently increased coronary perfusion pressure (44 +/- 9%, P < 0.01), constricted isolated coronary arterioles (12 +/- 2%, P < 0.05), and significantly enhanced the pressure-induced myogenic tone of arterioles. These effects were blocked by diltiazem, an L-type Ca(2+) channel blocker, and bisindolylmaleimide (Bis), a protein kinase C (PKC) inhibitor. Interestingly, coinfusion of ghrelin with diltiazem completely restored myocardial contractile function that was decreased 30 +/- 3% (P < 0.01) by diltiazem alone. In contrast, combination of ghrelin with diltiazem or Bis did not significantly alter atrial natriuretic peptide (ANP) secretion, which was decreased 40% (P < 0.01) and 50% (P < 0.05) by these agents alone, respectively. Administration of ghrelin to cultured cardiomyocytes had no effect on ANP or B-type natriuretic peptide secretion or gene expression. Detectable amounts of low-molecular-weight ghrelin were present in cardiac tissue extracts but not in isolated heart perfusate. Thus we provide the first evidence that ghrelin has a coronary vasoconstrictor action that is dependent on Ca(2+) and PKC. Furthermore, the data obtained from diltiazem infusion suggest that ghrelin has a role in regulation of contractility when L-type Ca(2+) channels are blocked. Finally, the observation that immunoreactive ghrelin is found in cardiac tissue suggests the presence of a local cardiac ghrelin system.  相似文献   

7.
To explore the effects of ghrelin on disturbed myocardial energy metabolism during chronic heart failure (CHF). Rats were subcutaneously injected with isoproterenol (ISO) for 10 days with or without ghrelin for another 10 days. Enzyme immunoassay was to measure ghrelin concentrations. Compared with the control group, ISO‐treated rats showed suppressed cardiac function with high ghrelin/GHS‐R expressions. These rats also showed the decreases in food consumption and weight. The decreased levels of plasma glucose and myocardial glucogen, but the high lactate in blood and myocardium showed myocardial metabolic disturbance. Compared with the group given ISO alone, the rats with ghrelin (20 and 100 µg/kg/day) improved cardiac dysfunction and increased food intake by 13.5 and 14.2% (both P < 0.01), and rate of weight gain by 95% (P < 0.05) and 1.71‐fold (P < 0.01), respectively. The plasma glucose were increased by 49.7 and 50.8% (both P < 0.01), and myocardial glucogen, by 40.5 and 51.7% (both P < 0.01), but blood lactate decreased by 1.56‐ and 1.96‐fold (both P < 0.01), and myocardial lactate by 32.1 and 48.7% (both P < 0.05), respectively. Their MCT1 mRNA and protein expressions increased. The myocardial ghrelin/GHS‐R pathway can be upregulated during CHF. The ghrelin can attenuate cardiac dysfunction and energy metabolic disturbance in CHF rats. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
目的:观察顺铂化疗对下丘脑、血浆ghrelin、orexin表达和摄食量的影响。方法:Real-time PCR、ELISA法观察顺铂对大鼠下丘脑、血浆ghrelin、orexin表达及摄食量的影响;19名接受顺铂经导管动脉灌注化疗(TAI)的肝细胞患者(HCC),ELISA法检测化疗前和化疗后血浆ghrelin、orexin的变化,用直观类比标度(VAS)(0-10)评估食欲和摄食量。结果:每日腹腔注射顺铂6 mg/kg,1-5 d大鼠摄食量均显著减少(P0.05),且1-4 d血浆酰化ghrelin显著降低(P0.05),5d时浓度仍低于对照组,但无统计学意义。血浆非酰化ghrelin和总的血浆ghrelin没有明显变化(P0.05),而1-5天血浆orexin水平均明显降低(P0.05);顺铂注射1 d后,大鼠下丘脑ghreilin和orexin的mRNA表达量均显著减少(P0.05),ghrelin mRNA变化持续3 d,orexin mRNA在化疗后5 d仍低于对照组(P0.05);肝细胞癌患者化疗后1至8 d的摄食量明显降低,1 d和2 d时的血浆酰化ghrelin显著低于化疗前水平(P0.05)。3 d时逐渐恢复,化疗后3 d、4 d和7 d时血浆酰化ghrelin浓度与化疗前无统计学差异(P0.05)。血浆非酰化ghrelin和总的血浆ghrelin没有明显变化(P0.05);化疗后1~4 d时血浆orexin浓度均显著降低(P0.05),化疗后7 d时orexin基本恢复到化疗前水平(P0.05)。结论:顺铂可降低大鼠下丘脑和血浆ghrelin、orexin的mRNA表达,HCC的TAI会降低血浆酰化ghrelin、orexin、和摄食量。  相似文献   

9.
目的:慢性心力衰竭(CHF)患者终末期阶段常发生左室(LV)重塑和心脏性恶病质,有研究称Ghrelin可能对CHFLV功能和能量代谢产生保护作用。本文旨在探讨Ghrelin对CHF大鼠LV功能紊乱和心源性恶病质的作用。方法:建立左冠状动脉结扎术和假手术组,手术后4周,给予大鼠Ghrelin或生理盐水3周。用超声心动图和心脏导管术监测结果。结果:与给予安慰剂组相比,用Ghrelin治疗的CHF和假手术组,血浆GH和胰岛素样生长因子1明显升高(t=1.49,t=0.71,P0.05)。与Sham-Placebo组相比,CHF-Placebo组大鼠体重明显减轻(t=2.18,P0.05)。然而与CHF-Placebo组相比,CHF-Ghrelin组大鼠,体重(t=3.89,P0.05),心输出量(t=3.28,P0.05),LV dP/dtmax(t=3.90,P0.05)明显增加。Ghrelin增加了CHF大鼠心脏舒张压,抑制LV扩大,增加LV缩短分数。结论:长期注射Ghrelin可改善CHF大鼠LV功能紊乱,减缓LV重构和心脏性恶病质的发展,有望为CHF的治疗提供新的途径和方法。  相似文献   

10.
Ghrelin is a recently identified orexigenic hormone secreted by the stomach and has been implicated in meal-time hunger. Several experiments demonstrate a transient surge in ghrelin secretion shortly before a scheduled meal, suggesting from the involvement of cephalic mechanisms. If ghrelin secretion is stimulated by hunger in sheep, plasma levels of ghrelin should be modified by different feeding regimens that affect hunger drive. To test this hypothesis, we investigated changes in plasma ghrelin concentrations in fed Suffolk rams ad libitum and in rams either twice or four times daily. Plasma ghrelin levels increased (P<0.05) abruptly just before every feeding period in sheep fed twice and four times daily and then fell shortly after feeding. Peak levels of the pre-prandial ghrelin surge were higher (P<0.01) in animals fed twice daily than in animals fed four times daily, leading to greater (P<0.05) areas under response curves over 12h. In contrast, the plasma ghrelin levels remained relatively low and constant in sheep fed ad libitum, with no evidence of surges in plasma ghrelin levels. These results confirm that the transient surge in plasma ghrelin levels occurs just before feeding and demonstrate that this can be modified by the feeding regimen in sheep.  相似文献   

11.
目的:探讨侧脑室注射obestatin对大鼠血浆酰基化ghrelin、去酰基化ghrelin、nesfatin-1水平的影响以及对胃排空的调控。方法:侧脑室注射obestatin,采用酶免疫测定(EIA)法检测血浆酰基化ghrelin、去酰基化ghrelin、nesfatin-1水平以及胃排空率的变化。结果:侧脑室分别注射0.1、0.3或1.0 nmol obestatin,大鼠血浆酰基化ghrelin、去酰基化ghrelin以及nesfatin-1水平无显著改变(P0.05),且酰基化ghrelin与去酰基化ghrelin比率无显著改变(P0.05);侧脑室注射obestatin,大鼠摄食量无显著改变,但胃排空率明显增加(P0.05);胃排空率明显延迟(P0.05)。与侧脑室注射1.0 nmol Obestatin组相比,注射1.0 nmol Obestatin+CRF,大鼠摄食量无显著改变,胃排空率明显延迟(P0.05)。各组摄食量及进入十二指肠内食物量无明显差异(P0.05)。结论:中枢obestatin促进大鼠的胃排空,可能与h/r CRF通路有关。  相似文献   

12.
Postprandial ghrelin suppression arises from the interaction of meal contents with the small intestine and may relate to elevations in blood glucose and/or plasma insulin. We sought to determine whether the suppression of ghrelin by small intestinal glucose is dependent on the glucose load and can be accounted for by changes in blood glucose and/or plasma insulin. Blood glucose, plasma insulin, and plasma ghrelin levels were measured in 10 healthy males (aged 32+/-4 yr; body mass index: 25.1+/-0.4 kg/m2) during intraduodenal glucose infusions at 1 kcal/min (G1), 2 kcal/min (G2), and 4 kcal/min (G4), as well as intraduodenal hypertonic saline (control) for 120 min. There was a progressive decrease in ghrelin with all treatments, control at 45 min and between 90 and 120 min (P<0.05) and G1 (P<0.05), G2 (P<0.0001), and G4 (P<0.0001) between 30 and 120 min to reach a plateau at approximately 90 min. There was no difference in plasma ghrelin between G1, G2, or G4. Control suppressed ghrelin to a lesser extent than intraduodenal glucose (P<0.05). The suppression of ghrelin was not related to rises in blood glucose or plasma insulin. Suppression of ghrelin by intraduodenal glucose in healthy males is apparently independent of the glucose load and unrelated to blood glucose or insulin levels.  相似文献   

13.
BACKGROUND AND OBJECTIVE: Recent studies have revealed that circulating ghrelin levels seem to play a role in energy homeostasis. The effect of hyperthyroidism on ghrelin levels is not fully known. METHODS: Serum levels of ghrelin and its relationship with insulin resistance were evaluated in 48 patients with hyperthyroidism and 43 euthyroid healthy controls. Thyroid hormones, insulin, glucose, ghrelin levels and lipid parameters were measured in all subjects. Insulin sensitivity was determined using the homeostasis model assessment. RESULTS: Serum ghrelin levels were significantly decreased in hyperthyroid patients than in controls (32.5 +/- 23.3 vs. 54.1 +/- 35.5 pg/ml, p < 0.001). Circulating ghrelin levels significantly correlated with age (r = -0.26, p = 0.01), fasting glucose (r = -0.21, p = 0.01), free triiodothyronine (r = -0.18, p = 0.04), free thyroxine (r = -0.23, p = 0.02) and thyroid stimulating hormone (r = 0.21, p = 0.04), but not with blood pressure, body mass index, lipid parameters, insulin and homeostasis model assessment (p > 0.05). Multiple regression analysis revealed glucose level to be the most important predictor of circulating ghrelin level. CONCLUSION: These results indicate that hyperthyroidism has effect on serum ghrelin levels. Further studies are needed for the exact mechanism.  相似文献   

14.
We previously demonstrated that a transient surge in plasma levels of ghrelin occurs just prior to a scheduled meal and that this surge is modified by the feeding regimen. This suggests that the ghrelin secretion is regulated by the autonomic nervous system, especially the cholinergic projections to the stomach. To test this hypothesis, we investigated changes in plasma ghrelin levels at feeding time in rams by administering cholinergic blockers (atropine and hexamethonium) and a cholinergic accelerator (metoclopramide). The average food intake in each group infused with atropine, hexamethonium, metoclopramide, and saline was 150+/-28, 137+/-46, 153+/-50, and 1075+/-25g, respectively. Plasma ghrelin concentrations increased (P<0.05) after i.v. infusion of hexamethonium and gradually decreased (P<0.05) after i.v. infusion of metoclopramide. Plasma ghrelin levels in hexamethonium-treated animals were greater (P<0.05) than those of atropine-treated animals. Plasma ghrelin levels were significantly (P<0.05) higher in sheep given i.v. infusions of atropine or hexamethonium than the levels in normal- or pair-fed sheep infused with saline. Plasma ghrelin levels were similar in metoclopramide-treated, pair-fed, and control animals. These results support the possibility that ghrelin secretion is regulated by cholinergic neurons of the vagus and that cholinergic activity suppresses ghrelin secretion in sheep.  相似文献   

15.
Although urocortin 1 (Ucn-1) has been reported to circulate in human plasma and be raised in heart failure, little, if any, information is available regarding the source of circulating Ucn-1. Accordingly, we have performed trans-organ arteriovenous sampling for measurement of Ucn-1 concentration in anesthetized sheep before and after development of pacing-induced heart failure. Arterial plasma Ucn-1 levels measured 15.2 +/- 0.5 pmol/L in normal sheep and increased significantly following development of heart failure to 19.1 +/- 1.6 (p < 0.05). Small but significant positive arteriovenous gradients were observed across the hepatic and renal tissue beds in both states, with rises across the hind limb significant in normal animals and across the head in heart failure. This is the first report identifying sources of circulating Ucn-1.  相似文献   

16.
Acute psychological stress raises plasma ghrelin in the rat   总被引:3,自引:0,他引:3  
Ghrelin is produced by the A-like cells of the stomach and mobilized by food deprivation. It was reported recently that acute psychological stress increases ghrelin gene expression in rat oxyntic mucosa. The aim of this study was to examine the effect of such stress on circulating ghrelin levels. To this end, we measured plasma ghrelin in Wistar Kyoto (WKY) rats (a high-anxiety strain) and Sprague-Dawley (SPD) rats (a low-anxiety strain), exposed to water avoidance stress for 60 min. Blood was collected before and after the stress. Acute stress increased the plasma ACTH concentration approximately 5-fold (p<0.01) in both strains of rats, while plasma ghrelin increased by 85% (p<0.01) in the SPD rats and by 40% (p<0.001) in the WKY rats. Ghrelin levels after acute stress were higher (p<0.05) in the SPD rats than in the WKY rats. Sham stress did not affect plasma ghrelin. We conclude that acute psychological stress mobilizes ghrelin and that the SPD rats respond with a higher plasma ghrelin concentration than the WKY rats.  相似文献   

17.
18.
Obestatin, a recently discovered 23-amino acid peptide, is involved in the regulation of appetite and body weight in antagonistic fashion to ghrelin, both deriving from a common precursor peptide. Ghrelin was shown to be associated with insulin resistance, which may also affect obestatin. We investigated the association between insulin resistance and plasma concentrations of obestatin and ghrelin in nondiabetic individuals with high (IS; n = 18, 13 females and 5 males, age 47 +/- 2 yr, BMI = 25.5 +/- 0.9 kg/m(2)) and low (IR; n = 18, 12 females and 6 males, age 45 +/- 2 yr, P = 0.49, BMI = 27.5 +/- 1.1 kg/m(2), P = 0.17) insulin-stimulated glucose disposal (M), measured by 2-h hyperinsulinemic (40 mU.min(-1).m(-2)) isoglycemic clamp tests. M(100-120 min) was higher in IS (10.7 +/- 0.7) than in IR (4.4 +/- 0.2 mg.min(-1).kg(-1), P < 10(-9)), whereas insulin-dependent suppression of free fatty acids (FFA) in plasma was reduced in IR (71 +/- 6% vs. IS: 82 +/- 5%, P < 0.02). In both groups, plasma ghrelin concentrations were comparable at fasting and similarly reduced by 24-28% during insulin infusion. IR had lower fasting plasma obestatin levels (383 +/- 26 pg/ml vs. IS: 469 +/- 23 pg/ml, P < 0.02). Clamp insulin infusion reduced plasma obestatin to approximately 81% of basal values in IS (P < 0.00002), but not in IR. Fasting plasma obestatin was correlated positively with M (r = 0.34, P = 0.04), HDL cholesterol (r = 0.45, P = 0.01), and plasma ghrelin concentrations (r = 0.80, P < 0.000001) and negatively with measures of adiposity, plasma FFA during clamp (r = -0.42, P < 0.01), and systolic blood pressure (r = -0.33, P < 0.05). In conclusion, fasting plasma concentrations of obestatin, but not of ghrelin, are reduced in insulin resistance and are positively associated with whole body insulin sensitivity in nondiabetic humans. Furthermore, plasma obestatin is reduced by insulin in insulin-sensitive but not in insulin-resistant persons.  相似文献   

19.
Ghrelin is a growth hormone-releasing peptide, discovered in 1999 by Kojima et al. Its potential role in inflammation and stress response is not yet clear. The purpose of this study was to characterize perioperative levels of circulating ghrelin in relation to different surgical procedures. The authors compared plasma ghrelin changes with cortisol, cytokines, and acute-phase proteins. The prospective study was performed on 22 patients with resection for colon cancer (group 1). Group 2, functioning as a comparative group, consisted of 22 patients with elective laparotomic cholecystectomy. Plasma concentrations of ghrelin, cortisol, tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta, IL-6, IL-8, soluble IL-2 receptor, C reactive protein, and alpha1-antitrypsin were estimated repeatedly during a 72-hour postoperative period. Data revealed significant elevation of plasma ghrelin 24 hours after resection of coli (median 508.0 ng/l, interquartile range 398.2-633.7 ng/l) in relation to both preoperative levels (317.6 ng/l, 253.4-355.1 ng/l, p<0.01) and group 2 maximal postoperative levels (386.2 ng/l, 324-432 ng/l, p<0.05). Ghrelin levels returned to initial status 36-48 hours after surgery with subsequent decline to subnormal levels. The regression coefficient was the highest for ghrelin and TNF-alpha 24 hours after laparotomy (r=0.64, p<0.05) and for ghrelin and IL-6 24 hours after surgery (r=0.56, p<0.05). Maximal postoperative levels of all tested parameters except for cortisol and IL-1beta differed significantly between both patient groups at p<0.05. After large abdominal surgery, ghrelin shows itself as an acute-phase reactant. The significant correlation between ghrelin and inflammatory cytokines supposes their regulatory role in this period. Our comparison of more- and less-invasive surgical procedures with similar nutritional restrictions argues for a dominant role of inflammatory factors in postoperative ghrelin elevation.  相似文献   

20.
In addition to metabolic and neuroendocrine actions, the recently discovered hormone ghrelin has been found to have inhibitory effects on inflammatory processes. This novel finding suggests possible involvement of the peptide in the pathogenesis of inflammatory disorders including the inflammatory demyelinating disease of the central nervous system, multiple sclerosis (MS). The aim of the present study was to evaluate serum ghrelin levels in patients with MS. Serum ghrelin levels were measured in 40 MS patients and 20 controls. Control subjects were selected from healthy individuals, matched for age, sex and BMI. Fasting plasma levels of ghrelin were determined by radioimmunoassay. Serum ghrelin level was significantly higher in MS group (226.16 +/- 35.84 pg/ml, n=40) than that in the control group (113.04 +/- 11.28 pg/ml, n=20, P<0.001). Both, relapsing remitting and secondary progressive MS patients had ghrelin levels significantly higher than controls, while there was no significant difference between the ghrelin levels of patients with these two categories of MS. This study for the first time shows that patients with MS have higher levels of ghrelin and this increase in circulating ghrelin level may function against the proinflammatory process in these patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号