首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catharanthus roseus(L.) G. Don cells acidified Mura-shige-Skoogmedium rapidly. Upon transfer to fresh medium, the medium pH(initially5.3) dropped below 4 within 2 d. This acidificationwas reversed under hypoxic conditions. The cells induced a similaracidification in a simple medium consisting of CaCl2, KCl, andglucose: medium pH dropped below 4 within 6 h. The acidificationwas accompanied by an influx of K+ at a H+(efflux)/K+ ratioof ca 0.6 as well as by an expansion of endogenous organic acidpool, in which malic and citric acids were the major components.Anoxia reversed all these processes: the direction of both K+and H+ fluxes reversed with a H+/K+ ratio of 1.70. Anoxia induceda cytoplasmic acidification from pH 7.6 (aerobic) to 7.4 asmeasured by 31P-NMR, accompanied by a rapid, long-lasting lactateaccumulation at expense of malic and citric acids. Evidencesuggested that accumulation of lactic acid was not a cause ofcytoplasmic acidification under anoxia, but a result of pH regulationby the biochemical pH-stat [Davies (1973) Symp. Soc. Exp. Biol.27: 513]. The anoxic acidification of the cytoplasm was ascribedto the influx of H+ from the medium. (Received April 18, 1997; Accepted July 8, 1997)  相似文献   

2.
The effect of the external pH on the intracellular pH in mungbean (Vigna mungo (L.) Hepper) root-tip cells was investigatedwith the 31P nuclear magnetic resonance (NMR) method. The 31PNMR spectra showed three peaks caused by cytoplasmic G-6-P,cytoplasmic Pi and vacuolar Pi. The cytoplasmic and vacuolarpHs could be determined by comparing the Pi chemical shiftswith the titration curve. When the external pH was changed overa range from pH 3 to 10, the cytoplasmic pH showed smaller changesthan the vacuolar pH, suggesting that the former is regulatedmore strictly than the latter. The H+-ATPase inhibitor, DCCD,caused the breakdown of the mechanism that regulates the intracellularpH. H+-ATPase appears to have an important part in the regulationof the intracellular pH. (Received January 4, 1984; Accepted August 27, 1984)  相似文献   

3.
Na+ fluxes in Chara under salt stress   总被引:2,自引:0,他引:2  
The influx and efflux of Na+ across the plasma membrane of Characorallina and Chara longifolia were examined under mild saltstress conditions. Na+ influx was found to be rapid in bothspecies with the freely exchangeable cytoplasmic Na+ cominginto isotopic equilibrium with external 22Na+ within 1 h ofexposure to isotope. Cytoplasmlc Na+ concentration and Na+ influxwere greater in C. corallina than in C. longifolla under thesame conditions. Na+ influx across the tonoplast was much lowerthan the flux across the plasma membrane. Na+ efflux was stimulatedat pH 5 relative to pH 7 by 218% in C. coralllna and 320% inC. longifolia. In both species externally applied Li+ inhibitedNa+ efflux at pH 5 but not at pH 7. Na+ etflux was not significantlyinhibited by amiloride. Key words: Na+ influx, Na+ efflux, Na+/H+ antiport, Chara  相似文献   

4.
Na+/H+ Antiporter in Tonoplast Vesicles from Rice Roots   总被引:4,自引:0,他引:4  
The Na+/H + antiporter in vacuolar membranes transports Na+from the cytoplasm to vacuoles using a pH gradient generatedby proton pumps; it is considered to be related to salinitytolerance. Rice (Oryza sativa L.) is a salt-sensitive crop whosevacuolar antiporter is unknown. The vacuolar pH of rice roots,determined by 31P-nuclear magnetic resonance (NMR), increasedfrom 5.34 to 5.58 in response to 0.1 M NaCl treatment. Transportof protons into the tonoplast vesicles from rice roots was fluorometricallymeasured. Efflux of protons was accelerated by the additionof Na+. Furthermore, the influx of 22Na+ into the tonoplastvesicles was accelerated by a pH gradient generated by proton-translocatingadenosine 5'-triphosphatase (H+-ATPase) and proton-translocatinginorganic pyro-phosphatase (H+-PPase). We concluded that thisNa+/H+antiporter functioned as a Na+ transporter in the vacuolarmembranes. The antiporter had a Km of 10 mM for Na+ and wascompetitively inhibited by amiloride and its analogues. TheKi values for 5-(N-methyl-N-isobutyl)-amiloride (MIA), 5-(N-ethyl-N-isopropyI)-amiloride(EIPA), and 5-(N, N-hexamethylene)-amiloride (HMA) were 2.2,5.9, and 2.9 µ M, respectively. Unlike barley, a salt-tolerantcrop, NaCl treatment did not activate the antiporter in riceroots. The amount of antiporter in the vacuolar membranes maybe one of the most important factors determining salt tolerance. 1This work was supported by a grant from Bio-Media Project ofthe Japanese Ministry of Agriculture, Forestry and Fisheries(BMP96-III-1).  相似文献   

5.
Nicotine was used to induce an intracellular alkalinizationin Elodea densa leaves in order to study the regulation of theplasmalemma H+ pump activity by alkaline intracellular pH values.Nicotine was found to enter the cells rapidly in the unchargedform and to induce a significant intracellular pH increase,measured either directly as cell sap pH or as vacuolar and cytoplasmicpH by calculation from the distribution at equilibrium of labelledpH probes. The nicotine-induced alkalinization was associatedwith a progressive decrease in K+ uptake. A strong inhibitionof net H+ efflux was also evident in the presence of K+ in theexternal medium, whereas no nicotine effect on net H+ effluxwas detected in the absence of K+ (in spite of the larger accumulationof nicotine in the tissue) in agreement with a down-regulationof the activity of the K+-dependent plasmalemma H+-ATPase byalkaline intracellular pH values. The increase in vacuolar pHresulting from nicotine accumulation was small compared to thebase load calculated from the vacuolar buffer capacity and theintracellular dissociation of nicotine. Conversely, the nicotine-inducedincrease in cytoplasmic pH was considerably larger than expectedon the basis of the cytoplasmic buffer capacity and of the theoreticalaccumulation of nicotine in the experimental conditions adopted.A balance sheet between nicotine accumulation, intracellularalkalinization and malate system response was drawn up, andthe seeming discrepancies observed were discussed. (Received August 11, 1997; Accepted November 21, 1997)  相似文献   

6.
The contribution of membrane transport to regulation of cytoplasmicpH in Chara corallina has been measured during proton-loadingby uptake of butyric acid. In the short-term (i.e. up to 20min) uptake of butyric acid is not affected by removal of externalK+, Na+ or Cl but over longer periods uptake is decreased(by 20–50% in different experiments) in the absence ofexternal Na+ or, sometimes, K+. Influxes of both Na+ and K+increase temporarily after addition of butyrate, Na+ immediatelyand K+ after a lag. Effects on Cl influx are small butCl efflux increases enormously after a short lag. Anapproximate comparison of internal butyrate with changes inthe concentration of K+, Na+, and Cl suggests that initially(i.e. for a few min) cytoplasmic pH is determined by bufferingand possibly by some decarboxylation of organic acids (biochemicalpH regulation), and that biophysical pH regulation involvingefflux of H+ balanced by influxes of K+, Na+ and especiallyefflux of Cl progressively becomes dominant. When butyric acid is washed out of the cells, cytoplasmic pHis restored completely or partially (depending on the butyrateconcentration used) and this is independent of the presenceor absence of external Cl. Where Cl is present,its influx is relatively small. It is suggested that cytoplasmicpH is then controlled biochemically, involving the synthesisof an (unidentified) organic acid and the accumulation of acidicanions in place of butyurate lost from the cell. During thesecond application of butyrate, net Cl efflux is small:it is suggested that control of cytoplasmic pH then involvesdecarboxylation of the organic acid anions. The questions of the source of Cl lost from the cell(cytoplasm or vacuole) and of possible cytoplasmic swellingassociated with the accumulation of butyrate are discussed. Key words: Chara corallina, butyric acid, cytoplasmic pH, membrane transport  相似文献   

7.
Primary nitrogen metabolism in transformed root cultures ofDatura stramonium was observed by in vivo 15N NMR. Treatmentof the root cultures with the plant growth regulators -naphthaleneaceticacid (NAA) and kinetin caused a de-differentiation of the roottissue, together with perturbation of primary and secondarynitrogen metabolism. The levels of newly-synthesized glutamineand glutamate during ammonium assimilation were depleted relativeto control cultures, whereas GABA biosynthesis was enhanced.Although GABA production could be stimulated by a decrease incytoplasmic pH (whether imposed artificially or induced by hypoxia),observation of the roots during phytohormone treatment by 31PNMR showed that the cytoplasmic pH remained stable, indicatingthat the perturbation of nitrogen metabolism in the de-differentiatedroots must be due to other causes. Key words: Datura, -aminobutyric acid, nitrogen metabolism, NMR, root cultures  相似文献   

8.
Effects of Cations on the Cytoplasmic pH of Chara corallina   总被引:1,自引:0,他引:1  
Smith, F. A. and Gibson, J.–L. 1985. Effects of cationson the cytoplasmic pH of Chara corallina.—J.exp. Bot.36: 1331–1340 Removal of external Ca2+ from cells of Chara corallina lowersthe cytoplasmic pH, as determined by the intracellular distributionof the weak acid 5,5–dimethyloxazolidine2–,4–dione(DM0), when the external pH is below about 60. This effect isreversed, at least partially, by addition of the following cationsto Ca2+-free solutions: tetraethylammonium (TEA+) and Na+ at5 or 10 mol m-3, Li+ and Cs+ (10 mol m-3), or Mg2+, Mn2+ andLa3+ (02 or 05 mol m-3). Under the same conditions, increasesin pH sometimes, but not always, occur in the presence of 10mol m-3 K+ or Rb+ The results are discussed in relation to the major transportprocesses that determine pH and the electric potential differenceacross the plasma membrane, namely fluxes of H+ and of K+. Thesimplest explanation of the effects of the various cations testedin this study is that they primarily affect pHic via changesin influx of H+ but direct effects on the H+ pump or on K+ fluxesmay also be involved Key words: Chara corallina, cytoplasmic pH, cations, H+transport  相似文献   

9.
The application of D-glucose to solutions bathing excised maize,wheat, pea and bean roots causes a rapid depolarization of theelectrical potentials between the cut tops of the roots andthe bathing solutions. Similar effects are observed for theplasma membrane potentials of maize lateral roots. A flow cell apparatus was used to demonstrate qualitative andquantitative relations between glucose induced H+ influx andthe transient decrease in current through the root. The currentchanges appear to be due entirely to H+ fluxes. Current andH+ fluxes are strongly influenced by external pH, the optimumpH for glucose induced current change being about 4.0. A similarpH optimum was found for 3-O-methyl-D-glucopyranoside but 1-O-methyl--D-glucopyranosidedid not significantly affect the trans-root potential at anypH, suggesting a significant role for the anomeric hydroxylgroup of glucose. Compounds which depolarize the trans-root potential also inhibitthe glucose induced depolarization. Surface -SH groups are probablynot involved in the glucose/H+ cotransport. Eadie-Hofstee plots relating the depolarization of trans-rootpotential to the concentrations of D-glucose or 3-O-methyl-D-glucopyranosidehave shown that Km values increase with increasing monosaccharideconcentration and are very similar to reported values of 3-O-methyl-D-glucopyranosideuptake in maize root segments. Km values for a similar rangeof D-glucose concentrations do not vary significantly with pHor with membrane depolarization due to a 10-fold increase ofKCl concentration. However, Vmax is lowered by an increase inexternal pH or a decrease in trans-root potential. It appearsthat both proton and electrical gradients can affect glucoseinduced H+ influx. The auxin herbicide, 2, 4-dichlorophenoxyethanoic acid (0.01mM) stimulates the glucose induced depolarizations in a mannerconsistent with an increase in cytoplasmic pH. This is discussedin relation to the reported action of indole-3-acetic acid andfusicoccin on maize root tissue.  相似文献   

10.
N-Acetylchitooligosaccharides, fragments of a main backbonepolymer of fungal ceil wall, elicit defense responses includingphytoalexin production in suspension-cultured rice cells. Thepurified oligosaccharide triggers rapid, transient membranedepolarization. Ion fluxes induced by the oligosaccharides wereanalyzed by using ion-selective electrodes. Treatment of thecells with the oligosaccharides induced transient efflux ofK+ and influx of H+ immediately after the elicitation. To monitorthe pH values of the cytoplasm and the vacuoles noninvasivelyunder a physiological condition, in vivo 31P-nuclear magneticresonance spectroscopy was applied to the cells to which oxygenatedgrowth medium was perfused continuously. The cytoplasmic pHshowed significant transient decrease, correspondingly. Onlythe N-acetylchitooligosaccharides with a degree of polymerizationhigher than 5 were active, whereas deacetylated chitosan oligomerscaused no effect. Less than 1 nM of N-acetylchitoheptaose wassufficient to induce rapid flux of ions. Such strict structuralrequirements for the induction of ion fluxes were similar tothose of specific binding to the putative plasma membrane receptoras well as a series of signaling events specifically inducedby the oligosaccharides, suggesting the involvement of transientchanges in cytoplasmic ion concentration in oligosaccharidesignaling for defense responses. (Received March 10, 1997; Accepted June 25, 1997)  相似文献   

11.
The energy status and the phosphate metabolism of Prasiola crispduring and after desiccation stress was investigated by in vivo31P NMR. The effect of desiccation was simulated by additionof the nonionic osmoticum PEG 200 (polyethylene glycol). Photosynthesisand respiration were effectively inhibited under these conditions.The most notable changes in the in vivo 31P NMR spectra werean increase in the cytoplasmic inorganic phosphate signal afterPEG stress, a decrease in the polyphosphates and a lowfieldshift of the core polyphosphate signal followed by an appearanceof extracellular inorganic phosphate. Cytoplasmic pH remainedalmost constant during stress. After a return to control conditions,photosynthesis and respiration recovered within 4 h as wellas the concentrations of the phosphorus metabolites. An as yetunassigned phosphate signal increased in the phosphodiesterregion of the NMR spectra. Simultaneousty, the polyphosphatesignal recovered in intensity and chemical shift. It is suggestedthat phosphate metabolism and complexation of cations to polyphosphatesmay play an important role in the distinct desiccation toleranceof P. crispa. Key words: In vivo 31P NMR, Prasiola crispa, desiccation tolerance, polyphosphates  相似文献   

12.
Continuous measurements of cytoplasmic pH (pHc) in Sinapis roothairs have been carried out with double-barrelled pH-micro-electrodesin order to gain information on translocation of protons acrossthe plasmalemma and cytoplasmic pH control. (i) The cytoplasmicpH of Sinapis (7–33 ? 0–12, standard conditions)changes no more than 0.1 pHc, per pHo-unit, regardless of whethercyanide is present or not. (ii) Weak acids rapidly acidify pHcand hyperpolarize, while weak bases alkalize pHc and depolarizethe cells, (iii) 1.0 mol M,3 NaCN acidifies the cytoplasm by0.4 to 0.7 pH-units, but alkalizes the vacuole. (iv) 20 mmolm–3 CCCP has no significant effect on pHc, if added atpH 9.6 or 7.2, but acidifies pHc by 1.3 units at pH 4.3. Inthe presence of CCCP, cyanide acidifies the cytoplasm, (v) Chloridetransiently acidifies pHc, while K+, Na+, and have no significant effects, (vi) Cytoplasmic buffer capacityforms a bell-shaped curve versus pHc with an optimum of about50 mol m–3 H+pHc-unit. The modes of proton re-entry and the effects of active and passiveproton transport on cellular pH control are critically discussed.It is suggested that the proton leak, consisting of H+-cotransport(e.g. H+/Cl) rather than H+-uniport, is no threat topHc. The proton export pump, although itself reacting to changesin pHc, influences pHc only to a minor extent. It is concludedthat buffer capacity and membrane transport play moderate rolesin pHc control in Sinapis, while the interlocked H+-producingand -consuming reactions of cellular metabolism are the mainregulating factors. This makes pH control in Sinapis quite differentfrom bacterial and animal cells. Key words: Cytoplasmic pH, double-barrelled pH micro-electrode, pH control, proton transport, Sinapis  相似文献   

13.
An active H+ efflux depending on respiration was found in anacidophilic unicellular alga, Cyanidium caldarium. Alkalizationof the medium due to passive H+ transport into the cells wasobserved when the respiratory activity was inhibited by addingrespiratory poisons, such as rotenone or antimycin A, or byintroducing pure nitrogen into the cell suspension. The extentof the H+ influx increased as the pH of the medium was loweredto 2.9, indicating that H+ leaks into the cells according tothe pH gradient across the plasma membrane. The medium pH whichhad increased under anaerobic condition returned to the originallevel with aeration of the cell suspension. This suggests thatan active H+ transport, related to respiration, pumps out theexcess H+ accumulated in the cells during anaerobic preincubation.The pH changes in the cell suspension were related to the intracellularATP level. From these results it was concluded that active H+efflux dependent upon oxidative phosphorylation functions inthe dark to maintain a constant intracellular pH against passiveH+ leakage through the plasma membrane. The light-induced H+ efflux and the respiration-dependent H+efflux were also compared in relation to the physiological roleof the active H+ efflux, especially with respect to the intracellularpH regulation in this alga. 1The data in this paper are included in the Ph. D. dissertationsubmitted by M. Kura-Hotta to Tokyo Metropolitan University. (Received February 3, 1984; Accepted June 14, 1984)  相似文献   

14.
The effects of the growth in a medium containing NH4NO3 as nitrogensource were studied on cell sap pH, cytoplasmic pH and malatecontent in chl1, an Arabidopsis thaliana mutant impaired inchlorate and nitrate transport. In all the conditions testedthe pH of the cytoplasm in chl1 was more alkaline, and thatof the vacuole was more acidic as compared with those measuredin wt. Treatment with bafilomycin A1, a specific inhibitor ofthe vacuolar H+-ATPase, induced a small alkalinization of thevacuole, and a significant acidification of the cytoplasm, theseeffects being greater in chl1 than in wt. The greater responseof the mutant to bafilomycin Al suggests that, in the absenceof the inhibitor, the activity of the tonoplast H+-ATPase inchl1 is higher than in wt, this diversity being a possible reasonfor the differences in intracellular pH detected between thetwo strains. A possible role for the vacuolar H+-ATPase in regulatingthe cytoplasmic pH is discussed. (Received August 2, 1995; Accepted February 1, 1996)  相似文献   

15.
Ammonium and methylammonium ions greatly increase the rate ofCl transport in Chara corallian. This effect is dependenton the pH of the bathing solution. The amine-stimulated Clinflux is small at pH 5·5, increases to a maximum atpH 6·5–7·5, and decreases again as the pHis raised to 8·5. Increased Cl influx is accompaniedby an increase in cytoplasmic pH, as calculated from the distributionof DMO. When the external pH lies between 5·5 and 7·3,cytoplasmic pH in the absence of amine is 7·65–7·70,with an increase of 0·15–0·25 in the presenceof amine. As external pH is increased above 7·3, cytoplasmicpH also increases, with progessively less effect of amine. Although the relationship between Cl influx and cytoplasmicpH is not simple, the results provide evidence in accord withthe hypothesis that Cl transport in Chara involves H+—Clsymport, or the equivalent OH—Cl antiport.The possible role of cytoplasmic pH as a factor involved inthe regulation of membrane transport in Chara is discussed.  相似文献   

16.
The marine hyphomycete Dendryphiella salina (Suth.) Nicot &Pugh has a resting membrane potential of –250 mV (insidenegative). The respiratory inhibitors sodium azide and FCCPinduced a rapid but reversible depolarization of the membraneof at least 180 mV; sodium azide also caused alkalinizationof the medium. Vanadate brought about significant depolarizationbut this was not always reversible. EDTA induced depolarizationthough to a lesser extent. DIDS and SITS caused a depolarizationof around 30–70 mV which was readily reversible, N-ethylmaleimideirreversibly depolarized the membrane by 180–200 mV. Ouabainhad no effect. When external concentrations of H+ , K+ , Na+or Cl were changed singly, only changes in H+ affectedmembrane potential, with shifts decreasing with increasing pH.Glucose and 3-O-methyl glucose depolarized the membrane in aconcentration-dependent manner which was enhanced by starvationof the hyphae. Recovery occurred in the presence of the hexose.Glucose caused an alkalinization of the medium, with time characteristicssimilar to the membrane potential changes. It is concluded thatthere is an electrogenic proton pump and a proton—glucosesymporter in D. salina. The retention of proton-based transportsystems suggests a terrestrial origin for the fungus. Key words: Marine fungi, Dendryphiella salina, membrane potential, electrogenic proton pump, proton symport, hexose  相似文献   

17.
Uptake of Methylammonium Ions by Hydrodictyon africanum   总被引:3,自引:0,他引:3  
Methylamine influx into Hydrodictyon has been measured with[l4C]methylamine. The influx increases with rising externalpH up to about pH 8. Between pH 8 and 9 influx remains quiteconstant, with a further increase above pH 9. Influx is light-dependent,temperature-sensitive, and is decreased by . During short-term influx (less than 4 h) metabolism of methylamineappears negligible. Prolonged influx results in CH3 accumulation, and efflux of K+, Na+, and H+. There is no effecton Cl influx. Methylamine decreases the membrane electricp.d. by 60–120 mV at external concentrations of 0?2–1?0mM. The results indicate that, below pH 9, methylamine enters thecell almost entirely as CH3. It is suggested that a passive electrogenic uniporter is involved, and thatby analogy uniport of may also be expected in Hydrodictyon. The results are discussed in relation to theevidence for uptake of CH3 and by other plant cells.  相似文献   

18.
Salinity-induced Malate Accumulation in Chara   总被引:3,自引:0,他引:3  
Ion absorption by Chara corallina from solutions containingpredominantly KC1 or RbCl at up to 100 mol m–3 resultedin accumulation of salts and turgor regulation. Turgor regulationdid not occur in solutions containing Na+ or Li+salts. Duringion absorption from various salts of K+ and Rb+ vacuolar cationconcentration exceeded Cl concentration. This differencewas shown to be balanced by the synthesis and accumulation ofmalate. Vacuolar malate concentration reached 48 mol m3,with accumulation occurring at rates of up to 0.45 mol m–3h–1. Malate accumulation was inhibited by low externalpH and was dependent upon external HCO3 concentration.The synthesis of malic acid and its subsequent dissociationimposed a severe acid load on the cell. Biophysical regulationof cellular pH was achieved by a H+efflux at a rate of about40 nmol m–2 s–1from the cell. The results presentedargue against cytoplasmic Cl, HCO3 or pH regulatingmalate accumulation in Chara and it is suggested that malatetransport across the tonoplast may regulate malate accumulation. Key words: Malate, Chara corallina, pH regulation, salinity  相似文献   

19.
Coupling of Proton Fluxes in the Polar Leaves of Potamogeton lucens L   总被引:1,自引:0,他引:1  
An attempt has been made to quantify the light-induced H+ effluxand influx observed in polar leaves of Potamogeton lucens.Theseproton fluxes are spatially separated. The H+ efflux, mediatedby a plasmalemma bound H+ –ATPase, occurs across theplasmamembrane at the morphological lower epidermis and is accompaniedby an H+ influx (or OH efflux) at the upper side oftheleaf. As a result, these leaves exhibit a remarkable pH–polarityin the light. The pH near the lower epidermis may drop to avalueas low as 3.5, while a pH of about 10.5 can be observed at theupper epidermis. Obviously this phenomenon requires theco–ordinationof transport processes in the different cell layers of the leaftissue. These observations led to quantitative studies oftherelation between the H+ fluxes at either plasmalemma. Thesefluxes were calculated from the pH values recorded at twodistancesfrom the leaf surface. Although the H+ influx always exceededthe efflux, a coupling between the transport processesacrosseither plasma membrane became evident from the time–coursesof the two fluxes. Key words: Potamogeton lucens, proton flux, flux coupling, pH–;polarity  相似文献   

20.
Smith, J. R., Smith, F. A. and Walker, N. A. 1987. Potassiumtransport across the membrane of Chara. I. The relationshipbetween radioactive tracer influx and electrical conductance.—J.exp. Bot. 38:731–751. The 42K influx () and the electrical conductance (Gm) were measured simultaneously for the ‘membrane’of internodal cells of Chara australis as a function of theexternal [KCl] (K?. In bathing solutions of pH = 5?0, progressively increased from 20?5to 430?60 nmol m–2 s–1 and Gm increased from 0?36?0?02to 3?8?0?8 S m–2 when K? was increased from 0?1 to 10mol m–3. The resting membrane potential difference (p.d.)was approximately -135 mV for low K? and approached the expectedNernst equilibrium p.d. for K+ ions when K? > 1?0 mol m–3.Measurements of 36Cl influx suggested that the 42K influx waspredominantly electrogenic. The equivalent Goldman permeabilityto K+ ions (Pk) was approximately 20–30 nm s–1 anddid not vary significantly with increasing K?. The equivalentconductance attributable to the electrogenic transport of K+ ions was calculated from assuming passive, independent diffusionof K+ ions and the ratio was found to be typically close to one. It was also found that themagnitudes of and Gm measuredsimultaneously for each individual cell were also well correlatedfor K? 1?0 mol m–3, and that the slope of the line ofbest fit was close to one. For each K? it was found that theconductance not attributable to K+ translocation and presumablyassociated primarily with the transport of protons or theirequivalents was typically 0?2–0?5 Sm–2. For K? >1?0 mol m–3 the results indicated that the transport ofK+ ions was essentially independent, i.e. there was no evidencefor flux interactions. The results also indicated that the equivalentconductance derived from the measured 42K influx could usefullyindicate the fraction of the electrical conductance attributableto the translocation of K+ ions. Key words: Potassium, conductance, influx  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号