首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prebiotic effect of a pectic oligosaccharide-rich extract enzymatically derived from bergamot peel was studied using pure and mixed cultures of human faecal bacteria. This was compared to the prebiotic effect of fructo-oligosaccharides (FOS). Individual species of bifidobacteria and lactobacilli responded positively to the addition of the bergamot extract, which contained oligosaccharides in the range of three to seven. Fermentation studies were also carried out in controlled pH batch mixed human faecal cultures and changes in gut bacterial groups were monitored over 24 h by fluorescent in situ hybridisation, a culture-independent microbial assessment. Addition of the bergamot oligosaccharides (BOS) resulted in a high increase in the number of bifidobacteria and lactobacilli, whereas the clostridial population decreased. A prebiotic index (PI) was calculated for both FOS and BOS after 10 and 24 h incubation. Generally, higher PI scores were obtained after 10 h incubation, with BOS showing a greater value (6.90) than FOS (6.12).  相似文献   

2.
AIMS: To investigate the fermentation properties of gentio-oligosaccharides (GOS), as compared to fructo-oligosaccharides (FOS) and maltodextrin in mixed faecal culture. METHODS AND RESULTS: The substrates were incubated in 24 h batch culture fermentations of human faecal bacteria. Fluorescent in situ hybridization was used to determine changes in populations of bifidobacteria, lactobacilli, clostridia, bacteroides, streptococci and Escherichia coli. Gas and short-chain fatty acid (SCFA) production was also measured. GOS gave the largest significant increases in bifidobacteria, lactobacilli and total bacterial numbers during the incubations. However, FOS appeared to be a more selective prebiotic as it did not significantly stimulate growth of bacterial groups which were not probiotic in nature. GOS and maltodextrin produced the highest levels of SCFA. Lowest gas production was seen with GOS and highest with FOS. CONCLUSIONS: GOS possessed bifidogenic activity in vitro. Although fermentation of GOS was not as selective as FOS, gas production was lower. Gas production is often seen as an undesirable side effect of prebiotic consumption. SIGNIFICANCE AND IMPACT OF THE STUDY: The study has provided the first data on fermentation of GOS in mixed faecal culture. The study has also used molecular microbiology methods (FISH) to quantify bacterial groups. The data extend our knowledge of the selectivity of fermentation of oligosaccharides by the gut microflora.  相似文献   

3.
AIMS: To compare the in vitro fermentation properties of pectins and oligosaccharides derived from them in pure and mixed faecal cultures. METHODS AND RESULTS: Specific growth rates of selected bacterial genera were calculated in pure culture. Bifidobacterium angulatum, B. infantis and B. adolescentis had higher growth rates on pectic oligosaccharides (POS I) derived from high methylated pectin (HMP) than on HMP and B. pseudolongum and B. adolescentis on pectic oligosaccharides (POS II) derived from low methylated pectin than on HMP. Controlled pH batch mixed faecal cultures were then carried out and a prebiotic index was calculated as a mean to compare the fermentation properties of the different substrates. In general, greater fermentation selectivity was obtained with lower degrees of methylation (PI24(-HMP) = -0.11, PI24(-LMP) = 0.033; PI24(-POS I) = 0.071 and PI24(-POS II) = 0.092). An effect of size on prebiotic potential was observed, with the oligosaccharides having more selective fermentation properties than the pectins they derived from. CONCLUSIONS: The degree of methylation plays an important role in the fermentation properties of pectins. Pectic-oligosaccharides are a better prebiotic candidate than the pectins, although their bifidogenic effect is low compared to oligofructose. SIGNIFICANCE AND IMPACT OF THE STUDY: The effect of size on prebiotic potential was demonstrated. Non-selectively fermented polysaccharides like pectin can have their bifidogenic properties improved by partial hydrolysis.  相似文献   

4.
AIMS: To compare the fermentation of dietary carbohydrates with reference to their prebiotic and gas-generating capacity. METHODS AND RESULTS: Static anaerobic batch culture fermentations were carried out measuring gas generation and the prebiotic effect of five selected substrates (including various fructo-oligosaccharides, levan and maltodextrin). The largest gas producer was levan, whilst those showing no significant difference to Actilight included oligofructose and maltodextrin. Gas composition data showed that hydrogen and carbon dioxide were the two most quantitatively important gases. The substrate that appeared to have the best prebiotic effect in vitro was branched chain fructo-oligosaccharide (FOS), followed by oligofructose, Actilight and maltodextrin which each exerted a similar effect. The substrate with the least bifidogenic effect was levan. CONCLUSIONS: The composition and total gas generation data showed that there was much variation between and within donor inocula. Generally, the lower gas producers had a more selective fermentation whilst larger gas producers were less specific. SIGNIFICANCE AND IMPACT OF THE STUDY: The study of these three parameters enabled a more complete picture of carbohydrate breakdown to be drawn and hence highlighted the need for potential prebiotics to be more extensively evaluated in order to reduce negative side-effects such as gas distension.  相似文献   

5.
Synbiotics are recognized means of modulating gut microbiota composition and activities. However, whether synbiotics are superior to prebiotics and probiotics alone in moderating the gut microbiota towards a purportedly healthy composition has not been determined. Eight selected synbiotics (short-chain fructooligosaccharides or fructooligosaccharides, each combined with one of four probiotics, Lactobacillus fermentum ME-3, Lactobacillus plantarum WCFS1, Lactobacillus paracasei 8700:2 or Bifidobacterium longum 46) were added to 24-h pH-controlled anaerobic faecal batch cultures. The prebiotic and probiotic components were also tested alone to determine their respective role within the synbiotic for modulation of the faecal microbiota. Effects upon major groups of the microbiota were evaluated using FISH. Rifampicin variant probiotic strains were used to assess probiotic levels. Synbiotic and prebiotics increased bifidobacteria and the Eubacterium rectale-Clostridium coccoides group. Lower levels of Escherichia coli were retrieved with these combinations after 5 and 10 h of fermentation. Probiotics alone had little effect upon the groups, however. Multivariate analysis revealed that the effect of synbiotics differed from the prebiotics as higher levels of Lactobacillus-Enterococcus were observed when the probiotic was stimulated by the prebiotic component. Here, the synbiotic approach was more effective than prebiotic or probiotic alone to modulate the gut microbiota.  相似文献   

6.
Aims: To investigate the impact of human milk oligosaccharides (HMOs) from a single donor (SO), HMOs from multiple donors (PO), a fructooligosaccharides and galactooligosaccharides mixture (FG) on the composition of a batch culture inoculated with faecal microbiota from formula‐fed infants. Methods and Results: Three substrates were compared using 24‐h pH‐controlled anaerobic batch cultures inoculated with infant faecal slurries. Changes in bacterial populations, short‐chain fatty acids (SCFA) production and bacterial 16S rRNA gene profiles were determined. All three substrates significantly increased numbers of bifidobacteria, bacteroides and those aligning with the clostridial cluster XIVa. Neither the FG nor the HMOs substrates supported the growth of the Clostridium perfringens–histolyticum group. SCFA production corresponded to changes observed in bacterial populations. Denaturing gradient gel electrophoresis fingerprint analysis showed a distinct profile of faecal bacteria present in each infant. Conclusions: HMOs modulated infant faecal culture composition in a similar manner to the prebiotic mixture FG in vitro. Significance and Impact of the Study: This is the first demonstration of the impact of pure HMOs on the mixed culture of infant faecal bacteria. HMOs induced the growth of several saccharolytic bacterial groups and may thus play a role in the health‐promoting attributes of human breast milk and have an extended significance in infant diet during/after weaning.  相似文献   

7.
The potential prebiotic properties of arabino-oligosaccharides (AOS) derived from sugar beet pulp was studied using mixed cultures of human fecal bacteria from patients with ulcerative colitis (UC), in remission or with active disease, and in healthy controls. These results were compared to those for fructo-oligosaccharides (FOS), which are known to have a prebiotic effect. Fermentation studies were carried out using a small-scale static batch system, and changes in the fecal microbial communities and metabolites were monitored after 24 h by quantitative real-time PCR and short-chain fatty acid analysis. With a few minor exceptions, AOS affected the communities similarly to what was seen for FOS. Quantitative real-time PCR revealed that Bifidobacterium spp. and Lactobacillus spp. were selectively increased after fermentation of AOS or FOS by fecal microbiota derived from UC patients. The stimulation of growth of Lactobacillus spp. and Bifidobacterium spp. was accompanied by a high production of acetate and hence a decrease of pH. The fermentation of AOS may help improve the inflammatory conditions in UC patients through stimulation of bacteria eliciting anti-inflammatory responses and through production of acetate. AOS may therefore represent a new prebiotic candidate for reduction of the risk of flare-ups in UC patients. However, human trials are needed to confirm a health-promoting effect.  相似文献   

8.
Gentiooligosaccharides and alternansucrase gentiobiose acceptor products were fractionated by their degree of polymerization (DP) on a Bio-Gel P2 column. Fractions were characterized by matrix-assisted laser desorption ionization time-of-flight mass spectroscopy, and incubated with human faecal bacteria under anaerobic conditions at 37 degrees C. The growth of predominant gut bacteria on the oligosaccharides was evaluated by fluorescence in situ hybridization and a prebiotic index (PI) was calculated. Lower DP gentiooligosaccharides (DP2-3) showed the highest selectivity (PI of 4.89 and 3.40, respectively), whereas DP4-5 alternansucrase gentiobiose acceptor products generated the greatest values (PI of 5.87). The production of short-chain fatty acids was also determined during the time course of the reactions. The mixture of DP6-10 alternansucrase gentiobiose acceptor products generated the highest levels of butyric acid but the lowest levels of lactic acid. Generally, for similar molecular weights, alternansucrase gentiobiose acceptor products gave higher PI values than gentiooligosaccharides.  相似文献   

9.
Batch cultures inoculated with human faeces were used to study the prebiotic properties of levan-type exopolysaccharides (EPS) from Lactobacillus sanfranciscensis as well as levan, inulin, and fructooligosaccharide (FOS). Denaturing gradient gel electrophoresis of 16S rDNA fragments generated by PCR with universal primers was used to analyse the cultures. Characteristic changes were revealed in the composition of the gut bacteria during fermentation of the carbohydrates. An enrichment of Bifidobacterium spp. was found for the EPS and inulin but not for levan and FOS. The bifidogenic effect of the EPS was confirmed by culturing on selective medium. In addition, the use of EPS and FOS resulted in enhanced growth of Eubacterium biforme and Clostridium perfringens, respectively.  相似文献   

10.
Prebiotics are defined as selectively fermented food ingredients that induce specific changes in the composition and/or activity in the gastrointestinal microbiota beneficial to the host well-being and health. The aim of the presented experiment was to investigate the effect of a prebiotic applied alone or in combination with Hyppocastani extractum siccum, and Lini oleum virginale in rats with dimethylhydrazine induced colon cancer. Wistar albino rats were fed high fat diet supplemented with the prebiotic alone or in combination with Horse chestnut and flaxseed oil. The activity of faecal glycolytic enzymes, lipid parameters, bile acids, short chain fatty acids and counts of coliforms and lactobacilli were determined. Treatment with the prebiotic alone and in combination with selected substances significantly decreased the activity of glycolytic bacterial enzyme β-glucuronidase (P<0.001) and increased activities of β-galactosidase and β-glucosidase. Bile acids concentration was significantly decreased (P<0.01) except for the combination of the prebiotic with Horse chestnut. The prebiotic alone decreased the lipid parameters (P<0.001) and enhanced production of short chain fatty acids. Application of prebiotic and bioactive natural substances significantly reduced number of coliforms (P<0.05). Prebiotic alone significantly increased the count of lactobacilli (P<0.05). These results show that prebiotics have a protective effect and may be the useful for colon cancer prevention and treatment.  相似文献   

11.
Batch cultures inoculated with human faeces were used to study the prebiotic properties of levan-type exopolysaccharides (EPS) from Lactobacillus sanfranciscensis as well as levan, inulin, and fructooligosaccharide (FOS). Denaturing gradient gel electrophoresis of 16S rDNA fragments generated by PCR with universal primers was used to analyse the cultures. Characteristic changes were revealed in the composition of the gut bacteria during fermentation of the carbohydrates. An enrichment of Bifidobacterium spp. was found for the EPS and inulin but not for levan and FOS. The bifidogenic effect of the EPS was confirmed by culturing on selective medium. In addition, the use of EPS and FOS resulted in enhanced growth of Eubacterium biforme and Clostridium perfringens, respectively.  相似文献   

12.
Fermentation properties of oligosaccharides derived from orange peel pectin were assessed in mixed fecal bacterial culture. The orange peel oligosaccharide fraction contained glucose in addition to rhamnogalacturonan and xylogalacturonan pectic oligosaccharides. Twenty-four-hour, temperature- and pH-controlled, stirred anaerobic fecal batch cultures were used to determine the effects that oligosaccharides derived from orange products had on the composition of the fecal microbiota. The effects were measured through fluorescent in situ hybridization to determine changes in bacterial populations, fermentation end products were analyzed by high-performance liquid chromatography to assess short-chain fatty acid concentrations, and subsequently, a prebiotic index (PI) was determined. Pectic oligosaccharides (POS) were able to increase the bifidobacterial and Eubacterium rectale numbers, albeit resulting in a lower prebiotic index than that from fructo-oligosaccharide metabolism. Orange albedo maintained the growth of most bacterial populations and gave a PI similar to that of soluble starch. Fermentation of POS resulted in an increase in the Eubacterium rectale numbers and concomitantly increased butyrate production. In conclusion, this study has shown that POS can have a beneficial effect on the fecal microflora; however, a classical prebiotic effect was not found. An increase in the Eubacterium rectale population was found, and butyrate levels increased, which is of potential benefit to the host.  相似文献   

13.
Currently, prebiotics are all carbohydrates of relatively short chain length. One important group is the fructooligosaccharides (FOS), a special kind of prebiotic associated to the selective stimulation of the activity of certain groups of colonic bacteria. They have a positive and beneficial effect on intestinal microbiota, reducing the incidence of gastrointestinal infections and also possessing a recognized bifidogenic effect. Traditionally, these prebiotic compounds have been obtained through extraction processes from some plants, as well as through enzymatic hydrolysis of sucrose. However, different fermentative methods have also been proposed for the production of FOS, such as solid-state fermentations utilizing various agro-industrial by-products. By optimizing the culture parameters, FOS yields and productivity can be improved. The use of immobilized enzymes and cells has also been proposed as being an effective and economic method for large-scale production of FOS. This article is an overview of the results considering recent studies on FOS biosynthesis, physicochemical properties, sources, biotechnological production and applications.  相似文献   

14.
AIMS: In vitro studies have suggested that fructo-oligosaccharides (FOS) and resistant starch (two fermentable non-digestible carbohydrates) display different fermentation kinetics. This study investigated whether these substrates affect the metabolic activity and bacterial composition of the intestinal microflora differently depending on the caecocolonic segment involved. METHODS AND RESULTS: Eighteen rats were fed a low-fibre diet (Basal) or the same diet containing raw potato starch (RPS) (9%) or short-chain FOS (9%) for 14 days. Changes in wet-content weights, bacterial populations and metabolites were investigated in the caecum, proximal and distal colon and faeces. Both substrates exerted a prebiotic effect compared with the Basal diet. However, FOS increased lactic acid-producing bacteria (LAPB) throughout the caecocolon and in faeces, whereas the effect of RPS was limited to the caecum and proximal colon. As compared with RPS, FOS doubled the pool of caecal fermentation products, while the situation was just the opposite distally. This difference was mainly because of the anatomical distribution of lactate, which accumulated in the caecum with FOS and in the distal colon with RPS. Faeces reflected these impacts only partly, showing the prebiotic effect of FOS and the metabolite increase induced by RPS. CONCLUSIONS: This study demonstrates that FOS and RPS exert complementary caecocolonic effects. SIGNIFICANCE AND IMPACT OF THE STUDY: The RPS and FOS combined ingestion could be beneficial by providing health-promoting effects throughout the caecocolon.  相似文献   

15.
Stirred, pH-controlled anaerobic batch cultures were used to evaluate the in vitro utilisation by canine gut microflora of novel -galactooligosaccharides synthesised with an enzyme extract from a canine Lactobacillus reuteri strain. Fructooligosaccharides (FOS), melibiose and raffinose were used as reference carbohydrates for the prebiotic properties of the synthesised oligosaccharide (galactosyl melibiose mixture—GMM). Addition of Lactobacillus acidophilus was used as control for the evaluation of the synbiotic properties of the oligosaccharide with L. reuteri. Populations of predominant gut bacterial groups were monitored over 48 h of batch culture by fluorescent in situ hybridisation, and short-chain fatty acid (SCFA) production was measured. GMM showed a higher increase in bifidobacteria and lactobacilli population number and size as well as a higher decrease in clostridia population number and size compared to the commercial prebiotics (FOS, melibiose, raffinose). This prebiotic effect was further increased by the addition of L. reuteri followed by a change in the SCFA production pattern compared to GMM alone or GMM with L. acidophilus. The observed change in SCFA production was in accordance with the fermentation properties of L. reuteri, suggesting that the novel synbiotic had a significant effect on the canine gut microflora fermentation.  相似文献   

16.
The endogenous gut microbiota affects the host in many ways. Prebiotics should favour beneficial intestinal microbes and thus improve host health. In this study, we investigated how a novel class of potential prebiotic long-chain arabinoxylans (LC-AX) and the well-established prebiotic inulin (IN) modulate the gut microbiota of humanized rats. Six weeks after axenic rats were inoculated with a human faecal microbiota, their colonic microbiota was similar to this inoculum (~ 70%), whereas their caecal microbiota was enriched with Verrucomicrobia and Firmicutes concomitant with lower abundance of Bacteroidetes. Moreover, different Bifidobacterium species colonized the lumen (B. adolescentis) and mucus (B. longum and B. bifidum). Both LC-AX and IN increased SCFA levels and induced a shift from acetate towards health-promoting propionate and butyrate respectively. By applying a high-resolution phylogenetic micro-array (HITChip) at the site of fermentation (caecum), IN and LC-AX were shown to stimulate bacterial groups with known butyrate-producers (Roseburia intestinalis, Eubacterium rectale, Anaerostipes caccae) and bifidobacteria (B. longum) respectively. Prebiotic administration also resulted in lower caecal abundances of the mucin-degrading Akkermansia muciniphila and potentially more mucin production by the host. Both factors might explain the increased caecal mucin levels for LC-AX (threefold) and IN (sixfold). These mucins were degraded along the colon, resulting in high faecal abundances of Akkermansia muciniphila for LC-AX and especially IN-treated rats. Finally, the microbial changes caused an adaptation period for the host with less weight gain, after which the host fine-tuned the interaction with this altered microbiota. Our results demonstrate that next to IN, LC-AX are promising prebiotic compounds by stimulating production of health-promoting metabolites by specific microbes in the proximal regions. Further, prebiotic supplementation shifted mucin degradation to distal regions, where mucin-degraders may produce beneficial metabolites (e.g. propionate by Akkermansia muciniphila), so that prebiotics may potentially improve gut health along the entire length of the intestine.  相似文献   

17.
Fructooligosaccharide (FOS), a prebiotic well known for its health-promoting properties, can improve the human gut ecosystem most likely through changes in its microbial composition. However, the detailed mechanism(s) of action of FOS in the modulation of the gut ecosystem remain(s) obscure. Traditional methods of profiling microbes and metabolites could barely show any significant features due to the existence of large interindividual differences, but our novel microbe–metabolite correlation approach, combined with faecal immunoglobulin A (IgA) measurements, has revealed that the induction of mucosal IgA by FOS supplementation correlated with the presence of specific bacteria. Furthermore, the metabolic dynamics of butyrate, l-phenylalanine, l-lysine and tyramine were positively correlated with that of these bacteria and IgA production, whereas p-cresol was negatively correlated. Taken together, our focused intraindividual analysis with omics approaches is a powerful strategy for uncovering the gut molecular network and could provide a new vista for understanding the human gut ecosystem.  相似文献   

18.
The effect of pH and substrate dose on the fermentation profile of a number of commercial prebiotics was analysed in triplicate using stirred, pH and temperature controlled anaerobic batch culture fermentations, inoculated with a fresh faecal slurry from one of three healthy volunteers. Bacterial numbers were enumerated using fluorescence in situ hybridisation. The commercial prebiotics investigated were fructooligosaccharides (FOS), inulin, galactooligosaccharides (GOS), isomaltooligosaccharides (IMO) and lactulose. Two pH values were investigated, i.e. pH 6 and 6.8. Doses of 1% and 2% (w/v) were investigated, equivalent to approximately 4 and 8 g per day, respectively, in an adult diet. It was found that both pH and dose altered the bacterial composition. It was observed that FOS and inulin demonstrated the greatest bifidogenic effect at pH 6.8 and 1% (w/v) carbohydrate, whereas GOS, IMO and lactulose demonstrated their greatest bifidogenic effect at pH 6 and 2% (w/v) carbohydrate. From this we can conclude that various prebiotics demonstrate differing bifidogenic effects at different conditions in vitro.  相似文献   

19.
The effect of the dilution rate on biomass and product synthesis in fermentations of glucose, fructose and a commercial mixture of fructooligosaccharides (FOS) by Bifidobacterium longum ATCC 15707 was studied. Kinetic parameters (maximum specific growth rate, Monod constant, maintenance, and yield coefficients) in the mathematical model of the fermentation were estimated from experimental data. In the FOS mixture fermentations, approximately 12% of the total reducing sugars (mainly fructose) in the feed were not metabolized by the bacterium. In fermentations of fructose and the FOS mixture, biomass concentration increased as the dilution rate increased and, once maximum values were reached [3.90 (D=0.20 h–1) and 2.54 g l–1 (D=0.15 h–1), respectively], decreased rapidly as the culture was washed out. Formic acid was detected at low dilution rates in glucose and fructose fermentations. The main products in fermentations of the three carbon sources were lactic and acetic acids. Average values of the molar ratio between acetic and lactic acids of 1.18, 1.21 and 0.83 mol mol–1 were obtained in glucose, fructose and FOS mixture fermentations, respectively. In batch fermentations carried out without pH control this molar ratio was lower than 1.5 only when fructose was used as the carbon source.  相似文献   

20.
Hu B  Gong Q  Wang Y  Ma Y  Li J  Yu W 《Anaerobe》2006,12(5-6):260-266
To investigate the prebiotic properties of neoagaro-oligosaccharides (NAOS), obtained from enzymatic hydrolysis of agarose, the in vitro and in vivo effects of NAOS on bacterial growth were studied. In vitro NAOS were found to be highly resistant to enzymes of the upper gastrointestinal tract, which remained intact after 24h incubation with different amylolytic enzymes. NAOS significantly stimulated the growth of bifidobacteria and lactobacilli in Man-Rogosa-Sharp (MRS) medium, anaerobically. Compared with fructo-oligosaccharides (FOS), 1% (w/v) NAOS promoted the specific growth rate of beneficial bacteria by about 100%. The decreases of media pH with NAOS were almost the same as that with FOS. In vivo, NAOS significantly increased the numbers of lactobacilli and bifidobacteria (P<0.05) in fresh feces or cecal content while reducing putrefactive microorganisms. Mice fed with 2.5% (w/v) NAOS for 7 days had larger increases in colonic beneficial bacteria population than those fed with even 5% (w/v) FOS for 14 days. No side effects, such as eructation and bloating, were found. Interestingly, NAOS with higher degrees of polymerization (DP) showed better prebiotic activity. These results indicated that NAOS had great prebiotic effect, which could be beneficial to the host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号